Using object scenarios for requirements analysis
- an experience report

Albert Ziindorf?, Jirgen Leohold?, Dieter Miiller?,
Ralf Gemmerich!, Carsten Reckord!, Christian Schneider!, Sven Semmelrodt*

! University Kassel
2 Volkswagen AG
3 VW Bordnetze GmbH
4 Siemens VDO Automotive AG

Abstract: This paper is an experience report applying object diagrams for require-
ments analysis in an industrial project in the automotive industry. The considered
project has created a tool for the design of car electronic systems. This project in-
volved an enormous amount of domain knowledge. The challenge was to involve
the domain experts in the analysis, design, and implementation activities such that
the transfer of domain knowledge is fostered. This paper reports on our approach to
achieve this involvement and what we achieved.

1 Introduction

Modern software development processes, as e.g. the Rational Unified Process [JBR99],
use textual use case descriptions for requirements elicitation. During further requirements
analysis, analysis classes are identified and one may e.g. use collaboration diagrams or
sequence diagrams in order to outline use case behavior. This is then further refined into
design and implementation classes and into actual behavior implementation. This process
may be executed iteratively, addressing small chunks of functionality one after the other.

Due to our experiences, such a process requires decent skills in abstraction, object orien-
tation, analysis, design, design patterns, etc. Frequently, the result of an object oriented
analysis or design phase will be documented and discussed using architecture diagrams
or more specifically class diagrams. Unfortunately, class diagrams are quite abstract and
their interpretation and the judgement of the represented design decisions requires special
skills and training. While many computer scientists and professional software developers
have these skills as part of their every day professional work, a project frequently involves
a large number of stakeholders with a different background. The project may involve busi-
ness managers, administrative experts, domain experts and potential system users. These
people may have quite different backgrounds and skills. These different skills and the
corresponding domain knowledge are of crucial importance for the success of the overall
project. Unfortunately, many of these important people will have difficulties to interpret
the information and design decisions contained in architecture and class diagrams. Thus,

269

the domain experts are frequently not able to communicate their knowledge with the soft-
ware experts, appropriately.

In order to overcome these communication problems, the Fujaba Process proposes to use
object diagrams or object scenarios as an intermediate representation or analysis means
during analysis, design and implementation, cf. [DGZ05, KNNZ00]. Usual collaboration
or sequence diagrams stay on a level of abstraction where certain components exchange
certain messages in order to exemplify the internal process that realizes the considered use
case, cf. [JBR99, BRJ99]. Our object scenarios usually describe the internal process in
much more detail. We employ concrete objects with concrete attribute values and concrete
links or pointers between each other. Thereby, we pin-point the representation of certain
domain information in our implementation model quite early in the development process.

In the reported project, it turned out, that the design and implementation decisions outlined
in object scenarios were still easily recognized by our domain experts. Pinning down
certain design and implementation aspects quite early then fertilized the further refinement
and elicitation of related functional requirements, considerably. In multiple iterations, our
domain experts used the refined designs to enhance their textual requirements descriptions
until it became easy to implement them. Since our implementation language, so-called
Fujaba story diagrams, uses a graphical notation which is very close to our object scenario
notation, our domain experts were even able to review our implementation. This enabled
very valuable feedback from our domain experts to the software developers. For the goals
of the reported project cf. [GSZR et al. 05].

The following section introduces the application domain and the software development
project that serves as example in this paper. Section 3 shows some object diagrams that
have been developed by the electrical engineering experts participating in this project and
how we exploited these object diagrams to develop the desired cost estimation and opti-
mization tool. We will conclude with lessons learned.

2 The OBA application

The considered example project is called OBA for ”Optimization of car electric system
architectures” (in German: BordnetzArchitekturen). Our task was to develop a tool that
enables a car manufacturer to optimize the costs of the electronic system within a car. The
considered electronic system of a car includes actors (e.g. lights, motors, ...), sensors (e.g.
on/off switches, temperature sensors, rotation sensors, ...), electronic control units (ECUs),
fuses, and all the wires connecting these components. The costs of the electronic system
of a car consist of the costs for the parts plus the costs for assembling them within the car
plus the costs of extra material as e.g. cable ties or screws, etc.

Prerequisites for the development of a car electronic system are usually the employed
sensors and actors including their placement within the car. In addition, the geometry
of the car body is usually already defined including possible spaces for the placement
of ECUs and including all channels where cables may be laid and mounted. The main
architectural decisions for a car electric system are how many ECUs it employs, where

270

these ECUs are placed in the car and which control functionality is placed on which ECU.
Similarly, the number and placement of fuse boxes has to be chosen. Depending on these
decisions, the wiring of the car has to be routed to connect the ECUs with each other and
with the sensors and actors they need to access and to provide the power supply to all
components. Our task was to develop tool support for the developers of car electronic
systems enabling them to study alternative architectures with minimal effort and helping
them to optimize the electronic system with respect to overall costs and e.g. weight.

