Towards Enabling Design Rationale Capture by Asking the
Right Questions

Mathias Schubanz

Institut fiir Informatik, Informations- und Medientechnik
BTU Cottbus - Senftenberg
Postfach 10 13 44
03013 Cottbus
M.Schubanz@b-tu.de

Abstract: Over the last thirty years many research has been conducted to capture
the “how” and ”why” behind design decisions. This information is known as design
rationales (DR). Approaches to capture, store, preserve, and use DR have emerged
from research activities. However, as of today they only found exceptional applica-
tion within industrial practice. Rationales have been analysed in respect to its nature,
its structure, and its quality. Additionally, some researchers performed analyses on
them. They found out that DR have the potential to sustainably contribute to de-
sign, re-design, testing, maintenance, and improving product quality over the whole
product-life cycle. Within this paper a research proposal is presented striving to tackle
the exceptional use of DR in software documentation. We want to promote the capture
of DR by paying more attention on the questions “What information has to be cap-
tured by rationales?”, "How detailed should the captured information be?”, and "How
should rationale capture be integrated into the development process?”. It is the goal
to promote the use of DR within the whole software development process. In short,
within this paper we introduce the topic of DR, related research and elaborate on the
intended research on the topic of DR capture.

1 Introduction

Design rationales document the reasoning behind given actions and decisions. They pro-
vide an answer for the "how” and “why” which is often asked in relation to decisions
made. Therefore, they play an important role in decision-making. For instance, when one
needs to decide on one out of a set of available alternatives, they provide insight to the
arguments, the criteria considered, and potential consequences. Rationales also document
the assumptions behind decisions which often, if not explicitly asked for, stay implicit in
the heads of those involved. They are substantially connected to argumentation and some-
times even are used as a synonym for argumentation [FLMMO91]. Hence, capturing DR
avoids tacit knowledge to remain in the stakeholders’ heads.

The concept of documenting the decision-making process and its connected rationales did
not originate in the software engineering domain. It has initially been applied in urban
architecture and the policy domain [BCMMOS]. In the late 80’s several approaches to doc-

2257

ument group meetings and argumentation within the field of human-computer interaction
design were published [CMW96, CR91, CY91, MYMS9]. Based on the corresponding
focus of capturing rationales of software and interface designs, the term design rationale
(DR) got well established. Thus, DR and rationale are treated as a synonym from here on.

Kunz and Rittel [KR70] were one of the first to approach the field of DR. They shaped ra-
tionales as the reasons behind existing decisions. According to MacLean et al. [MYBMO91]
proper rationales also include the design space. In other words, design rationales also con-
sider how a given artefact is located in the space of existing design options. Rationales
also play an important role in software architecture documentation. Correspondingly, Tang
and Han [THOS5] defined Architecture Rationale to record the reasons of requirements en-
hancements and its design rationales. However, considering all available definitions of
DR would go beyond the scope of this paper. Following, we refer to the definition of
MacLean et al. [MYBMO91] when talking about DR.

DR are said to support multiple software engineering activities as, for instance, design,
re-design, test, and maintenance [DMMPO06]. Nevertheless, DR has been employed only
exceptionally in industrial practice yet [Bur08]. There is a clear disparity between the its
potential and the use of DR. Therefore, this paper presents a research proposal which is
intended to result in a DR capture framework providing concrete guidance to developers
when capturing rationales. This framework is expected to contain a set of reference ques-
tions grouped into templates. These questions shall be answered to capture rationales dur-
ing software development. The framework is further expected to contain guidelines sup-
porting the integration of rationale capture into existing software development processes.
It shall be rounded out by a reference implementation of DR capture in a development
process.

The goal of the dissertation is to resolve the uncertainty connected to DR capture (see
Section 4) by providing a reference framework which guides developers when capturing
DR. The work shall provide answers for the following research questions:

RQ-1: What information has to be captured by rationales?
RQ-2: How detailed should the captured information be?

RQ-3: How should rationale capture be integrated into the development process?

The remainder of the paper is structured as follows: Section 2 motivates the usage of DR.
Within Section 3 related work with a focus on software engineering is presented. Section
4 discusses research gaps related to the successful application of DR. Finally, a research
outline including previous work is presented in Section 5.

