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Abstract: Numerical simulation and computational visualization of the failure char-
acteristics of confined granular assemblies, e.g., sand, gravel or other types of loose
aggregates, is the focal point of this publication. In general, standard continuum de-
scriptions are exhausted if applied to loose granular materials, while discrete formu-
lations fail to describe huge overall particulate structures. We propose a complete
two scale homogenization procedure, including both a continuous and a discontinuous
scale. Thus, we combine the capability of discrete methods to describe the behavior of
the single grains and the possibility of a continuum approach to discretize the overall
structure. Connections between the two scales are based on the concept of introduc-
ing a representative volume element on the discrete microscale. Driven by quantities
from the macroscale, the representative volume element acts like a material law, re-
turning the needed quantities to the continuous macro level. The particular challenge
of this work lies in defining the connection between these two scales in terms of phys-
ical quantities and equations on the one hand and in terms of introducing appropriate
visual tools which ultimately yield an improved understanding of these complex cou-
pling mechanism on the other hand.

1 Introduction

Simulation of the distinguishing and complicated behavior of granular media calls for
the mobilization of multiscale simulation techniques. While standard continuum methods
strand by reproducing distinguishing behaviors, e.g., the breaking and forming of con-
tacts between the grains, discrete methods are limited due to their computational costs.
A multiscale combination of both methods leads to a powerful and efficient simulation
tool. Thereby, a finite element method (fem) discretizes the overall structure on the ma-
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croscale level. A discrete element method (dem) is used on the Gauss point level to
simulate the behavior of the single grains. Connection between the two scales is based
on the concept of introducing a representative volume element (rve) on the microscale
level. This rve contains the discrete granular structure and acts as a material law for the
macroscale level. The dem, introduced by [CS78, CS79], is suitable to capture the be-
havior of granular aggregates. In such a multiscale combination, the number of particles
(nop) is limited inside the rve and the drawback of the dem disappears naturally. Studies
pertaining the macroscopic stress and strain formulation are found in the publication of
[KR96, KDHR00, DKHR01, EDM01, ERDD03].
This publication focuses on the introduction of a consistent tangent operator, allowing the
use of an implicit solution scheme on the macroscale level. We restrict this contribution
to the assumption of Taylor and Voigt, see [Voi89]. Thus, we do not consider any kind
of micro fluctuations. All particles are mapped by the macroscopic deformation gradient
tensor, leading to a homogeneous microscale deformation. The Piola stress as well as
the consistent tangent operator are derived from the overall macroscopic energy, ab initio
guaranteeing a major symmetry of the tangent operator.
The publication is segmented as follows: The calculation of the inter particle contact forces
is presented in Section 2. Therefore, a force potential function is introduced which depends
on the particle overlap. Section 3 concerns the homogenization process, based on the av-
eraged macroscopic energy, resulting in the definition of the averaged macroscopic stress
and tangent operator. To ensure the representativeness of the used volume element, a basic
deformation rve study is outlined in Section 4. Uniformity of the initial contact network
is compared by a contact normal density function and by characteristic error bar analyzes.
A final example based on the well-known slope stability benchmark problem is illustrated
in Section 5. Lastly, Section 6 closes with a final discussion.

2 Microscale - contact force

On the microscale level, the spatial position of each particle, xi is described by a linear
mapping of the initial particle position Xi by the macroscopic deformation gradient F .

xi = F • Xi (1)

Individual particle fluctuations are ignored. This mapping, see (1), illustrates the assump-
tion of Taylor and Voigt [Voi89], i.e., restricting the microscopic deformation to be ho-
mogeneous over the entire granular assembly. A comparable assumption was stated by
Cauchy and Born in the context of continuum atomistics, see [Cau28a, Cau28b, Bor15].
The branch vector in the deformed configuration, lij , connecting the center of particle i
with the center of particle j, is received by subtracting the position vector of particle i
from the position vector of particle j, see Fig. 1.

lij = xj − xi = F •
�
Xj −Xi

�
= F • Lij (2)
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Figure 1: Initial and deformed configuration of the particles i and j. Left: Initial configuration with
εij less than zero. The branch vector Lij connects the centers of the particles i and j. Right: Current
configuration with an overlap εij greater than zero. The particles i and j are in contact. The branch
vector lij relates the two particle centers.

