
Hardware-independent Software Development

with AUTOSAR

Stefan Bunzel, Khosrau Heidary (Continental); Simon Fürst, Andre Lajtkep (BMW

Group); Jürgen Mössinger, Jürgen Cordes (Bosch); Stefan Schmerler, Christian Kühn,

(Daimler); Frank Kirschke-Biller, Bernd Frielingsdorf (Ford); Robert Rimkus, Rick

Kacel (GM); Alain Gilberg, Bertrand Delord (PSA Peugeot Citroën); Kenji Nishikawa,

Hiroyuki Hirano (Toyota); Andreas Titze, Bernd Kunkel (Volkswagen)

AUTOSAR cooperation

Bernhard-Wicki-Str. 3

80636 Munich, Germany

admin@autosar.org

Abstract: This paper describes the development of application software with

AUTOSAR. The AUTOSAR architecture and the development methodology

enable a hardware independent development of application software, so that higher

reuse and increased flexibility and scalability are possible.

1 Introduction

AUTOSAR (AUTomotive Open System ARchitecture) has become a de-facto standard

for embedded software in the automotive industry. Since 2003 a cooperation of car

manufacturers, suppliers, and other companies from the electronics, semiconductor, and

software industry have been working on the development and introduction of this

standard [AUTO]. By now many AUTOSAR members apply the standard in their

product development and there are even first series products on the road [KG08], [Fü09].

AUTOSAR is a key enabling technology to manage the growing electrics/electronics

complexity. It aims to increase the reuse of software components, in particular between

different vehicle platforms, and between OEMs and suppliers. It enables the scalability

of embedded automotive software to different vehicle and platform variants, the

transferability of functions throughout the vehicle network, and the integration of

functional modules from multiple suppliers. Therefore the AUTOSAR standard defines

an architecture that separates application software from infrastructure related basic

software, as depicted in Figure 1. The functional contents of the application software are

different and related to the brand identity and the desired characteristics of the car

manufacturer, or its system suppliers, whereas the functionality of the basic software is

not visible to the customer and thus could been standardized by AUTOSAR in detail.

503



Figure 1: Application software separated from infrastructure functions

Beneath the architecture AUTOSAR has worked out a methodology how to develop

software according to this architecture. A third topic of standardized interfaces for

typical automotive applications completes the technical approach of the standard.

This paper emphasizes the benefits for application software development with

AUTOSAR. Thus it highlights the methodology, explains the hardware independency of

application development with the concept of the virtual functional bus (VFB), the

assignment of application software to ECUs and the integration, and last but not least it

describes the usage of standardized application interfaces.

2 AUTOSAR Methodology

The AUTOSAR methodology describes the major development steps of an overall

AUTOSAR system, which means the entire software for a network of interconnected

ECUs in a vehicle. In the release 4.0 the methodology is specified as a model yielding a

set of HTML-documentation [AM40]. It addresses the wide range of software

development from the system-level configuration to the generation of an ECU

executable, and it supports a widely decoupled development and implementation of

application functionality, as well as a seamless integration and configuration of both, the

overall system and its individual ECUs. So the methodology is a guiding framework of

how to use the AUTOSAR architecture [BF08].

Hardware

AUTOSAR

Basic Software

Application Software

Standardized infrastructure
functions, e.g.
 Communication stack

 Memory stack

 Diagnostic services

 Operating system

Hardware independent
application functions, e.g.
 Adaptive Cruise Control

 Lane Departure Warning

 Advanced Front Lighting System

 …

Hardware

AUTOSAR

Basic Software

Application Software

Standardized infrastructure
functions, e.g.
 Communication stack

 Memory stack

 Diagnostic services

 Operating system

Hardware independent
application functions, e.g.
 Adaptive Cruise Control

 Lane Departure Warning

 Advanced Front Lighting System

 …

504



Figure 2 depicts an abstract top-level view on the methodology. Firstly on the level of

functional architecture there is the development of a so called virtual functional bus

(VFB) system description. This description is independent of any network topology or

deployment of features across multiple ECUs. It contains a component model of all

application functions. This functional architecture means a partitioning of functions into

components, which can even be a hierarchical model where components are clustered

into compositions. The development on this level also yields a data model for the

interaction of the components. In addition it optionally deals with timing constraints on

VFB level. Subsection 2.1 describes further details on the VFB.