2 Motivation

The essential capability of DR is to reflect the intention behind a decision. One of the most
important application scenarios in this respect is the usage of DR as a means of commu-
nication. As such they have initially been used in urban architecture and in the political
domain [BWMKAO9]. In the latter, the /BIS approach [KR70] by Kunz and Rittel played an

2258

important role. According to Carrol and Rosson [CR91] DR build a pertinent understand-
ing of the context, the users, the tasks, the technologies, and the situations considered. This
is of particular interest in the software engineering domain as there is a variety of stake-
holders participating in, for instance, requirements engineering and design. This ranges
from developers, who intend to understand the work of their colleagues, up to the technical
sales and distribution department. They use DR to reduce the complexity contained in a
software design. In other words, DR essentially serve the perception and understanding of
a given design [BCMMO8, Cas96, CY91, DMMP06, KLVV06, MYBMO91, Sagl12, SH94].
Conklin and Yakemovic [CY91] underpin these assumptions by a case study. At the NCR
corporation they introduced a DR management system in an industrial setting for the scope
of a particular project. The authors report several positive effects which can be attributed
to captured rationales. At the same time they also came across several typical rationale
management problems. For instance, participants did from time to time not capture DR
properly. This could be attributed to a diverse perception of what rationales are and when
they need to be captured. Correspondingly, Conklin and Yakemovic report in their case-
study description that at one point in the project a particular feature was planned to be
realised by the development team without a concrete reason attached to it. The responsi-
ble software engineer expected everybody else in the team to be familiar with the reasons
for the feature request. In fact, nobody else but him knew, that this particular feature had
to be introduced due to a number of customer complaints.

A positive conclusion from the case study is that DR support knowledge preservation.
They contribute to preserve information in relation to an existing software artefact, like a
component. Imagine the following: the lack of information in the previous example would
not have been discovered. Even worse, the responsible software engineer would have left
the company. At that point the corresponding design knowledge would have been lost.
Documenting DR could prevent this. Within the same case study [CY91] the authors report
a successful case of knowledge preservation. Prior to the completion of a detailed software
design one of the centrally involved software engineers left the company. Nevertheless, on
the basis of the DR documentation the remaining team did manage to finish the detailed
design without difficulty.

Tang and Han [THO5] claim that DR also play a central role for architecture verification.
Hence, DR support software designers when they check whether the architecture model
is complete, the rationale of the design decisions is sound, and the design can satisfy the
given system requirements. This way errors could be revealed. Analogously, during the
mentioned case study [CY91] the authors manually converted the documentation repos-
itory including its DR from the i#/BIS to the g/BIS format. This conversion revealed /1
additional design problems, whereof 7 most likely would not have been discovered until
code would have been written.

DR can also be applied to support several other capabilities. For instance, DR could sup-
port reasoning on a given set of alternatives [MYBM91]. Hence, DR also facilitate release
planning [Ruhl11]. Alternatively, DR also can facilitate decisions within a variant space
[TB12]. A detailed overview on capabilities of DR outlined in the literature within the last
25 years is provided by Sagoo [Sagl2].

Despite of the various application scenarios in which DR could contribute, they have not

2259

found much application in industrial practice yet. Known applications in the domain of
software engineering are mainly based on research activities performing case studies or
concept evaluations. They have found more application in the field of aviation industries
[BWMKO9]. There are several barriers to a successful DR capture as, for instance, the
high effort to capture DR, maintain the information, as well as no clear understanding of
how they could be handled. Within the set of problems a central role could be attributed to
the uncertainty in relation to benefits of DR and a lack of certainty on what information is
valuable up to which granularity. More discussion on this topic can be found in Section 4.

3 Related Work

This section will present related work in the field of DR management. The first part dis-
cusses existing approaches to represent DR. Section 3.2 provides a brief overview on DR
in relation to software architectures. Finally, Section 3.3 will briefly review approaches
focussing on the DR capture process.

