
A Framework for Document-driven Evolution 
of Ontology 

Krzysztof W cel 
The Pozna University of Economics 

Department of Management Information Systems
Al. Niepodleg o ci 10, 60-967 Pozna , Poland 

K.Wecel@kie.ae.poznan.pl

Abstract 

We present a framework for updating ontology as new documents 
arrive. The framework consists of three main layers: extraction, 
internal storage and refinement. In the extraction layer axioms are
extracted from the text by analyzing named entities, contexts and 
relations. We introduce the notion of temporal axioms, i.e. the 
axioms that are valid in a certain time interval. This information is 
then used to reason about ontology evolution when those axioms
are added to an ontology. We also present cases for evolution and 
corresponding changing axioms. In refinement layer, final 
ontology for a given point in time is built. 

1. Introduction and Motivation 

Business information should be complete, originate from a credible source and 
be up-to-date. Everyday business news reflects changes in the world. In 
information retrieval, users were interested in finding relevant documents. 
Current trends in research point at ontologies as a way to represent information 
in a structured way, thus facilitating more precise querying and question
answering.

In a classical approach, ontologies represent a static world. Any change in the
world requires a manual update in an ontology what is not adequate to the fast 
changing environment. The ontology that is not up to date has little value since it 
does not describe the world properly. Therefore, ontology evolution and 
maintenance is considered as more and more important issue. One of the
approaches could be maintenance by means of extracting changes from selected 
relevant documents. In this paper, we propose a framework for document-driven 
evolution of ontology. 

Only recently some of the frameworks have started to pay attention to time. In 
our system, time is considered as one of the dimensions that organizes
information. It orders the changes in the ontology, allows checking the validity 
of the facts in time and verifying consistency of ontology in time. 



A FRAMEWORK FOR DOCUMENT-DRIVEN EVOLUTION OF ONTOLOGY 379 

As a result the framework delivers: up-to-date ontology (static aspect), which 
is useful for retrieving knowledge, and a report on changes to ontology (dynamic 
aspect), which is useful for observing trends.

2. Related Work

In order to execute structured queries on text we need to employ information 
extraction techniques. Although the problem of extracting information is well
known and many approaches have already been proposed, there is no satisfactory 
application for ontology evolution. There are still many challenges that hinder 
precise extraction of meaning. On the one hand, knowledge in documents is 
imprecise; on the other hand, ontology learning algorithms generate uncertain 
knowledge. The uncertainty of learning algorithms may be ascribed to two types
of reasons: language-related and content-related. The first comprises ambiguity 
of language, metaphors, complex syntax, which contemporary language tools
cannot handle; the latter - addressed by our framework - incomplete information,
imprecise information, false information, subjectiveness (opinions, beliefs),
which cannot be verified without checking in many sources. 

Annotation is simply additional information (metadata) associated with a
fragment of a document and is one of the ways to structure the document. First
attempts focused on named entity recognition (NER), which detects and 
classifies entities according to a predefined entity type system. Then a focus 
moved from concepts and their instances towards relations. 

In order to compare the results of different approaches to structuring text,
various evaluation schemes were developed. One of them, the Automatic 
Content Extraction (ACE), was created by the National Institute of Standards and 
Technology (NIST) [1]. ACE1 consists of four tasks: (1) recognizing entities, (2) 
recognizing relations, (3) recognizing events, and (4) recognizing time
expressions. The evaluation scheme initially consisted of Entity Detection and 
Tracking (EDT). Then, Relation Detection and Characterization (RDC) task was
added and in 2004 Time Expression Recognition and Normalization (TERN) was
introduced. 

Several domain ontologies have been developed for document annotation 
purposes. The most important in the proposed framework is Ontology of Time . 
Some of the authors propose to merge document annotation and ontology
learning [3]. 

Many different inspirations for several projects are taken from ACE. One of
such projects is ONTOTEXT [4]. Most important features of this complex 
system are repository of facts, traceability, temporal binding of information, 
confidence of extracted information, verification of consistency. 

1 http://www.nist.gov/speech/tests/ace/index.htm 



380 BUSINESS INFORMATION SYSTEMS – BIS 2006

Another very similar system is Text2Onto [5], which aims at ontology
learning. Ontology learning tasks were divided into concept extraction, instance 
extraction, similarity extraction, concept classification, and instance
classification. The specific features of this system are incremental ontology
learning, storing ontology in a proprietary format, and storing evidence’s
references to the source text. 