The next level considers the physical architecture of the entire system, i.e. the activity

‘design system’ leads to a system description that defines the system topology of ECUs,

the network, and the mapping of components to ECUs. Before the software for each

ECU can be built, the information regarding to this ECU have to be extracted from the

system description. This allows building and integrating the software for each ECU

separately from the other ECUs. Of course, building the ECU software requires

appropriate basic software for the ECU and all application software components mapped

to the ECU. The delivery of basic software is out of scope in this paper. By now there is

a broad variety of basic software implementations from different vendors for many

hardware platforms on the market, so that the basic software and corresponding

configuration tools can be regarded as off-the-shelf products. The development of the

application software components with the definition of the internal behavior, coding, and

implementation are independent from hardware and can be done separately for each

component. Subsection 2.2 explains the component development in more detail.

Figure 2: Methodology overview

• Component modeling
• Data model development
• VFB Timing

• System topology
• Network
• Mapping of

components to ECUs

Develop
VFB System Description

Design
System

Build
ECU Software

Generate
ECU Extract

Develop
Application Software Component

Deliver
Basic Software

• BSW implementation
• Configuration

Functional
architecture

level

Physical

architecture

level

• Internal behavior
• Implementation
• Component timing

Hardware

dependent

Hardware

independent

• Component modeling
• Data model development
• VFB Timing

• System topology
• Network
• Mapping of

components to ECUs

Develop
VFB System Description

Design
System

Build
ECU Software

Generate
ECU Extract

Develop
Application Software Component

Deliver
Basic Software

• BSW implementation
• Configuration

Functional
architecture

level

Physical

architecture

level

• Internal behavior
• Implementation
• Component timing

Hardware

dependent

Hardware

independent

505



2.1 Virtual Functional Bus

The Virtual Functional Bus (VFB) is a technical concept that enables the development of

the functional architecture of the entire system independent from the actual hardware

topology of ECUs and network. The functional architecture is a partitioning or clustering

of the application functions into components, i.e. the so called AUTOSAR software

components (SWC). In order to formally handle and model SWCs and their interaction

each SWC needs a formal description: the SWC description. For the development on

VFB level, the SWC description does not have to be complete. At least the data model,

i.e. the used interfaces, data types, and services from the basic software must be defined,

and in addition a component model with the top-level components is necessary. As

mentioned before, components can be grouped hierarchically in arbitrary structure, but

this kind of break-down can be derived iteratively. The development of the functional

architecture on VFB level means a virtual integration of the applications – and this in a

very early phase of the development process.

Figure 3 shows an example of the VFB level architecture. The components interact via

ports. Ports can have different characteristics. For instance, they can receive or provide

information, or they can implement different communication paradigms like sender-

receiver-, or client-server-communication, which is indicated by a dedicated notation.

The ports use interfaces and data types that are defined in the data model.

Figure 3: The “virtual functional bus” (VFB) supports a virtual integration

In practice the design of the VFB level architecture is done model-based with a tool. By

now several members of AUTOSAR offer VFB level design capabilities in their tools.

The design process with such tools is rather component oriented, which means that the

data model implicitly will be extended, whenever a component will be extended with a

new port, interface, or data type. Such tools furthermore can export the software

component description of single components so that the further component development

and implementation can run separately.

A
U

T
O

S
A

R
S

W
C

Virtual Functional Bus

...

PPort, provides a Sender-Receiver Interface

RPort, requires a Sender-Receiver Interface

PPort, provides a Client-Server Interface,

i.e. implements service

RPort, requires a Client-Server Interface,
i.e. client of a service

PPort, provides data to AUTOSAR Service

PPort, provides AUTOSAR Service
(in BSW only)

A
U

T
O

S
A

R
S

W
C

n

SWC
Description

PPort, provides a Calibration Interface

RPort, requires a Calibration Interface

RPort, requires AUTOSAR Service as client

RPort, requires data from AUTOSAR Service

A
U

T
O

S
A

R

S
W

C
3

SWC
Description

A
U

T
O

S
A

R
S

W
C

2

SWC
Description

A
U

T
O

S
A

R
S

W
C

1

SWC
Description

A
U

T
O

S
A

R
S

W
C

Virtual Functional Bus

...

PPort, provides a Sender-Receiver Interface

RPort, requires a Sender-Receiver Interface

PPort, provides a Client-Server Interface,

i.e. implements service

RPort, requires a Client-Server Interface,
i.e. client of a service

PPort, provides data to AUTOSAR Service

PPort, provides AUTOSAR Service
(in BSW only)

A
U

T
O

S
A

R
S

W
C

n

SWC
Description

PPort, provides a Calibration Interface

RPort, requires a Calibration Interface

RPort, requires AUTOSAR Service as client

RPort, requires data from AUTOSAR Service

A
U

T
O

S
A

R

S
W

C
3

SWC
Description

A
U

T
O

S
A

R
S

W
C

2

SWC
Description

A
U

T
O

S
A

R
S

W
C

1

SWC
Description

506



2.2 Component Development and ECU Integration

An AUTOSAR software component encapsulates an application which runs on the

AUTOSAR infrastructure. After the VFB level design yielded the initial software

component description, the further component development is independent from other

components or from system design steps.