3.1 Design Rationale Models

Probably the most important approach in the field of rationale management dates back to
1970. The IBIS approach [KR70] defined a structure to be used for documenting issues
discussed in, for instance, group meetings. It has been widely used and often adopted
within proceeding research activities. Several other also similar approaches have been
proposed in the late 80’s and early 90’s. One of these is the Questions-Options-Criteria
(QOC) approach by MacLean et al. [MYBMO91]. They altered the IBIS approach by adding
relevant criteria as well as the opportunity to evaluate arguments. This is why the authors
claim to support a design space exploration. Lee [Lee89] proposed another important
approach providing an expressive grammar to capture DR in structured way. With its
seven node types and fifteen link types it contains a high complexity [BD04].

On the basis of the previously mentioned approaches several similar models and corre-
sponding tools have been developed. For instance, the IBIS derivatives it/BIS [CY91],
gIBIS [CY91], rIBIS [RE91], PHI [FLMM91], DRed [BWMKO09], and QAR [HOK14]
were proposed. Some derivatives of QOC are DREAM+TEAM [LP07], IVMM [TB12],
EvoPL [SPBL12], and RUSE [Wol08]. A derivative of DRL is RAT'speak [BBOS].

3.2 Software Architecture Documentation

Among the numerous approaches to DR some had a dedicated focus on software archi-
tecture. For instance, Tang and Han [THOS] proposed the Architecture Rationalization
Method (ARM) which is based on Architecture Rationale. The Architecture Tradeoff Anal-
ysis Method (ATAM) by Kazman et al. [KKCO0O0] evaluates multiple software architectures

2260

against a set of defined quality goals. Its output is intended to develop a set of analyses, ra-
tionales, and guidelines. Asundi et al. [AKKO1] extended ATAM by the Cost Benefit Anal-
ysis Method (CBAM) which links costs and business goals to architecture decision-making.
Bass et al. [BCNS06] propose to capture DR for a software architecture differently. They
use to two distinct graphs, a structural graph and a causal graph.

Another aspect which relates to DR is the documentation of software architectures and
the connected reasoning. Here, several models have been proposed. Tyree’s Template
by Tyree and Akerman [TAO5], Archium by Jansen and Bosch [JBOS5], the Architecture
Design Decision Support System Model by Capilla et al. [CNDO7], or AREL by Tang et al.
[THVO09] are just some to name in this respect.

3.3 Design Rationale Capture

For a long time DR capture did not receive much attention. The DR schema was the point
research focussed on. Over time it became clear that the schema is not the only key to
success. Hence, corresponding tools and methodologies emerged from research activities.
One of the first approaches was the graphical IBIS (gIBIS) approach [CY91]. It tried to
mitigate existing barriers to DR capture by graphical tool support. A similar approach
called MIKROPLIS and later PHIDIAS was presented by McCall et al. [MBd*90]. They
used the PHI approach which is based on IBIS [FLMMO91]. Its essential advantage is that
DR could be created by reusing already captured information from previous projects.

Shipman et al. [SIM99] went another way by proposing to capture DR without a schema.
The approach captures all information on a 2D space and structures the results according
to its spatial arrangement. Similarly, Reeves et al. [RS92] annotate artefact designs with
textual notes within a CAD system. Thus, DR are annotated directly to the artefact design.
Myers [MZG99] modified a CAD system by augmenting the symbol library with semantic
information. Hence, DR is captured based on the symbol usage. The main goal of the
previous approaches is to reduce the process disruptiveness by avoiding a DR schema.

On a rather abstract level Schneider [Sch06] approached the problem by proposing guide-
lines to DR capture which need to be turned into concrete operational practices, tech-
niques, and/or rules. Apart from the underlying DR schema Bass et al. [BCNS06] also
propose guidelines to DR capture. Their goal is to guide architects during DR capture.
In contrast thereto, Casaday [Cas96] provides a set of eight templates residing on a more
detailed abstraction level. In a more recent work Durdik and Reussner [DR13] capture
design decisions related to the use of patterns by using a question catalogue.

4 Research Gaps

As outlined in Section 3 a considerable set of research has been conducted on the topic of
DR. However, there still remains much uncertainty [BurO8] on DR usage. DR capture is
accompanied by a contradiction. While there is no shortage of advocates for the value of

2261

DR, there also is no shortage of reasons why DR are unlikely to be captured [Bur08]. There
is a big uncertainty whether the payoff will justify the costs, how DR should be maintained,
how it will we used, and most important, what needs to be captured. This uncertainty
hindered the successful integration of DR into industrial practice. For now, there are two
known cases to be mentioned when talking about successful DR capture. As outlined in
Section 2 the first one is the successful application of DR during the KDS project in the
NCR corporation [CY91] on the basis of the gIBIS tool. The second case is the successful
application of the Design Rationale Editor (DRed) within Rolls Royce [BWMKO09]. What
initially started as a research project ended with a company-wide rollout of the DRed
approach.