3. Ontology Evolution 

Before it is possible to analyze ontology evolution, one has to learn the initial
ontology. There are many approaches to ontology learning [6] and most of them
employ information extraction techniques; some rely purely on IR techniques
over bag-of-words representation. When appropriate information is extracted, it 
should be compared to the existing knowledge. Since the knowledge may change
in time, the occurrence of change should be located on time axis. Further on we
analyze how to identify a change, what modeling primitives may be affected by 
the change and how to present the outcomes to the user. 

3.1. Ontology Learning 

In order to extract particular kind of information, one typically has to write 
extraction rules (patterns). The rules recognize a fixed set of entities classified 
according to the known schema. Principally, one needs a type system with some
constraints, which may be called ontology. In the real-world applications one 
require much richer collection of classes and attributes, and may wish to detect if 
new types of entities emerge. Therefore, Ontology Learning (OL) emerged. 

Ontology population focuses on instances while ontology learning on 
concepts and relations. Proper recognition of instances requires precise
identification of concepts, thus ontology requires maintenance. The goal of
annotating the document is actually to extract useful information that may be 
then useful for query answering. Instead of analyzing documents every time the
query is submitted, one may store all information in a knowledge base. Such 
knowledge base may require updates very often and this is another argument for
ontology maintenance. 

In order to handle ontology evolution properly, one has to recognize time
expressions very precisely ([7], [8]). Not only change has to be detected but also 
the time when it occurred has to be learned from the analyzed text. This
information is not always explicit and tends to be ambiguous even for humans.

On the one hand, the goal is to extract information from document for
ontology. On the other hand, we need the underlying ontology in order to know
what should be extracted. Those two processes are interrelated and they support
each other. 

The following sources of ontologies required for ontology evolution have 
been identified:



A FRAMEWORK FOR DOCUMENT-DRIVEN EVOLUTION OF ONTOLOGY 381 

x seed ontology (domain ontology), defines core entities that should be
extracted and learned from text 

x language ontology, facilitates the extraction of information from text,
appropriate concepts are selected for domain ontology; may be used directly 
to grow the seed ontology 

x documents, bring new information that has to be structured.

Usually, annotation of web resources relies on ontology, which defines concepts
and relations. Due to the still evolving world, it is not feasible to update this
ontology manually. Therefore, it is necessary to update ontology when text
contains entities that cannot be annotated using known ontology. Thus, the 
process of annotation and ontology learning should be merged. Ontology should
be rebuilt according to changes found in annotated documents. Moreover,
documents should not only be annotated but extracted information should be
stored in the database to allow further reasoning. 

3.2. Principles for Ontology Change

Let us starting by analyzing what may change from very general point of view.
When new documents are filtered to the system, they bring some facts. Those 
facts may have the following influence on knowledge base (cases): 
x confirmation, new information confirms or supports known information, fact 

remains unchanged 
x completion, new information add new details about existing entity, e.g. we 

knew that company X is located in city Y, and the new fact is that it is located 
on the street Z

x correction, new information changes known facts, e.g. when company X is
indeed operating in city Y, not in city Z 

x contradiction, new information contradicts old information, e.g. we knew that
company X had invested in Y, and the new fact is that it did not invest in Y 

x prolongation, new information extends the time validity of the known fact, 
e.g. “the president was elected for the next term” 

x invalidation, the fact that was known to be true in the past is not true from a
certain date, e.g. “the factory has just stopped producing cars” 

x update, new information makes known facts up-to-date, e.g. we know the 
turnover for May and the new fact is turnover for June. 

In order to represent those changes in the ontology we have to consider how
static facts are represented. By looking at basic modeling primitives, the 
following changes have been identified: 
x class: a new class added, an existing class removed, change in hierarchy of 

classes, a disjoint or equivalent class defined 
x instances: instance re-classified, properties of instance added or removed 
x relations: domain changed, ranges changed, relation instances changed, value

of the property  changed. 



382 BUSINESS INFORMATION SYSTEMS – BIS 2006

In order to handle ontology evolution we need a granule of change. In OWL-
DL (which is the target formalism) such granule is an axiom, e.g. “X sub-class-of 
Y”. Therefore, new facts are transformed into appropriate axioms. The list above 
does not contain all OWL axioms, e.g. inverse object properties, sub properties,
since in the first attempt we focus on the restricted subset.