By subtracting the length of the branch vector
))))lij)))) from the sum of the particle radii,

denoted by ri and rj , we obtain a description of the particle overlap.

εij = ri + rj −
))))lij)))) (3)

Inspecting the definition of the particle overlap, we find εij to have a positive or zero
value in the case of contact. In this state, we allow the transfer of contact forces between
the contacting grains. Accordingly, a negative value of εij signals a gap of the size |εij |.
Clearly, (3) does not only represent the particle overlap, but also serves as an implicit
contact check. Next, we introduce a force-potential function Φij which depends on the
overlap εij , see, e.g., [MD04, Zoh05]. We require the force-potential function to be convex
and its derivative monotonously increasing. Additionally, we demand its derivative to be
zero for εij being zero itself. Thus, we implicitly enforce the constraint εij < 0.

Φij =
Enij

2
�
H

�
εij

 
εij

�2
(4)

The normal contact stiffness between the particles i and j is denoted by Enij , whereas
H expresses the Heaviside function. By letting the Heaviside function act on the particle
overlap, the previous postulation and requirements are included in (4). Thus, our force-
potential function describes a non-harmonic potential, solely delivering a value different
from zero in the case of contact. Performing the derivative of (4) with respect to the
position of particle i leads to the normal contact force f ij , acting on particle i.

f ij = −dΦij

dxi

= −EnijH
�
εij

 
εijnij (5)

Therein, the magnitude of the contact force is given by −EnijH
�
εij

 
εij . The contact

normal, pointing from the center of particle i to the center of particle j, is denoted by
nij = lij/

))))lij)))). Using Newtons third law of reciprocal forces, the contact force acting
on particle j equals f ji = −f ij . The complete particle assembly can be compared to
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a network of linear springs, see [Hre41]. In contrast to the work of Hrennikoff, however,
the contact network between the particles is developed and altered continuously during the
simulation.

3 Macroscale - stress and tangent moduli

Our homogenization procedure is based on the well-known energy averaging theorem by
Hill ([Hil72]), stating the equivalence between the volume average of the microscopic
energy inside the rve and the macroscopic energy.

Φ
�
F

 
=

�
Φ

�
εij

�
F

  �
=

1
2Vrve

nop%
i=1

nop%
j=1
j 	=i

Φij

�
εij

 
, (6)

where Vrve denotes the volume of the rve in the undeformed reference configuration and

�
Φ

�
F

 �
=

1
4Vrve

nop%
i=1

nop%
j=1
j 	=i

Enij

�
H

�
εij

 
εij

�2

=
1

4Vrve

nop%
i=1

nop%
j=1
j 	=i

EnijH
�
εij

 �
ri + rj −

))))F • Lij

))))�2 . (7)

Based on the selected summation limits, each particle contact is considered twice. A
multiplication by a factor of one half corrects the averaged energy output. At this point it
is obvious that the volume averaged microscopic energy solely relies on the macroscopic
deformation gradient. Insertion of (3) and (4) into (6) leads to the result presented in
(7). The macroscopic Piola stress P is obtained by taking the derivative of the averaged
microscopic energy with respect to the macroscopic deformation gradient tensor.

P
�
F

 
=

d
�
Φ

�
F

 �
dF

(8)

with

P
�
F

 
=

1
4Vrve

nop%
i=1

nop%
j=1
j 	=i

Enij

dH
�
εij

 �
ri + rj −

))))F • Lij

))))�2
dF

= − 1
2Vrve

nop%
i=1

nop%
j=1
j 	=i

EnijH
�
εij

 
εijnij ⊗ Lij . (9)
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In this, nij = F • Lij/
))))F • Lij

)))) represents the unit contact normal vector in the
current configuration. Using (5) we can rewrite (9) in a compact form,

P
�
F

 
=

1
2Vrve

nop%
i=1

nop%
j=1
j 	=i

f ij ⊗ Lij , (10)

solely consisting of the normal contact forces of the current configuration as well as the
branch vector of the initial configuration. Taking the second derivative of the volume
averaged microscopic energy with respect to the macroscopic deformation gradient, one
obtains the fourth order algorithmic tangent operator A. As in classical structural me-
chanics, a split into a purely geometric and material part is possible. We can observe
that non-linearity due to changes inside the contact network are directly reflected onto the
material part of the tangent operator.