When comparing the lack of industrial DR usage to its occasional success the follow-
ing question arises: Why did DR not find industrial application on a broad scale yet?
Kruchten et al. [KLVVO06] simply answer this by stating the following: This is mostly
because the burden to capture assumptions and decisions outweighs largely the immedi-
ate benefits that the architect may draw. Correspondingly, one of the main reasons is the
uncertainty on the usage of DR. Burge [Bur08] outlined this in three questions:

e How useful are the potential benefits of DR?
e How insurmountable are barriers to DR usage?
e Will the value of DR justify the cost?

Within future research these questions need to be answered to overcome the barriers to DR
usage. A first contribution in this area has been proposed by Horner and Atwood [HAO06].
They categorised the barriers to DR usage into cognitive, capture, retrieval, and usage
limitations. Cognitive limitations consider limitations connected to human information
processing. Capture limitations address the capture of information required to place DR
in the right context, incentives to DR capture, the elicitation of tacit knowledge, politi-
cal factors (Does the captured DR pose a risk to the developer or the company?), as well
as the trade-off between cost and benefits of DR capture. Retrieval limitations are con-
cerned about the information which needs to be captured and which is expected to be
useful. Finally, the DR capture might constrained by usage limitations as, for instance,
the uniqueness of design problems. Considering a development scenario where the design
problems always differ substantially, DR re-use is an undesirable application scenario.

Another frequently discussed issue in connection to the uncertainty of DR capture is the
process intrusiveness [DMMP06, Sch06]. Correspondingly, DR capture is considered to
break the workflow, slow down the work progress and reduce the developers’ motivation.
A reduced motivation could also be caused once architects need to capture DR which
reveal that they did not act as they were supposed to [DMMPO06]. For instance, they
decided to prefer a solution alternative which is connected to less development effort but
contains a higher risk of failure. Another reason which often hinders DR capture is a lack
of project resources and available time [DMMPO06]. When things need to be cut due to a
lack of time DR does not have the appropriate priority to be maintained. This is also due
to a lack of immediate pay-off compared to the required effort [FLMMO91]. Usually, the
point in time when DR unfold their benefit is posterior to the time of capture [CY91].

Apart from the contribution proposed by Horner and Atwood, there is little discussion

2262

on the problems outlined above. For now, DR research mainly focussed on DR schemes
and corresponding tooling. At least as important as the schema / tool combination is
an investigation on the expectations and needs of practitioners. These are a key factor
to overcome the barriers to DR usage. Thus, this area should gain more focus in DR
research. Otherwise it will remain as it has done over the years: nice ideas, but not practical
[KLVVO06]. First contributions have been made here by Burge [BurO8] and Tang et al.
[TBGHO6]. Both conducted a survey on the needs and expectations of practitioners to
DR usage. They found out that practitioners consider DR as important. Additionally,
practitioners criticise a lack of methodology and tool support. However, there barely is
empirical work in DR research [Bur08, TBGHO06]. More effort needs to be invested here.

S Project Outline

Considering the elaborations in the previous chapters Design Rationale (DR) do seem to
be an important means of software documentation. They capture the knowledge behind
design decisions and, therefore, capture a key asset of a company’s value [Lie02]. How-
ever, as of today to the best of our knowledge DR are barely used in industry in general
and in software engineering in particular. Potential reasons to that have been outlined in
Section 4. To overcome exactly these research gaps an essential starting point is to pro-
vide practitioners with concrete guidance on what information is relevant to be captured.
Accordingly, the research questions RQ/ to RQ3 have been set up (cf. Section 1). To
answer these questions it is intended to develop a DR capture reference framework. It is
expected to contain (1) a set of concrete questions to be answered by DR, (2) guidelines to
support the integration of DR capture into existing software development processes, and
(3) a reference implementation of a process for a DR capture system. The questions and
guidelines are intended to be grouped together into a set of reference templates. Based on
a development domain, the granularity level of documentation, and the development con-
ditions (development team, development process, development resources) a developer will
need to tailor the resulting DR capture reference templates to his/her concrete development
scenario. Additional guidance will be provided by the reference implementation.

