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Abstract: Virtual duplex systems have emerged as an alternative to traditional duplex
systems, trading structural for temporal redundancy. When used in dependable embed-
ded systems, virtual duplex systems provide a cost benefit because they require only
one instead of two processors. In order to lighten the burden of this single processor,
and in order to obey real-time requirements in embedded systems, the overhead due to
the temporal redundancy must be low. As context-switch time constitutes a significant
fraction of this overhead, we propose to use threads instead of processes to reduce the
overhead in the error-free case and allow for faster detection of faults. Instead of using
POSIX threads, we propose emulated multithreading to further reduce overhead. This
technique allows very fine-grain execution and very short times between checkpoints.
We evaluate the proposed concepts quantitatively.

1 Introduction

Embedded systems play an important role in our daily lifes: We interact, sometimes even
unknowingly, with an increasing number of embedded systems in applications ranging
from cars, trains and aircraft to washing machines and other household appliances. In an
increasing number of applications, the ability to detect and/or tolerate transient and perma-
nent faults is important. To achieve this goal, some form of redundancy (i.e. multiplication
of resources) is required. In the past, some form of duplex system (i.e. structural redun-
dancy) has been used for these applications. However, the cost associated with duplication
of hardware resources is a major drawback of duplex systems. In the case of embedded
systems, which are usually deployed in very high volumes in highly competitive markets
(e.g. household appliances), there is a strong motivation to lower costs. In this paper we
present a new approach that avoids the high costs associated with traditional duplex sys-
tems without sacrificing the abilty to detect/tolerate faults.

Our approach is based on virtual duplex systems [EHN90]. Virtual duplex systems (VDS)
use temporal instead of structural redundancy to detect faults. Experimental results show
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that such systems provide excellent detection of faults in the case of transient failures. For
permanent failures, the use of systematic diversity in combination with design diversity
leads to encouraging results [Lov96a]. A virtual duplex system requires only a single
processing node, while a traditional duplex system needs two of them. If that duplex
system utilizes more than 50% of each processor’s performance, the virtual duplex system
must use a faster processor. However, a faster processor is usually cheaper than two slower
ones. In addition, only one instance of supporting circuitry (memory, I/O, etc.) is required
and a smaller printed circuit board can be used.

Since virtual duplex systems use temporal redundancy, their use might interfere with real-
time requirements of the embedded application. For example, consider an autonomous
guided vehicle that uses a camera to control its movements: The embedded system con-
trolling the vehicle has to issue instructions at a rate proportional to the vehicle speed, i.e.
there is little time for the detection of faults because instructions are only issued after the
absence of faults has been asserted.

Since virtual duplex systems use several processes, the duration of context switches be-
tween processes is a constraining factor to the fast detection of faults, i.e. the percentage
of context switch time increases relatively to user time as the time available for fault detec-
tion/resolving decreases. The overhead associated with context switching is a well-known
problem in the area of operating systems. Modern operating systems therefore support
threads, which share resources (e.g. address space, open files, etc.) in order to decrease
context switch times. However, even with threads, a context switch is an expensive oper-
ation and there are no embedded processors that support multithreading in hardware. We
therefore propose to use emulated multithreading, which was originally developed to hide
memory latency in massively parallel computers [GK98, Gra02]. Emulated multithreading
provides very fast context switches and thus enables very small grain-sizes.

The remainder of this paper is organized a follows: virtual duplex systems and their char-
acteristics are introduced in the next section. The third section reviews multithreading, es-
pecially emulated multithreading. The fourth section introduces embedded virtual duplex
systems using emulated multithreading. The fifth section presents a quantitative evaluation
of virtual duplex system performance. The last section summarizes.