We claim that representation in form of axioms is not sufficient for business 
information: if it is unknown when a change occurred, it is not possible to reason
about evolution. The business domain does not model a static world. Some of the
cases, like prolongation, invalidation or update, use the notion of time. The
axiom itself is useless unless it is bound to time, i.e. the period of validity is 
defined; hence the extension of formalism and motivation for the framework
proposed in this paper. We define temporal axioms as axioms that are true only 
in certain time interval. 

The formalism is required in order to: 
x represent extracted information in a structural way 
x compare new facts with knowledge base 
x apply changes to the ontology if necessary.

3.3. Modeling Primitives 

The most common modeling primitives are classes, instances, and relations. 

3.3.1. Instances

Instances are the primary modeling primitive - most of the efforts focus on their 
recognition, they are classified, take part in relations, and when a query is 
formulated, one usually asks about individuals, and rarely about a structure of the
reality. As a prerequisite, we need efficient methods for extraction and 
annotation of named entities. As open issue remains how precise the information 
extraction methods should be. Some research show that even between different
human annotators there is often no consensus on how some resources should be
annotated. 

Instances extracted from text may play two roles: be just a named entity or
provide a context for recognition of other named entities (e.g. location, time, 
organization). According to MUC, named entity recognition is considered a
solved problem and the highest-scoring systems achieve precision of 97%, what 
is comparable to human performance [9]. 

Instances actually do not evolve - either they exist in a given time or not. 
What evolves, are only their relations to other instances in a certain period. One
only has to recognize when such an entity was created. The way an entity is 
brought into being depends on the type of entity itself and is language-
dependent, e.g. a human was born, a good was produced, an organization was
founded. This task requires an underlying ontology that defines events that start
and finish existence of an instance. Instances may take part in relation only when
they really exist, therefore asserting the period of existence is crucial. 



A FRAMEWORK FOR DOCUMENT-DRIVEN EVOLUTION OF ONTOLOGY 383 

Finding only changes in instances is actually ontology population, we
therefore focus also on classes.

3.3.2. Classes

An important issue with classes learned from the ontology is the required high 
precision of learning. Intuitively, when an instance is learned and recognized 
improperly, it is not that harmful compared to a class that is learned improperly. 
Therefore, particular attention should be paid to correctness of terminological 
knowledge (like TBox in Description Logic); assertional knowledge (ABox)
affects smaller number of entities.  

The core issue of ontology evolution is how to treat classes and handle
changes in classes. A class should exist as long as it has any instance. 
Description logic distinguishes two kinds of classes: primitive (only necessary
conditions are specified) and defined classes (both necessary and sufficient
conditions), and there are two hierarchies of classes: asserted and inferred. It may 
also happen that class has to be removed from the ontology and therefore
instances should be reclassified, e.g. when a certain kind of organizations is 
removed from the law. 

We have to consider whether the goal of text analysis is actually the creation 
of ontology from scratches or rather refinement of existing ontology. To some
extent, we can use such sources of information as WordNet. When analyzing text
in natural language this kind of language ontology is the most useful, at least for
disambiguation purposes. Significant part of the language ontology may be 
reused, and domain-specific parts may be learned from analyzed documents. 

The question remains if an algorithm exists that is capable of creating or 
identifying defined classes automatically. Such a task done automatically is 
prone to errors and for that reason an underlying domain ontology is 
indispensable. Moreover, in order to achieve high precision of class recognition 
we suggest employing user feedback.

3.3.3. Relations 

As extraction of instances is relatively well researched, most of the effort is now 
put on relations. For example, ACE defines extraction of relations as one of its 
four tasks. Unfortunately, the experience of ACE shows that finding relations is a 
challenging task. 

In the proposed framework there are two issues that go beyond the problems
defined for text annotation. Firstly, the set of relations to be extracted is not fixed
like in ACE. Here, a relation should be referred to as object property when using 
OWL-DL. Some simple relations, like defined by ACE program, can be
extracted with some hard-coded rules. For ontology evolution to take real 
advantages, we need much more flexible approach. Because the final ontology is
to be exported in OWL-DL and we plan to use description logic reasoners, also 
some properties of the relation should be known: whether the relation is 



384 BUSINESS INFORMATION SYSTEMS – BIS 2006

symmetric, transitive, functional or inverse functional and what is its inverse 
relation. Some of the properties probably cannot be determined automatically 
with satisfying confidence, e.g. cardinality, domain, and range restrictions. 
Again, the domain ontology is essential. 