5.1 Previous Work

In our previous work we augmented an approach to model software product line evolution
(SPLE), called EvoPL [PBD*11], with the basic concepts from decision-making and ra-
tionale modelling. Based on the QOC model ((MYBM91], see Section 3) we support the
capture of goals, requirements, decision alternatives, relevant criteria, as well as explicit
DR (see [SPBL12]). Further, we provided a first IDE-integrated tool support on prototype
level. In [SPPT13] we evaluated our model from [SPBL12]. To do so, we analysed the
SWT project, a sub-project of the Eclipse Project [DRW04]. We retrospectively analysed
the documentation of their coarse grained plans called Themes and Priorities tracing ac-
tions down to fine-grained commit comments. The results showed, that the introduced

2263

modelling concepts (cf. [SPBL12]) haven reflected by analysed data. However, we were
not able to systematically reconstruct explicit DR information.

Based on experiences from this research and the research gaps discussed in Section 4 the
research focus has been slightly adjusted. One of the central problems which we intend
to address now are the barriers of DR usage. As a first step to approach this problem
in [SPJB14] we conducted a literature survey looking for questions to be answered by
DR. Additionally, we started to work on a combination of rationale capture guidelines and
the questions from [SPIB14] for the requirements engineering domain. It is intended to
propose a first approach on questions-based rationale capture guidance.

5.2 Research Outline

The results from the literature survey in [SPIB14] and current research will serve as a first
step to set up an initial set of DR questions and guidelines. However, the work needs to be
extended. A research outline continuing this work is listed in the following steps:

1. The literature survey on questions to be answered by DR (see Section 4) needs to
be enlarged to a Systematic Literature Review [KCO7]. The goal is to gain a better
understanding on the expectations outlined in rationale research.

2. The information found in the literature needs to be related to information on the
expectations and needs to DR usage from the practitioner’s point of view.

3. Based on the results from step one and two an initial set of question templates has
to be set up. These shall serve as the basis for first guidelines to capture rationales.

4. The results from step three need to be tailored to a subset of domains and develop-
ments processes. Moreover, a reference implementation has to be developed.

5. The results from step four need to be refined in cooperation with practitioners. Fi-
nally, the usability of the defined of the DR capture framework needs to be empiri-
cally evaluated in an industrial project.

In the first step we want to focus on one of the central capabilities awarded to DR. They are
expected to answer a given set of questions [BCNS06, BCMMO08, DMMPO06]. This con-
cept can also be found in the QOC [MYBMO91] and the QAR [HOK14] approach. "Why
was this decision made?, "How is requirement X satisfied?*, or "What are the implica-
tions of making modification Y?* are just some examples. Some of the central questions,
as those just mentioned, are outlined in the literature again and again. Others, only appear
seldom. Hence, an essential starting point to focus the research on is to determine the
information which is required to be captured by DR. To do so, it is intended to perform
a Structured Literature Review [KCO07] on the availability of questions to be answered by
DR in the corresponding literature. As outlined in Section 5.1 a first literature review has
been performed already. However, this has several limitations. It needs to be enlarged to a
Structured Literature Review considering more background information on the questions
found. Thus, it is important to consider the context the questions were used in. They
might originate from a theoretical background used for, e.g., motivation purposes in re-
search papers. Alternatively, they could originate from a practical background as, e.g.,

2264

they emerged during a case study. The results of the literature review need to be analysed
in detail. Potential research questions for the literature review could be the following:

RQ-A What questions to be answered by DR are outlined in the literature?

RQ-B Which background do the questions found originate from?

RQ-C What differences can be found based on the origin of the questions?

RQ-D How have the questions found been evaluated?

RQ-E What kind of question-based guidance for DR capture has been proposed yet?