2 Virtual Duplex Systems

As already mentioned in the previous section, redundancy is required to support fault de-
tection/tolerance. Structural redundancy in the form of duplex systems is commonly used
to support fault detection. During the last two decades, the use of temporal redundancy
emerged, especially in the area of circuit design: alternating circuits [RM78], alternate
data retry [She78], recomputing with shifted operands [PF83]. Temporal redundancy has
also been used in connection with design diversity to detect design faults: self-reducible
functions [Lip91], certification trails [SM91], program checking [AL94]. Temporal re-
dundancy in connection with design diversity aiming at detection of permanent as well as
transient hardware failures is e.g. discussed by Echtle et al [EHN90]. The virtual duplex
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systems introduced in their work are described in the next subsection. Experiments per-
formed by Echtle’s group showed that design faults and transient hardware failures were
detected with very good fault coverage. The system did provide limited coverage of per-
manent hardware failures. Based on this work, Lovrić [Lov96a] used systematic diversity
and diverse error correcting codes to enhance the fault detection capability of virtual du-
plex systems. The combination of techniques yields very good results even in the presence
of permanent hardware failures.
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Figure 1: Basic Structure of Virtual Duplex Systems

The basic structure of a virtual duplex system is depicted in Figure 1. We do not consider
fault-tolerant input/output devices. Based on the model by Lovrić [Lov96b] we make the
following assumptions: input/output is performed by reading/writing designated memory
areas. Furthermore we assume that computation proceeds in rounds, where the result of
a deterministic function � is calculated in each round. To facilitate the detection of crash
faults, we assume that an upper limit on the time required to calculate � can be given.
Based on these assumptions, the following components of a virtual duplex system can be
identified:

��� ��: Two different implementations that compute the function � on the input �. The
implementations should be diverse, i.e. originate from independent development
teams, which is also required for conventional duplex systems. Diversity is further
enhanced by systematic diversity as described below. The result � ��� is encoded
using different error correcting codes in both implementations. Both encoded as
well as both unencoded results are delivered to the error-checker ��. The result
� ��� can be seen as a hash value over the state of the respective process.
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��: This module compares the results from the two different implementations and sig-
nals a fault on non-equality. First the integrity of the two coded results is ensured by
checking that both results are valid code-words. Afterwards both results are com-
pared and possible differences signaled as a fault.

�: This module schedules the execution of the two implementations � �, ��. In the
absence of crash faults, �� is executed after �� has finished. In the case of crash
faults in �� or ��, an error is signaled to the error checker.

Systematic diversity is an extension to traditional design diversity that maintains the se-
mantics of a program. Lovrić proposed mechanisms to improve diversity covering design
(e.g. specification), tools (e.g. compiler switches) and source-code modifications (high-
level language and assembler). Some of these mechanisms are system dependent, since
characteristics of processor hardware and development tools are utilized. An evaluation of
systematic diversity on two programs of medium complexity (quality control and intercon-
nection network managment) yielded very good results: on average, all transient as well
as 99.94 % of permanent hardware failures were detected [Lov96a]. Lovrić’s work did
not include recovery from faults. However, well-known techniques like checkpointing can
be applied to virtual duplex systems and duplex systems alike to achieve fault-recovery.
A simple variant is to store the state from time to time. In case of a fault, i.e. in case of
different states, a third instance of � is executed, starting from the last stored (valid) state.
Now a majority vote over the three state encodings allows to select two identical states,
from which the application can continue.

3 Emulated Multithreading

Virtual duplex systems as introduced in the last section have been based so far on tradi-
tional heavyweight processes known from operating systems. Since switching between
these processes is a costly operation, the typical grainsize is on the order of tens of thou-
sands of executed instructions. Modern operating systems also support lightweight pro-
cesses, i.e. threads, that share some of the resources associated with heavyweight pro-
cesses, e.g. the address space. Due to this sharing of resources, switching betweeen
lightweight processes is less costly compared with their heavyweight counterpart, such
that grainsizes on the order of thousands of instructions are possible. POSIX threads
(pthreads) [But97] are a popular form of lightweight processes that are supported in almost
all modern operating systems. However, the overheads and the corresponding grainsizes
of these threads are still too high for our purposes. Fine-grained multithreading, i.e. grain-
sizes between one and hundreds of instructions, requires low overhead context switches
as provided by emulated multithreading [GK98, Gra02]. The concept behind emulated
multithreading is reviewed briefly in the next paragraph.

Each thread is defined by its context and the program counter, i.e. the current location
within the program code. The context is defined as the processor state of the thread, i.e.
the registers that are visible to the application programmer. The context typically contains
all general-purpose registers, the program counter as well as any special registers, e.g.
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condition codes. The program code is divided into instruction blocks ranging in size from
one to several hundred instructions. These instruction blocks are modified in the following
way: Each modified instruction block contains the necessary instructions to save/restore
that part of the context which is read/modified by the instructions in the original instruc-
tion block. In contrast, traditional thread packages save/restore the whole context if exe-
cution is switched betweeen threads. To execute a given thread, the modified instruction
block pointed to by the thread‘s program counter is called and executed; execution is then
switched to the next thread. A complex scheduling algorithm is not required by virtual
duplex systems, thus ensuring low overheads. Therefore the main routine from which all
threads are executed consists of a simple loop that calls the modified instruction blocks in
a round-robin manner.