Secondly, a need to determine in which period this relation is valid makes the
task even harder. This kind of information is not to be found in domain ontology
and has to be extracted from text. Moreover, in order to take part in relations 
both entities has to exist throughout the interval of relation’s validity. Again, 
time context proves to be an important issue. The next section studies in details 
temporal relations. 

3.4. Time-related Issues

In the framework, we are interested in the evolution of ontology in time (time as 
an attribute of an axiom), and not in the modeling of temporal aspects in the 
ontology itself.

Time context is inherent to the evolution. Many of the axioms are only valid 
during the limited period. Therefore, it is not sufficient to extract facts from the
documents but also those facts should be bound to time. In some cases the period
when the information should be valid is commonly known (e.g. 5 years for a
president of a country), in other cases not (e.g. open period for existence of 
music band).

Knowledge may change expectedly (e.g. at end of fiscal year) or unexpectedly 
(most other cases). Additionally, some expected events may occur earlier and 
thus become unexpected events. In the first case, people anticipate the change, it
is possible to handle it; in the latter case, it is usually not simple to figure out that
the change occurred and when.

General relations, like “Employee works for Company”, extracted from text 
may be useful for defining domain and range of relations, thus providing
evidences for ontology evolution. 

In order to describe the relation instance one has to find not only instances but 
also determine when a given relation instance is in force. Binding to time is
helpful in checking some constraints on relations, like cardinality. For example, 
two sentences: “Warsaw is the capital of Poland” and “Cracow is the capital of 
Poland” do not contradict provided that the second sentence is written in 1500. In 
a static approach, it is asserted in the ontology that one country has only one
capital. In the evolving world, we need to assert that a country may have only 
one capital at a time but several capitals throughout the whole history. Generally, 
we have to distinguish between uniqueness (one value at a time) and universal 
uniqueness (one value at all). Attributes that are universally unique never change
(e.g. place of birth); hence, they need not be bound to time. 

The universally unique relations are particularly useful for finding 
contradictions in documents. In unique relations, when there are contradictory
facts but stated on different dates one have to change the time validity of the first 
one and add another axiom with updated fact (e.g. when somebody changes a



A FRAMEWORK FOR DOCUMENT-DRIVEN EVOLUTION OF ONTOLOGY 385 

job). Sometimes it is not possible to give the exact date of change and therefore
fuzzy representation should be used, leading to different confidence levels.

To sum up, the ontology should contain information on: 
x invariability of some relations
x cardinality in time context.

3.5. Detection and Presentation of the Evolution 

In order to discover the need for a change one has to analyze new facts extracted
from incoming documents. After extraction and formalization in form of axioms,
it is possible to compare them to current state of knowledge base. The cases are 
presented in the Table 1. The notation is as follows: P is a predicate, PT1 is a
temporal predicate that is valid in interval T1, meets, overlaps, before are taken 
from interval calculus [10]. 

Table 1. Cases for evolution and corresponding changing axioms. 

Type 
of change 

Existing
axioms 

Removed 
axioms 

Added axioms

confirmation P(x,y) - - 
completion P1(x,y) - P1(x,z)�subclassof(z,y) � P2(x,z)
correction P(x,y) P(x,y) P(x,z) 
contradiction P(x,y) P(x,y) - 
prolongation PT1(x,y) - PT2(x,y) � meets(T1,T2) 
invalidation PT1(x,y) PT1(x,y) PT2(x,y) � overlaps(T1,T2) 
update PT1(x,y) - PT2(x,z) � before(T1,T2) 

First, a new fact has to be classified to one of the cases mentioned above to 
allow proper intervention. Classification of the fact to one of the cases also 
depends on how it can be resolved. In confirmation case, the confidence of the
given axiom should be increased. In any other case, new axioms are introduced 
into ontology, which may become inconsistent. In some cases the new fact
directly contradicts with a known fact, otherwise one needs a logical formalism
in order to infer the contradiction. 

There are different possible approaches to response to a change. Some of the
approaches just put the fact into the knowledge base and resolve potential 
contradictions when final ontology is requested, e.g. Text2Onto. Such an 
approach is not very useful for applications that require prompt action.
Therefore, in the proposed framework the reaction for new fact is immediate; 
triggers may be set up to allow further actions. 