The major task of the component development is the implementation, i.e. the coding of

the functionality or algorithms. This could be done either as direct coding in a

programming language which is in the AUTOSAR context typically C, or more

comfortable by means of a model-based design tool and automatic code generation.

In addition to the implementation, the component developer has to complete the software

component description with the definition of runnable entities, events and interrunnable

variables. Runnable entities are the smallest code parts schedulable to tasks of the

operating system. And a component can consist of multiple runnable entities. With this

information in the software component description the interface of the component

towards the highest layer in the basic software – towards the Runtime Environment

(RTE) – is defined. From the viewpoint of the component, the RTE implements the VFB

functionality on a specific ECU.

In case of model-based design the software component description will be completed

within that tool, and exported e.g. together with the code generation. The generated code

includes even the header towards the RTE so that the component can be compiled.

In case of conventional development, the software component description has to be

completed with a specific template editor, which in practice often is part of basic

software configuration tools. Such tools commonly can generate the RTE header as well.

As mentioned before, building the ECU software requires appropriate basic software for

the ECU and all application software components mapped to the ECU. Although the

basic software can be regarded as an off-the-shelf product, it needs a configuration

which of course depends on the application. Therefore the basic software configuration

tool has to read all software component descriptions of the concerned applications. For a

proper configuration it furthermore has to read the ECU extract of the system description

and the ECU description. Then all the ECU software, i.e. the configured basic software

and all application software components can be compiled and linked.

2.3 Standardized Application Interfaces

AUTOSAR specifies the interfaces of typical automotive applications from all domains

regarding syntax and semantics [AI40]. This specification is aggregated in a common

table, which contains by now nearly 2500 different ports and more than 500 interfaces.

These are clustered into about 40 different compositions, and they use 770 data types

and 26 units. The following example shall illustrate the context of these elements.

507



A composition, e.g. “Mirror Adjustment” contains different ports, e.g. “MirrorPosition”

or “MirrorMoveStatus”. Both ports apply the interface “MirrPosnSts1” for describing

the actual mirror position, either for status inquiries or for requests. The “MirrPosnSts1”

consist of only one data element, i.e. here the data record “MirrAxisPosn1”. The data

record has three elements: mirror type, axis type and position. Each element can be

either a continuous value or an enumeration. In this example the position is a continuous

value of type “perc7” – an unsigned integer with recommended length of 14 bit, unit

percent, a resolution of 0,1, a physical range of 0,0 to 1001,0. In contrast the

enumeration axis type means 0 no axis, 1 horizontal, and 2 vertical axis.

The entire specification of application interfaces serves as a standard for application

software. The usage of these interfaces limits the development effort to adopt application

software components to for example, different vehicle platforms. Since AUTOSAR

focus is set to mature application interfaces innovation in software functionality is not

limited. New functions shall stay proprietary. This enables the OEM and software

component developers to keep competition alive. In consequence the number of

standardized application interfaces will grow over time.

3 Conclusion

Applying AUTOSAR to embedded automotive software development yields several

important advantages. Due to the architecture that provides standardized infrastructure

functions for application software, the application software itself is independent from the

hardware. The VFB concept allows for developing the functional architecture of the

application functions without any need of considering the underlying hardware with

ECUs and network. This virtual integration means a frontloading of development work,

so that integration issues could be identified and resolved early in the design process.

The AUTOSAR approach provides very high flexibility in the software development.

Roles and responsibilities can be easily split and therefore software can be handled as a

product.

References

[AUTO] AUTOSAR: Official Website of the partnership, http://www.autosar.org.

[AI40] AUTOSAR R4.0 Specification: Table of Application Interfaces

[AM40] AUTOSAR R4.0 Specification: Methodology Model

[BF08] Bunzel, S.; Fennel, H.: The AUTOSAR Methodology. In (VDI): FISITA World

Automotive Congress, Springer Automotive Media, September 2008; FISITA

2008/F2008-10-023.

[Fü09] Fürst, S; et al.: AUTOSAR – A Worldwide Standard is on the Road. 14th International

VDI Congress Electronic Systems for Vehicles 2009, Baden-Baden

[KG08] Kinkelin, G.; Gilberg, A; et al: AUTOSAR on the Road. In (CTEA): SAE Convergence,

October 2008; 2008-21-0019

508


