
Tool Support for Correctness-by-Construction

Tobias Runge1, Ina Schaefer2, Loek Cleophas3, Thomas Thüm4, Derrick Kourie5, Bruce

W. Watson6

Abstract: This work was published at the International Conference on Fundamental Approaches
to Software Engineering (FASE) 2019 [Ru19]. We tackled a fundamental problem of missing tool
support of the correctness-by-construction (CbC) methodology that was proposed by Dijsktra and
Hall and revised to a light-weight and more amenable version by Kourie and Watson. Correctness-
by-construction (CbC) is an incremental approach to create programs using a set of small, easily
applicable refinement rules that guarantee the correctness of the program with regard to its pre- and
postcondition specifications. Our goal was to implement a functional and user-friendly IDE, so that
developers will adapt to the CbC approach and benefit from its advantages (e.g., defects can be easily
tracked through the refinement structure of the program). The tool has a hybrid textual and graphical
IDE that programmers can use to refine a specification into a correct implementation. The textual
editor fits programmers that want to stay in their familiar environment, while the graphical editor
highlights the refinement structure of the program to give visual feedback if errors occur, using KeY
as verification backend. The tool was evaluated regarding feasibility and effort to develop correct
programs. Here, slight benefits in comparison to a standard verification approach were discovered.

Keywords: correctness-by-construction; tool support; formal methods; verification

Overview

Correctness-by-Construction (CbC) [KW12] is a methodology to construct formally correct

programs guided by a pre-/postcondition specification. Starting with an abstract program,

formally verified refinement rules are applied to incrementally refine the program to a

concrete implementation. In the literature [KW12, Wa16], CbC is described as having many

benefitsȷ The structured reasoning discipline that is enforced by the refinement rules reduces

the appearance of defects. If defects do occur, they can be tracked through the refinement

structure. Furthermore, the formal process increases trust in the program. To check these

benefits, we implement tool support that enables CbC to be used by programmers. We

want to compare CbC with the prevalent post-hoc verification approach, where program

correctness is proven after construction.

1 TU Braunschweig, Germany tobias.runge@tu-bs.de
2 TU Braunschweig, Germany i.schaefer@tu-bs.de
3 TU Eindhoven, The Netherlands and Stellenbosch University, South Africa l.g.w.a.cleophas@tue.nl
4 Ulm University, Germany thomas.thuem@uni-ulm.de
5 Stellenbosch University, South Africa derrick@fastar.org
6 Stellenbosch University, South Africa bruce@fastar.org

cba doi:10.18420/SE2021_34

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 93

https://creativecommons.org/licenses/by-sa/4.0/
mailto:tobias.runge@tu-bs.de
mailto:i.schaefer@tu-bs.de
mailto:l.g.w.a.cleophas@tue.nl
mailto:thomas.thuem@uni-ulm.de
mailto:derrick@fastar.org
mailto:bruce@fastar.org
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_34


In this work, we present CorC, an IDE that supports the CbC approach with a hybrid textual

and graphical user interface. The IDE support users to apply refinement rules to an abstract

program until the program is fully refined. In each refinement step, the correct application

is guaranteed by using the theorem prover KeY [Ah16]. Each proof obligation can be

immediately discharged during program development. In the textual editor, programmers

enrich source code with specification and directly see if a refinement is unprovable. The

graphical editor is useful to get an overview of all refinement steps and track errors in the

program. To not burden programmers, they can switch automatically between both views.

As CbC is not tailored to a specific host language, we implemented CorC in such a way that

the language can be exchangedȷ Any imperative programming language with a specification

language and an automatic verification tool can be integrated.

In our evaluation, we compared CorC with standard post-hoc verification using KeY as

prover in both cases. We investigated the hypothesis whether the verification of algorithms

is faster with CorC than with post-hoc verification. Therefore, we implemented seven

algorithms with CorC and as plain Java code with specification. In each case, we measured

that the verification time was lower for CorC, indicating a reduced proof complexity. The

result is even statistically significant which provides empirical evidence for our hypothesis.

In summary, we extended the KeY ecosystem with tool support for the correctness-by-

construction methodology. With CorC, programmers can utilize CbC to construct correct

programs and use the results to bootstrap post-hoc verification as an additional check if

necessary. They can reduce the verification time, as demonstrated in our evaluation, and

benefit from synergistic effects of both approaches.

Bibliography

[Ah16] Ahrendt, Wolfgang; Beckert, Bernhard; Bubel, Richard; Hčhnle, Reiner; Schmitt, Peter H;
Ulbrich, Mattiasȷ Deductive Software Verification–The KeY Bookȷ From Theory to Practice,
volume 10001. Springer, 2016.

[KW12] Kourie, Derrick G; Watson, Bruce Wȷ The Correctness-by-Construction Approach to
Programming. Springer Science & Business Media, 2012.

[Ru19] Runge, Tobias; Schaefer, Ina; Cleophas, Loek; Thüm, Thomas; Kourie, Derrick; Watson,
Bruce W.ȷ Tool Support for Correctness-by-Construction. Inȷ Fundamental Approaches to
Software Engineering. volume 11424 of Lecture Notes in Computer Science. Springer, pp.
25–42, 2019.

[Wa16] Watson, Bruce W; Kourie, Derrick G; Schaefer, Ina; Cleophas, Loekȷ Correctness-by-
Construction and Post-hoc Verificationȷ A Marriage of Convenience? Inȷ International
Symposium on Leveraging Applications of Formal Methods. volume 9952 of Lecture Notes
in Computer Science. Springer, pp. 730–748, 2016.

94 Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm, Derrick Kourie, Bruce

W. Watson