Within the second step we intend to prepare questionnaires and perform interviews with
practitioners having different experiences and working in different domains. In detail, we
want to communicate with practitioners (1) still being in education (e.g. students), (2)
working in open source development projects, and (3) having industrial background. We
intend to interview them using online questionnaires and/or live interviews. Therefore, we
intend to find an answer to the following questions:

e What do practitioners expect of using DR? (in terms of effort, benefits, and the
trade-off amongst them)

What are the barriers to DR usage for practitioners?

Which are the most important ones to overcome?

What information do practitioners require when analysing, maintaining respectively
evolving existing (legacy) software?

What is the most relevant information for practitioners to be captured by DR?

In addition to the results from step two, we intend to analyse existing open source devel-
opment projects for its documentation structure and DR usage. Based on the unstructured,
decentralised development processes as well as the different information backgrounds of
the developers, we expect that DR plays an important role to improve the communication
within open source development projects. We want to exhibit if any DR related infor-
mation is captured. If so, what information does the DR documentation reveal about DR
capture, DR usage and the project itself? Furthermore, it is of interest to us, what informa-
tion is often required by developers analysing existing software, performing maintenance
operations, or evolving existing software.

In step three we want to produce initial set of question templates based on the results from
step one and two. The resulting templates shall serve as the basis for a first version of
guidelines to capture rationales. However, as we expect the that the questions found will
reside on a rather general level we need to refine these.

The fourth step is intended to review the results from step one and two in respect to the
domains the practitioners are working in. We think that there is no one fits it all approach.
Based on the research proposed above, we will not be able to provide guidance for all
development scenarios. Hence, the intended reference framework needs to be tailored to
a subset of (1) domains, (2) team structures, and (3) development processes employed.
This shall be done in collaboration with industry partners. If this is not done carefully,
DR questions will remain on an abstract level. Hence, they would merely serve as a

2265

guideline for DR capture (similar to [BCNSO06]) instead of concrete guidance to DR cap-
ture. To ensure the usability and the functional relevance of the intended outcome we
intend to closely collaborate with practitioners from an industrial background. Software
engineering in regulated domains, including certification-oriented processes seems to be a
promising candidate. The need for careful documentation is already well established and
first successful industry cases exist (e.g. [BWMKO09]). We also got into contact with first
practitioners from the automotive domain. Step four will be concluded by the creation of
a reference implementation of a process for a DR capture system.

Within step five we refine the results from steps one to four. Again, we strive to have this
activity to be supported by an industry collaboration from the automotive industry. An
empirical evaluation within the automotive domain (see step four) on the usability of the
outcomes shall be performed. The setting and scope of the evaluation is not clear yet.

Finally, within the thesis it is intended to provide tool-support for the ideas from steps one
to five. The DR capture framework should be accompanied by an automated configuration
wizard to increase its usability. Moreover, it is intended to develop an IDE-integrated tool
support, similar to the one contained in SEURAT [BBOS]. DR should be captured within
the development environment depending on the concrete development process and usage
scenario.

References

[AKKO1] Jayatirtha Asundi, Rick Kazman, and Mark Klein. Using economic considerations
to choose among architecture design alternatives. Technical report, DTIC Document,
2001.

[BBO8] Janet E. Burge and David C. Brown. Software Engineering Using RATionale. Journal
of Systems and Software, 81(3):395-413, 2008.

[BCMMO8] Janet E Burge, John M Carroll, Raymond McCall, and Ivan Mistrk. Rationale-Based
Software Engineering. Springer Publishing Company, Incorporated, 2008.

[BCNS06] Len Bass, Paul Clements, Robert L Nord, and Judith A Stafford. Capturing and Using
Rationale for a Software Architecture. In Rationale Management in Software Engi-
neering, pages 255-272. Springer, 2006.

[BD04] Bernd Bruegge and Allen H Dutoit. Object-Oriented Software Engineering Using
UML, Patterns and Java-(Required). Prentice Hall, 2004.

[Bur08] Janet E Burge. Design Rationale: Researching Under Uncertainty. Al EDAM,
22(4):311, 2008.

[BWMKO09] Rob Bracewell, Ken Wallace, Michael Moss, and David Knott. Capturing design ra-
tionale. Computer-Aided Design, 41(3):173 — 186, 2009.