A
�
F

 
=

d2
�
Φ

�
F

 �
dF ⊗ dF

=
dP

�
F

 
dF

= Ageo �
F

 
+ Amat �

F
 

(11)

with

Ageo �
F

 
= − 1

2Vrve

nop%
i=1

nop%
j=1
j 	=i

H
�
εij

 
Enij))))lij)))) εij1⊗

�
Lij ⊗ Lij

�

Amat �
F

 
=

1
2Vrve

nop%
i=1

nop%
j=1
j 	=i

H
�
εij

 
Enij))))lij)))) �

ri + rj

� �
nij ⊗ nij

�⊗ �
Lij ⊗ Lij

� (12)

Please note the special dyadic product, {•⊗◦}abcd = {•}ac ⊗ {◦}bd, enforcing the major
symmetry of A. As with the macroscopic Piola stress, the algorithmic tangent operator
solely depends on the macroscopic deformation gradient tensor.

4 Microscale - discrete element method

To select the appropriate rve, we call on a contact normal density function. This density
function is used as a measure of uniformity and is outlined in [MSW+07]. Yet, the contact
density function promises a deeper insight with respect to the uniformity of the contact
network. The rves, generated by the algorithm presented in [MKS07], are based on the
grain size distribution shown in Fig. 2. Intrinsically, all generated rves include a geometric
periodic boundary, a scaled grains size distribution and an unstructured particle network.
We select a grain size distribution for quartz sand as shown in Fig. 2 and generate five
rves for a number of 70, 350 and 700 primary particles, depicted in Fig. 3. Corresponding
contact normal density functions are located beneath each rve, where we selected angles
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Figure 2: Typical grain size distribution for quartz sand used for rve generation. The grain passing
in mass percent over mesh aperture is depicted. The abscissa shows the mesh aperture in [mm],
whereas the ordinate reads the grain passing in volume percent.

of influence equal to 10◦, 20◦ and 30◦. One can observe that a wider angle of influence
smooths the density function, while a smaller angle of influence results into a rather ruff
output. Additionally, we find that a larger nop leads to a more uniform contact density
function. The first two sets of rves, including each 70 and 350 primary particles, show a
strong variation between the produced contact density functions. Instead, the rves includ-
ing 700 primary particles show a good uniformity. A superior agreement of the contact
density functions is found for the third rve of set three. Thus, this rve is considered to
behave in an isotropic manner for small deformations. In contrast, the third rve of set one
will show an anisotropic behavior. Next, our interest is focused on applying uniaxial com-
pression as well as simple shear on each rve. The produced error bar plots, showing entries
of the Cauchy stress versus the corresponding components of the deformation gradient, are
depicted in Fig. 4 and 5. While the compression test shows a good overall agreement for
all rves, the results of the simple shear test differ significantly. In case of the compression
test, a linear stress behavior in the loading direction is observed, while in the orthogonal
direction a nonlinear behavior is noticed. It is remarkable that for different nop the stress
in the direction orthogonal to the direction of compression seems to converge towards a
fixed value. Similar convergence is seen in the plot depicted in Fig. 5. In the case of the
simple shear deformation a size reduction of the error bars, correlating to the increase of
nop, is noticed. Thus, we can conclude that for an unlimited nop the error bars will tend
towards a negligible value, e.g., an almost uniform behavior can be expected. Please note,
the coarse scale smoothness of the depicted stress curves is strongly related to the Taylor
assumption. Therefore, if fluctuations on the microscale are considered, a non-smooth
coarse scale behavior of the stress is observed, see [MD04, Det06]. Nevertheless, fine
scale non-smoothness is observed in both approaches. This observation is linked to minor
changes inside the contact network.
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Figure 3: rves and their corresponding contact normal density functions. Black colored functions
relate to an angle of influence equal to 10◦, while blue and red colored functions correspond to
an angle of influence equal to 20◦ and 30◦, respectively. First set: Five rves, containing each 70
primary particles. Second set: Five rves, containing 350 primary particles. Third set: Five rves
containing 700 primary particles (reproduced in color on p. 194).