Our current implementation uses several tools that enable emulated multithreading: A
high-level langugage converter (hllconv) processes the high-level language (C, Fortran)
source code in order to identify procedures that need to be modified. The assembler con-
verter (asmconv) modifies the corresponding assembler instruction sequences. The emu-
lation library (emulib) contains a lightweight thread package and is linked to all programs
after modification by the two converters. Apart from these tools the standard development
tools (compiler, assembler, linker) are used in the design flow.

4 Embedded Virtual Duplex Systems

In embedded environments, we propose the usage of virtual duplex systems working as
follows: Like conventional virtual duplex systems, a single node alternatively executes
two different implementations of the function � mentioned in the previous section. In-
stead of processes, threads in the form of emulated multithreading are used. In total, we
use three different implementations instead of two because we want to tolerate faults. All
implementations are modified as described in the previous section. Diversity between
different implementations is ensured in several ways: First traditional design diversity
as well as systematic diversity are used during the design phase. If the implementations
already use emulated multithreading (i.e. contain calls to the emulation library), no mod-
ifications of the high-level language source code are necessary. Now systematic diversity
techniques covering high-level language and design environment are used to generate as-
sembler sources. These sources are modified according to the rules specified in the pre-
vious section. Afterwards, systematic diversity techniques are applied at the assembler
language level and executables are generated. As proposed by Lovrić, all implementations
use error-correcting codes such that encoded as well as unencoded data is sent to the error
checker. In addition, a signature of the thread’s state is calculated by a simple signature
function like the sum of all integers modulo 256 at the end of each instruction block. These
signatures are used later to detect faults within a single round. Therefore, a common sub-
set of the state must be used to calculate the signature. The signature also serves to check
whether a faulty thread has modified the other thread’s data, which may happen as there is
no memory protection as between processes.

The scheduling of threads in our approach is depicted in Figure 2. Instruction blocks
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Figure 2: Scheduling of threads

from the first two implementations (labeled 1 and 2 in the figure) are executed alternately.
After execution of both instruction blocks, the state of both threads is compared by a
signature check. After a selectable number of instruction blocks, a checkpoint is generated
in addition to the normal signature check, i.e. the state of both threads is saved to disk to
enable fault tolerance. In this way, the state of both threads is frequently compared without
always incuring the overhead of checkpoint generation.

Since, in the presence of real-time requirements and mission-critical control operation, the
next control instruction is only issued in the absence of faults, the time between signature
checks is bounded by the maximum time between two control instructions. This restriction
requires small blocksizes, fast context switches as well as fast generation/comparison of
signatures. Decreasing block size while maintaining the same context switch time leads to
a proportional increase of overhead, which is usually not desired.

The frequent comparison leads to faster detection of faults, since faults can only be de-
tected at the end of instruction blocks. Since checkpointing is a quite expensive operation
(e.g. disk access), the frequent use of checkpoints could lead to unacceptably high over-
head. This may even be true in the case of diskless checkpointing [PLP98], which trades
checkpointing overhead to memory consumption. In the case of errors, the third imple-
mentation (labeled 3 in the figure) is enabled and its state rolled back to the last known
checkpoint. After the thread reaches the point where the previous error was detected,
the faulty thread is disabled based on a majority vote. Since all three threads are diverse
implementations, the remaining two threads are still diverse and can continue operation.

Our virtual duplex system can be tailored to the application’s requirements via several pa-
rameters: First, the grain-size (maximum length of an instruction block) can be selected.
Since signature checks are performed between instruction blocks, the grain-size deter-
mines the frequency of those checks. Note that the maximum time required for each block
can be calculated at compile-time assuming a worst-case scenario. Second, the ratio of
checkpoints to signature checks is selectable as well. More frequent checkpoints incur
more overhead, but reduce the minimum time required to resolve faults. Our virtual du-
plex system uses three threads, but only two are active in the error-free case. In order to
resolve a fault, we do not generate a new thread, but activate the inactive thread instead.