There are different approaches to handle ontology change that may lead to 
inconsistency. The following major use cases has been identified in [11]: 
x maintaining consistency of initially consistent ontology by applying

appropriate changes 



386 BUSINESS INFORMATION SYSTEMS – BIS 2006

x repairing an inconsistent ontology 
x reasoning with inconsistent ontology (usually on consistent sub-ontology) 
x finding the right version of an ontology that is consistent. 

We claim that it is preferred to keep ontology consistent (with regards to some
moment in time) in order to react properly to consecutive changes extracted from
the stream of text documents. Inconsistency may be obvious, e.g. one fact says A
and the other ¬A, but more often reasoning is required. We do not believe that
very complex reasoning may be executed for the whole domain (with temporal 
logics in background, which may be undecidable). We focus only on 
contradicting facts with shallow reasoning. Deeper inconsistencies may be
discovered just before the final ontology is created in OWL-DL, i.e. when time is 
not considered. There are also some approaches that allow to debug and repair an 
inconsistent ontology [12]. 

4. Framework

Having analyzed the requirements, we propose the following framework for 
document-driven ontology evolution. The model is organized into a number of 
layers. Each layer is responsible for one of the steps in handling the evolution. 
Each layer holds specific type of data and makes this data accessible to the 
higher layers. An overview of the developed framework is presented in Figure 1. 

We have identified three main layers required for evolution: the bottom one is 
responsible for extraction of information from text. Structured representation of 
the documents is stored in an internal format in the middle layer. The top layer is
responsible for producing final ontology that conforms to some general and user
requirements. 

4.1. Layers in the Stack 

The bottom layer represents text that has to be analyzed. Text originates from 
documents that are filtered from pre-defined Internet sources. By applying 
information extraction techniques, we are able to structure those documents into
contexts (temporal and spatial) and extract named entities (NEs). Then relations 
among named entities are discovered. Additional information from ontology
learned so far is utilized as well as information about contexts what helps further 
in disambiguating NEs and resolving co-references. 

For ontology evolution it is crucial to assert when given relations are
supposed to be valid. Therefore, using the information from time context, 
temporal relations are composed, i.e. relations with assigned intervals or instants
of their existence. It is not always possible to define appropriate interval if such
information is not given explicitly in text. Only temporal relations may be an 
evidence for the change in ontology. 



A FRAMEWORK FOR DOCUMENT-DRIVEN EVOLUTION OF ONTOLOGY 387 

RDF(S)

OWL-DL

Ontology

F
e

e
d

b
a

c
k

Internal format

Temporal relations

Annotated documents

defuzzification

snapshot

consistency

Text

Contexts Named entities

RelationsL
o

c
a

ti
o

n

Events

T
im

e

E
x
tr

a
c
ti
o

n
R

e
fi
n

e
m

e
n

t

E
v
id

e
n

c
e

s
O

n
to

lo
g

y
e

v
o

lu
ti
o

n

C
re

d
ib

ili
ty

Figure 1. A Framework for Ontology Evolution from Documents. 

The next layer extracts events that occur in a given location and in a given 
time (contexts are used). Unlike the relations, events directly create a need to 
change the ontology. For example, compare two statements: “somebody owns a
company” and “somebody bought a company”. In case of relations, one have to 
compare the knowledge base with new information found in the document; the 
evidence will either support the existing fact or falsify it. Relations and events 
may be distinguished by looking at a verb: some verbs represent a state and some
an action, and it may be guessed by looking in language ontology for roles of
verbs. Separate patterns should be used for extraction of events. 

From each text several evidences may be extracted. They are stored in the 
middle layer in the internal format. Throughout the whole process documents are 
annotated in each layer and therefore any kind of tool may be used to recognize 
named entities, contexts, or relations (modular approach). 

The middle layer uses modeling primitives to represent information extracted
from text. These are in the form of axioms about concepts, instances and
relations with certain degree of confidence and with temporal information about 
their validity. We have decided to use a generic relational database model in 
order to store axioms (therefore no temporal modeling in ontologies itself). In 
such a way, it is possible to represent uncertainty and then produce ontology on 



388 BUSINESS INFORMATION SYSTEMS – BIS 2006

demand according to some general requirements (e.g. consistency) and user
needs (e.g. query). References of evidences back to text are also preserved in the 
database. Therefore, when a document is evaluated as unreliable all of its 
evidences should have weights lowered (even to zero). Some evidences may 
point to several documents. Evidences collected over a longer period allow to 
achieve higher confidence. 