[Cas96] George Casaday. Rationale in Practice: Templates for Capturing and Applying Design
Experience. In Design Rationale: Concepts, Techniques, and Use, pages 351-372.
Lawrence Erlbaum Associates, 1996.

[CMW96] Tom Carey, Diane McKerlie, and James Wilson. HCI Design Rationale as a Learn-
ing Resource. In Design Rationale: Concepts, Techniques, and Use, pages 373-392.
Lawrence Erlbaum Associates, 1996.

[CNDO7] Rafael Capilla, Francisco Nava, and Juan C Duenas. Modeling and documenting the
evolution of architectural design decisions. In Proceedings of the Second Workshop on

2266

[CR91]
[CY91]
[DMMPO06]

[DR13]

[DRWO04]
[FLMMO91]

[HAO6]

[HOK14]

[JBOS]

[KCO07]

[KKCO00]

[KLVVO06]

[KR70]

[Lee89]

[Lie02]

[LPO7]

[MBd™90]

SHAring and Reusing architectural Knowledge Architecture, Rationale, and Design
Intent, page 9. IEEE Computer Society, 2007.

John M Carroll and Mary Beth Rosson. Deliberated evolution: Stalking the View
Matcher in design space. Human—Computer Interaction, 6(3-4):281-318, 1991.

E. Jeffrey Conklin and K. C. Burgess Yakemovic. A Process-Oriented Approach to
Design Rationale. Human—Computer Interaction, 6:357-391, Sept. 1991.

Allen H. Dutoit, Raymond McCall, Ivan Mistrik, and Barbara Paech. Rationale Man-
agement in Software Engineering. Springer-Verlag, New York, 2006.

Zoya Durdik and Ralf Reussner. On the Appropriate Rationale for Using Design Pat-
terns and Pattern Documentation. In Proceedings of the 9th International ACM Sigsoft
Conference on Quality of Software Architectures, QoSA 13, pages 107-116, New
York, NY, USA, 2013. ACM.

J. Des Rivieres and J. Wiegand. Eclipse: a platform for integrating development tools.
IBM Syst. J., 43:371-383, April 2004.

Gerhard Fischer, Andreas C. Lemke, Raymond McCall, and Anders I. Morch. Making
Argumentation Serve Design. Hum.-Comput. Interact., 6:393-419, September 1991.

John Horner and Michael E Atwood. Effective Design Rationale: Understanding the
Barriers. In Rationale Management in Software Engineering, pages 73-90. Springer,
2006.

Alireza Haghighatkhah and Harri Oinas-Kukkonen. An Argumentation-Based Design
Rationale Application For Reflective Practice. In Proceedings of the 22nd European
Conference on Information Systems (ECIS), 2014.

Anton Jansen and Jan Bosch. Software architecture as a set of architectural design
decisions. In Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Con-
ference on, pages 109-120. IEEE, 2005.

Barbara A. Kitchenham and S. Charters. Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering. Technical Report EBSE-2007-01, Keele
University, 2007.

Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for Architecture Eval-
uation. Technical report, CMU / Software Engineering Institute, 2000.

Philippe Kruchten, Patricia Lago, and Hans Van Vliet. Building up and reasoning about
architectural knowledge. In Quality of Software Architectures, pages 43—-58. Springer,
2006.

Werner Kunz and Horst W. J. Rittel. Issues as elements of information systems. Tech-
nical report, Systemforschung, Heidelberg, Germany Science Design, University of
California, Berkeley, 1970.

Jintae Lee. Decision Representation Language (DRL) and Its Support Environment.
MIT Artificial Intelligence Laboratory Working Papers WP-325, MIT Artificial Intel-
ligence Laboratory, August 1989.

Jay Liebowitz. A look at NASA Goddard Space Flight Center’s knowledge manage-
ment initiatives. IEEE software, 19(3):40-42, 2002.

Xavier Lacaze and Philippe Palanque. DREAM & TEAM: A Tool and a Notation
Supporting Exploration of Options and Traceability of Choices for Safety Critical In-
teractive Systems. In Human-Computer Interaction — INTERACT 2007, volume 4663,
pages 525-540. Springer Berlin Heidelberg, 2007.