The modifications at the assembler level may increase code-size, since instructions related
to context switches are added to the instruction stream. The amount of additional instruc-
tions depends on the grain-size. Larger grain-sizes lead to less frequent context switches
and therefore fewer additional instructions. However, instead of a full-blown thread li-
brary, only our small library is added, which may ease the increase in code size.
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Parameter Meaning
�� Time to compute hash value on state
�� Time to compute signature on unchanged data
�� Time to switch between two processes
�� Time to switch between two POSIX threads
�� Time to switch between two emulated threads
� Time for useful work

Table 1: Evaluation Parameters. All parameters may be expressed as multiples of �� ,i.e. � � 	 � ��
and �� � 
� � �� , where � � �� �� 
� � and where 	� 
� � � are reals.

5 Evaluation

To evaluate our proposal we pursue two paths. First, we fix the performance of the proces-
sor and calculate how much faster one can switch in a virtual duplex system when moving
from POSIX threads to emulated threads. Second, we fix the context switch frequency
of a particular application and calculate the performance requirements of several types of
implementation of duplex systems and virtual duplex systems. We do both calculations in
a parameterized way first and apply some realistic values to these parameters afterwards.
The parameters we use are given in Table 1.

5.1 Typical Parameter Values

Concerning the time to compute a signature, we assume that the methods used are of
similar complexity to those used when computing a hash value of the state. Furthermore,
we assume that the sizes of the state and the unchanged data are of the same order. Hence,
we assume �� � �� , i.e.

�� � �

Concerning �� , we start with bounding the absolute time for context switch, which is
�� � � 	sec even for a process with a small size [Cha98, Che01]. So even if �� should
reach a value of e.g. �� � ��
� 	sec, which is considered large, we would still have

�� � �
�

Normally however, one would assume �� � �� , i.e. �� � �, because computing the
hash value consists of browsing over all memory containing part of the state and perform-
ing some arithmetic on it, while switching process context involves storing all memory
contents relating to that process.

Concerning the context switch time for POSIX threads, we assume �� � �� , because
switching between threads does not involve more operations than switching between pro-
cesses. In Linux, we have �� � �� , because in Linux each POSIX thread is implemented
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as a process of its own [Che01]. Under Solaris, a value reported is �� � � � �� [LB96].
Hence, we assume

�� � ��

or

�� � �
�� � ��

Regarding our own implementation of threads, the overhead is so small compared to the
times previously discussed, that we dare to assume �� � �� and thus assume

�� � �

The parameter� models the relation between useful work (�) and overhead (�� ) in a duplex
system. A typical value for � is 10, which means a 10% overhead.

5.2 Fixed Processor

Let us assume a processor running a virtual duplex system with POSIX threads, where a
context switch occurs after a thread has been executed for a time �. The time to compare
states and switch contexts is

�� � �� � �� � ��

When we employ a virtual duplex system with emulated threads instead, this value changes
to

�� � �� � �� � ��

The former system can switch once in the time � � ��, while the latter system can switch
once in the time � � ��. Hence, in the time � � �� the latter system can switch � times,
where the acceleration quotient � is

� �
�� ��
�� ��

�
�� �� � �� � ��
�� �� � �� � ��

(1)

�
� � � � �� � ��
� � � � �� � ��

If we assume that �� � �� , i.e. that �� � �, that �� is close to �, i.e. that �� � �, and
that � � ��, then Equation (1) simplifies to

� � � �
��
��

(2)
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For values �� � 	, there is at least a 25% gain. Even when one assumes a POSIX thread
system whose context switch is quite fast compared to the state comparison, or put the
other way round, a state comparison that takes much longer then a context switch, there is
still a noticeable gain of 	
	%, as for �� � �
� we obtain � � �
�	.

5.3 Fixed Context-Switch Frequency

To perform this evaluation, we start with a duplex system consisting of 2 processors. The
overhead here consists of computing a hash value of the state. To get a valid starting
point, we have to relate the overhead with the amount of work done between state checks.
Therefore we define that in the duplex system, a state check taking time �� shall happen
after time � � ��� of useful work.