Ontology is produced in the remaining layers. The three layers -
defuzzification, snapshot, and consistency - are ordered, however, they may 
support each other in several iterations to produce the final ontology. Because in
the internal format each axiom has a confidence level, it is not very useful for 
reasoning. In defuzzification, certain threshold is accepted and only the most
certain axioms are an input to the next layer. Axioms have also temporal
information on their validity and user might be interested only in the state of the
ontology on particular date. Therefore, different versions of ontology may be 
created. Finally, consistency should be evaluated. Only after removing 
uncertainty and temporal information we are able to reason about the consistency
of the ontology, when the set of axioms is fixed and any existing Description 
Logics reasoner may be used. If the resulting ontology is not consistent or not 
complete, the process of repairing ontology should be started taking into account
information from two preceding layers. The algorithms are to be developed. 

The last layer is responsible for exporting the ontology in the selected 
language with appropriate knowledge representation formalism. 

4.2. Processes

There are four main processes in the framework (see Figure 1 on the right). Two 
of them are responsible for transforming crude text at the bottom into refined 
ontology at the top. The other two allow to improve the overall process of 
ontology learning and evolution by propagating the control down the stack. 

4.2.1. Collecting Evidences 

The process of collecting evidences from text was described in the previous
section. What was not mentioned, are certain requirements for the algorithms – 
they should be able to handle incremental learning of ontology, i.e. adding and 
possibly removing evidences when new documents arrive or are invalidated.
Changes in lower layers are propagated to upper layers. 

4.2.2. Ontology Evolution 

Having collected evidences from text, their influence on ontology should be
evaluated. Inference process aims at checking the consistency of the ontology as 
well as for triggering appropriate changes in the ontology. Pre-defined
consistency conditions and user-defined consistency conditions are taken into 
account.



A FRAMEWORK FOR DOCUMENT-DRIVEN EVOLUTION OF ONTOLOGY 389 

4.2.3. Feedback

The consistency of ontology is checked by the system and user intervention is 
unnecessary. However, consistent ontology might not appropriately represent the
world. Therefore, it is necessary to introduce a feedback mechanism, in which 
user may evaluate the truth of axioms or correct the ontology. Information about
acceptance or rejection of axioms should be propagated down to other layers. 

Main impact of the feedback in yes/no answer to the proposed change is first
on defuzzification layer. When a user evaluates certain axiom, its confidence 
level is then either one or zero (we suppose that user is sure about her
statements). The change in confidence has influence on higher as well as lower
layers. The impact on higher levels is reflected in new ontology that has to be 
built. Moreover, users may also add other axioms and correct existing ones. 
Finding satisfactory solution may take several iterations.

Any change suggested by user should also be tracked down to the bottom
layers of the stack; the impact on lower levels is described in the next section. 

It has to be distinguished whether some of the facts from the document were
false from the beginning of analyzed interval or were just updated later. In the
first case, the confidence of axioms should be lowered. In the latter case, the 
temporal validity of axiom should be updated and the new axiom added. It also 
has to be checked whether an axiom was correct but out of scope of the snapshot.
In such case the interval in temporal relation should be extended. More 
generally, another form of feedback user might give is about temporal validity of
certain axioms. Such feedback information usually would not be useful for 
improving the algorithms as it is harder to track down in evidences. The question 
remains if the last task is computationally feasible. 

4.2.4. Credibility 

The actual goal of the users’ feedback is not only to correct the ontology but also 
to improve the way the ontology is learned. We may achieve this by: 
x identifying reliable documents and sources of documents 
x identifying successful extraction patterns. 

Based on user’s feedback some of the axioms become fixed in the ontology.
Therefore, documents or patterns that create those axioms are particularly
valuable for learning. When a user gives a positive feedback such document or 
pattern should become more important, and respectively less important for 
negative feedback. Whether the credibility concerns a document or a pattern, 
should be decided by the user, who should look at the source text via links from
evidences. It could also be possible to guess it based on evaluation of several
documents and patterns given by a greater number of users.

Firstly, this process is particularly important for verification of the initial 
patterns given by a user, who may expect that some of them work, but in practice
they cover too many or too few types of axioms. The correct extraction patterns



390 BUSINESS INFORMATION SYSTEMS – BIS 2006

are strengthened and the incorrect ones are removed, ultimately leading to 
improvement of the ontology extraction algorithm.