5 Macroscale - finite element method

In the following we will consider a slope stability problem, first discussed in [ZP77]. The
slope is subjected to dead load as well as a load originating from an massless strip footing
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Figure 4: Averaged compression stress curves of the particle assemblies shown in Fig. 3. Error
bars show the standard deviation. Left: Compression in 11 direction. Right: Compression in 22
direction. Solid lines relate to the Cauchy stress in 11 direction, while dashed lines are associated
with the Cauchy stress in 22 direction.

subjected to an eccentric force. The dimensions of the problem as well as the applied
boundary conditions are depicted in Fig. 6. Physical parameters are listed in Table 1. The
footing has a width of 23.25 m. The dead load of the slope is applied in the first load step.

Table 1: Physical parameters for slope example

mass density 2.5E+03 [kg/m3]
normal contact stiffness 2.8E+07 [N/m2]
load -4.0E+07 [N ]

Twenty load steps are used to apply the eccentric force which is subjected to the massless
strip footing. Fig. 7 shows a contour plot of the macroscopic von Mises stress. Four rves,
connected to Gauss points of interest, are depicted, showing the force chain network in the
deformed configuration. The convergence behavior of the relative energy norm for step
two, six, ten, fifteen and eighteen is listed in Table 2.

6 Discussion

Inspired by the challenge of defining a complete multiscale calculation cycle, we presented
a possibility to derive the macroscopic stress and tangent operator in the context of granu-
lar media. Both, the macroscopic stress and the macroscopic tangent operator are derived
from the macroscopic strain energy, while the macroscopic strain energy itself depends on
the prescribed macroscopic deformation gradient tensor. A complete two scale formula-
tion was outlined, including different methods on the two scales, i.e., we do not apply the
common FE2. An example, showing the successful derivation and implementation was
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Figure 5: Averaged simple shear stress curves of the particle assemblies shown in Fig. 3. Error bars
show the standard deviation. Left: Simple shear in 12 direction. Right: Simple shear in 21 direction.
Solid lines relate to the Cauchy stress in 11 direction, while dashed lines are associated with the
Cauchy stress in 22 direction.
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Figure 6: Undeformed mesh of the slope stability problem. Boundary conditions are depicted. 380
Q1 elements, containing each four Gauss points, are used. The massless footing is subjected to an
eccentric force. The eccentricity is equal to 3.875 m.

granted, using a rve. Prior to the calculation, the representativeness was proofed by the
use of a contact normal density function, showing the uniformity of the contact normals
of the volume element. Stress curves, resulting from basic rve deformation, reinforce the
prediction of the contact normal density functions. In case of the analysis of confined gran-
ular media, the results presented show an improvement with regards to the computational
cost and the completeness of the algorithm. Thus, large scale computations of confined
granular material are possible in the context of multiscale calculations. Finally, we would
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Table 2: Convergence behavior of the relative energy norm

iter step 2 step 6 step 10 step 15 step 18

1 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00

2 1.318E-02 3.341E-04 3.940E-04 1.322E-03 4.817E-03

3 1.947E-04 2.308E-08 1.503E-08 1.999E-07 3.816E-06

4 1.492E-07 7.110E-16 7.415E-16 6.114E-14 7.276E-12

5 5.846E-13 3.441E-26 5.014E-26 4.023E-26 5.932E-24

6 3.057E-26

like to point out that although the presented algorithm has been proven highly effective and
algorithmically efficient, it is far from being general enough to capture all characteristic
effects in granular media.
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Figure 7: Final, deformed slope. The macroscopic von Mises stress is plotted. Initial localization
is visible. Four deformed rves containing their contact networks are depicted. The tickness of
the branches corresponds to the magnitude of the contact forces. The scaling factors for the branch
thickness as well as for the deformation are equal for all four particle plots (reproduced in color on
p. 195).

114