We will express the performance of all other processors used in the sequel relatively to the
processors used here, i.e. the processors used here have performance 
 � � � and perform
a piece of useful work and a state check in time

�� � �� �� � �� � �� � ��

A virtual duplex system based on processes needs to perform, with each of two processes,
the useful work, a state check and a context switch. This takes time

�� � � � ��� �� � �� � � � � �� � � � �� � � ��

In order to perform this work in time ��, the processor needs a relative performance of


� �
��
��

� � �
���
� � �

Note that we have made the implicit assumption that memory bandwidth scales with pro-
cessor performance, or that at least memory bandwidth is not the limiting performance
factor.

For a virtual duplex system based on POSIX threads, the overhead increases by � � for each
thread, and the context-switch time changes from �� to �� , leading to

�� � � � ��� �� � �� � �� � � � � �� � � � �� � �� � � ��


� �
��
��

� � �
���� � ���

� � �

For a virtual duplex system based on our threads, the context-switch time changes from � �
to �� , leading to

�� � � � ��� �� � �� � ��� � � � �� � � � �� � ��� � ��


� �
��
��

� � �
���� � ���

� � �
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We already see, that under LINUX, where �� � �� , an implementation based on POSIX
threads will be slower than an implementation based on processes! When we use typical
values � � ��, �� � �, �� � �, and �� � � � �� , we get


� � � �

��
��


� � � �
��� � �

��


� � � �
�

��

Hence, a virtual duplex system based on our threads needs a processor only about �
� as
fast as the processor required for a duplex system. However, there we would need two of
those processors! For a virtual duplex system based on POSIX threads, for � � � �, we
have 
� � 	. Even this may be an acceptable choice.

The gap between duplex systems and virtual duplex system narrows if we also take into
account the performance in case of an error. Assuming that state is saved after each com-
parison, the presented solutions lose a performance factor 2 during error recovery time in
case of a duplex system, and �
� in case of a virtual duplex system. This holds because in
both systems a third instance has to be run from the last checkpoint on to get a valid state
again, before the normal work can be continued.

In this case, 
��
� reduces by a factor of �
��� � �
�� to about �
��, i.e. we need one
processor which is less than twice as fast as the processor in a duplex system, where two
processors are needed. For a virtual duplex system based on POSIX threads, we obtain

	�
� � � for �� � 
�	. Hence, for thread switch times that are not too large compared
to state check times, also these virtual duplex systems require one processor less than twice
as fast as a processor in a duplex system.

In general, if we allow the performance to shrink by a factor of � during recovery, where
� � � � �, the performance required by a duplex system increases by a factor of ���,
and the performance required by virtual duplex system increases by a factor of �
��� (for
� � �
�). Hence, also in this case the performance ratio reduces by a factor of �
�� for
� � �
�, leading to similar results as above.

6 Conclusion

Virtual duplex systems are a cost-effective alternative to traditional duplex systems. This
benefit is especially important for embedded systems which are deployed in very high vol-
umes on highly competitive markets. In an increasing number of applications, the ability
to detect and/or tolerate transient and permanent faults is important. Studies show that
virtual duplex systems provide very good fault detection on transient as well as permanent
hardware failures. These results were achieved with a combination of design diversity,
systematic diversity and diverse error-correcting codes.

However, the overhead associated with context switches between processes may change
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the temporal behaviour of applications that need fast detection and resolving of faults.
Therefore we proposed to use threads to decrease context switch overhead, thus enabling
virtual duplex systems in such environments. As the overhead associated with these
threads is still too large for the intended applications, we used emulated multithreading
instead of traditional POSIX threads. The corresponding faster context switch time allows
the frequent usage of signature checks in order to detect faults.

We have presented a qualitative and quantitative evaluation of virtual duplex systems based
on threads. The evaluation indicates that the overhead of emulated multithreading is small
enough to allow for fast fault detection and recovery.
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[GK98] Grävinghoff, A.; Keller, J.: Fine-Grained Multithreading on the Cray T3E. High-
Performance Computing in Science and Engineering, LNCS, pp. 447–456 , Berlin,
Springer Verlag, 2000.

[LB96] Lai, K.; Baker, M.: A Performance Comparison of UNIX Operating Systems on the
Pentium. Proceedings of the USENIX Annual Technical Conference, pp. 265–278, 1996.

[Lip91] Lipton, R. J.: New Directions in Testing. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 2, Providence, American Mathematical Society, 1991.
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