Secondly, this process eliminates unreliable or hard-to-analyze sources of 
information. The default value for reliability of a document is the reliability of 
the source. When a greater number of documents from a given source have little
importance, also significance of the source is decreased. 

An appropriate user interface is required in order to facilitate the whole 
process of credibility evaluation. Interface has to map changes to evidences in
text so the user may read fragments of source documents and make an 
evaluation.

Verification of sources and documents could also be done automatically based 
purely on confidence levels of extracted axioms. The algorithms are an open 
issue; an algorithm similar to PageRank for distribution of the credibility weights
could be developed. 

5. Conclusions and Future Work 

This paper presented work in progress on the system that allows to extract
information from a stream document for ontology evolution purposes. What
makes this framework different is the role of time: every axiom is bound to time
interval and changes are resolved in accordance to their time validity. 

In the model, most fuzzy layers are located at the bottom (just after the 
extraction from text) and then the knowledge is refined in the upper layers. Such 
an approach enables a user to see the version of ontology from a given time and 
additionally to analyze cause-effect chains. One may question this approach as 
there are serious attempts to add fuzziness to OWL but robust reasoners does not 
exist yet. 

The main feature of our approach is not to analyze thoroughly and represent
each sentence but to extract only useful information (conforming to the given 
pattern).  This approach allows avoiding many traps of current tools; imprecise 
information is just not extracted. We recognize only what is necessary and only
what is unquestionable. 

There are many goals that may be achieved with the framework: being up-to-
date in the domain, acquiring knowledge, we also pointed at the possibility of 
ranking sources and documents by applying additional techniques. 

Working application does not exist yet and many questions remain open as 
pointed in the paper. The work done so far focused on extraction, time issues and 
representation. 



A FRAMEWORK FOR DOCUMENT-DRIVEN EVOLUTION OF ONTOLOGY 391 

6. Acknowledgement 

This research project has been supported by a Marie Curie Transfer of 
Knowledge Fellowship of the European Community's Sixth Framework 
Programme under contract number MTKD-CT-2004-509766 (enIRaF). 

7. References 
1. Doddington, G., et al., Automatic Content Extraction (ACE) program - task

definitions and performance measures, in Proceedings of LREC 2004: Fourth
International Conference on Language Resources and Evaluation. 2004. 

2. Hobbs, J.R. and F. Pan, An Ontology of Time for the Semantic Web. ACM 
Transactions on Asian Language Information Processing, 2004. 3(1): p. 66-85. 

3. Amardeilh, F., P. Laublet, and J.-L. Minel, Document annotation and ontology
population from linguistic extractions, in Proceedings of the 3rd international
conference on Knowledge capture. 2005, ACM Press: Banff, Alberta, Canada. p. 161-
168.

4. Magnini, B., et al., From Text to Knowledge for the Semantic Web: the ONTOTEXT
Project, in Semantic Web Applications and Perspectives, P. Bouquet and G. 
Tummarello, Editors. 2005, CEUR Workshop Proceedings: Trento. 

5. Cimiano, P. and J. Völker, Text2Onto. A Framework for Ontology Learning and
Data-driven Change Discovery, in Proceeding of NLDB'05. 2005. 

6. Maedche, A., Ontology learning for the semantic Web. The Kluwer international
series in engineering and computer science ; SECS 665. 2002, Boston: Kluwer
Academic Publishers. xxiii, 244 p.

7. Ferro, L., et al., TIDES. 2005 Standard for the Annotation of Temporal Expressions. 
2005, MITRE Corporation.

8. Mani, I., J. Pustejovsky, and R. Gaizauskas, eds. The Language of Time. 2005, 
Oxford University Press. 

9. Grishman, R. and B. Sundheim, Message Understanding Conference-6: a brief history
in Proceedings of the 16th conference on Computational linguistics - Volume 1 1996 
Association for Computational Linguistics: Copenhagen, Denmark p. 466-471 

10. Allen, J.F. and G. Ferguson, Actions and Events in Interval Temporal Logic. Journal 
of Logic and Computation, 1994. 

11. Haase, P., et al., A Framework for Handling Inconsistency in Changing Ontologies, in
4th International Semantic Web Conference, ISWC 2005, Y. Gil, et al., Editors. 2005, 
Springer, LNCS: Galway. 

12. Parsia, B., E. Sirin, and A. Kalyanpur, Debugging OWL ontologies, in Proceedings of 
the 14th international conference on World Wide Web. 2005, ACM Press: Chiba, 
Japan. p. 633-640. 