Raymond McCall, Patrick R Bennett, Peter S d’Oronzio, Jonathan L Ostwald, Frank M
Shipman III, and Nathan Wallace. PHIDIAS: Integrating CAD Graphics into Dynamic
Hypertext. In ECHT, volume 90, pages 152-165, 1990.

2267

[MYBMO1] Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and Thomas P. Moran.

[MYMS9]

[MZG99]

[PBDT11]

[RE91]

[RS92]

[Ruhl1]
[Sagl2]
[Sch06]

[SH94]

[SIM99]

[SPBL12]

[SPIB14]

[SPPT13]

[TAO5]
[TB12]
[TBGHO6]
[THO5]
[THV09]

[Wol08]

Questions, Options, and Criteria: Elements of Design Space Analysis. Hum.-Comput.
Interact., 6:201-250, September 1991.

Allan MacLean, Richard M Young, and Thomas P Moran. Design Rationale: the
Argument behind the Artifact. In ACM SIGCHI Bulletin, volume 20, pages 247-252.
ACM, 1989.

Karen L Myers, Nina B Zumel, and Pablo Garcia. Automated capture of rationale for
the detailed design process. In AAAI/TAAI pages 876-883, 1999.

Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and Stefan
Kowalewski. Model-driven Support for Product Line Evolution on Feature Level (ac-
cepted for publication). Journal of Systems and Software (JSS) - Special Issue on
” Automated Software Evolution”, 2011. http://soft.vub.ac.be/iwpse-evol/specialissue.

Gail L Rein and Clarence A Ellis. rIBIS: a real-time group hypertext system. Interna-
tional Journal of Man-Machine Studies, 34(3):349-367, 1991.

Brent Reeves and Frank Shipman. Supporting communication between designers with
artifact-centered evolving information spaces. In Proceedings of the 1992 ACM con-
ference on Computer-supported cooperative work, pages 394-401. ACM, 1992.

Giinther Ruhe. Product Release Planning: Methods, Tools and Applications. Auerbach
Publications, 2011.

Jeevan Sagoo. Design rationale for the regulatory approval of medical devices. PhD
thesis, Cranfield University, 2012.

Kurt Schneider. Rationale as a By-Product. In Rationale Management in Software
Engineering, pages 91-109. Springer, 2006.

Simon Buckingham Shum and Nick Hammond. Argumentation-Based Design Ratio-
nale: What Use at What Cost. International Journal of Human-Computer Studies,
40(4):603-652, 1994.

Frank M Shipman III and Catherine C Marshall. Spatial hypertext: an alternative to
navigational and semantic links. ACM Computing Surveys, 31:14, 1999.

Mathias Schubanz, Andreas Pleuss, Goetz Botterweck, and Claus Lewerentz. Model-
ing Rationale over Time to support Product Line Evolution Planning. In Proceedings
of VaMoS’12, pages 193-199, Leipzig, Germany, 2012. ACM.

Mathias Schubanz, Andreas Pleuss, Howell Jordan, and Goetz Botterweck. Guid-
ance for Design Rationale Capture to Support Software Evolution. In Workshop on
Software-Reengineering & Evolution, Bad Honnef, 2014.

Mathias Schubanz, Andreas Pleuss, Ligaj Pradhan, Goetz Botterweck, and Anil Kumar
Thurimella. Model-driven planning and monitoring of long-term software product line
evolution. In Proceedings of VaMoS’13, pages 103—107, Pisa, Italy, 2013. ACM.

Jeff Tyree and Art Akerman. Architecture decisions: Demystifying architecture. IEEE
software, 22(2):19-27, 2005.

Anil Kumar Thurimella and Bernd Bruegge. Issue-based variability management. In-
formation and Software Technology, 54(9):933-950, 2012.

Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A Survey of Architec-
ture Design Rationale. Journal of Systems and Software, 79(12):1792—1804, 2006.

Antony Tang and Jun Han. Architecture Rationalization: A Methodology for Archi-
tecture Verifiability, Traceability and Completeness. In ECBS, pages 135-144, 2005.

A. Tang, J. Han, and R. Vasa. Software Architecture Design Reasoning: A Case for
Improved Methodology Support. IEEE Software, 2009(March/April):43-49, 2009.

Timo Wolf. Rationale-based Unified Software Engineering Model. VDM Verlag,
Saarbriicken, Germany, 2008.

2268