As a prerequisite for the optimization of a car electric system, we first needed to develop
a cost model that allows us to compute the overall costs of a chosen electric system and to
analyze the gain or loss caused by an alternative architecture. This cost model requires an
enormous amount of domain specific knowledge. This knowledge is provided by the in-
dustrial partners in this project, namely the Volkswagen AG, a car manufacturer or OEM,
Siemens VDO, a supplier of ECUs and electronic components, and VW Bordnetze, a
manufacturer for wiring harnesses. The OBA project requires not only an intensive in-
volvement of domain experts but also the exploitation of a large number of heterogenous
sources of data. First of all, the car body geometry is provided by a CAD system owned
by the OEM. We need the geometry information in order to calculate cable lengths and to
check space restrictions. In addition, we need the list of electronic components like actors
and sensors We also need a higher level description of software modules that are going
to run the car, e.g. the window lift module, the locking control module, the light control
module, etc. For each module, we need to know which sensors and actors it accesses, with
which other modules it communicates and in which ECU it will be located. Next we need
a catalogue of wire kinds together with rules for the determination of an appropriate wire
kind for a given connection. This depends on the current that is to be transported as well
as on temperature and environmental conditions in the crossed car areas.

3 The OBA cost model

Since we employ complex data structures for the optimization of the wiring harness and
for the conception of ECUs, and due to our experiences, we decided to develop the OBA
tool with an object oriented model using the Fujaba environment [Fu02] and generate the
actual implementation in Java.

The modelling of the OBA application started with the car body. On top of this we have
built the wiring model and the models for the ECUs and for the software functions. This
is the basis for the optimization algorithms. In the OBA project one major source of
complexity was the sheer amount of aspects that had to be addressed. For example the
costs for the wiring harness included aspects like:

- Cable costs depending on cable length and cable kind.
- Costs of cable mounting elements.

- Costs of wire protection means.

- Costs and kinds of connectors.

- Cables may be split at a certain point.

271

2.1 The car body

The car body consists of different car areas representing units of assembly and units
of similar environmental conditions. The changeovers between car areas require
additional protection means against different environmental conditions, e.g. humidity.
In addition, car area changeovers require special mounting efforts. ...The car areas
contain all kinds of mutually connected wire channels, cavities, etc.

Figure 1: First textual requirements on car bodies (translated from German)

- The costs of mounting the wiring harness.
- So called threading costs (to be revisited).

This list is far from completeness. Covering ECUs, fuse boxes, communication busses etc.
involved similar lists. One of the main challenges of the OBA project was to structure all
of these aspects appropriately. This required a close collaboration between the domain ex-
perts and the software engineers. At the beginning of the development, our domain experts
came up with textual requirements descriptions as shown in Figure 1. These requirements
where of course quite coarse grain and thus insufficient for further analysis, design and
implementation. In addition, most other requirements descriptions were based on the car
body description, e.g. the description of spatial constraints for ECUs or for the diameter of
cable bundles. The next layer of requirements was based on these two lower requirements
layers and so on. Without a clear common understanding of the basic requirement layers,
it became progressively harder to read and write new requirements on top of them.

To overcome these problems, we had to pin-point the requirement layers such that a com-
mon understanding between domain experts and software engineers was achieved and such
that the next layer was easy to build on top of them. Thus we asked our domain experts
to exemplify some typical situations with the help of object diagrams. After some training
and some more discussion, we developed object diagrams as shown in Figure 2. Actually,
the object diagram shown in Figure 2 has a large number of predecessors that were refined
multiple times for each requirements layer. We started with object diagrams modelling car
areas in order to deal with environmental conditions as hot and wet in the engine area or
cold and dry in the cabin area, cf. objects cal and ca2 at the top of Figure 2. Then we
added channels and nodes modelling the parts of the car body where wires may be routed,
cf. objects ch1l through ch4 and node nl. In addition, the information on required wire
protection means and required mounting means is attached to channels. Next we mod-
elled ECUs and other electronic components, cf. ecul and compl and comp2. Based
on this, we introduced wires, contacts and connectors. Finally, we introduced bundles of
wires since some channels may contain multiple wire bundles where each bundle has its
own costs for protection means and mounting means. Altogether this process resulted in
a large number of detailed object diagrams exemplifying our modelling of the different
aspects to be considered for our wiring harness cost model.

272

Verwendete Acrobat Distiller 7.0.5 Joboptions
Dieser Report wurde mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v3.0.2" der IMPRESSED GmbH erstellt.
Registrierte Kunden können diese Startup-Datei für die Distiller Versionen 7.0.x kostenlos unter http://www.impressed.de/DistillerSecrets herunterladen.

ALLGEMEIN --
Beschreibung:
 Verwenden Sie diese Einstellungen zum Erstellen von PDF/X-3:2002-kompatiblen Adobe PDF-Dokumenten. PDF/X-3 ist eine ISO-Norm für den Austausch von grafischen Inhalten. Weitere Informationen zum Erstellen von PDF/X-3-kompatiblen PDF-Dokumenten finden Sie im Acrobat-Handbuch. Erstellte PDF-Dokumente können mit Acrobat und Adobe Reader 4.0 oder höher geöffnet werden.
Dateioptionen:
 Kompatibilität: PDF 1.3
 Komprimierung auf Objektebene: Nur Tags
 Seiten automatisch drehen: Aus
 Bund: Links
 Auflösung: 2400 dpi
 Alle Seiten
 Piktogramme einbetten: Ja
 Für schnelle Web-Anzeige optimieren: Ja
Papierformat:
 Breite: 208.347 Höhe: 294.661 mm

KOMPRIMIERUNG ------------------------------------
Farbbilder:
 Neuberechnung: Bikubische Neuberechnung auf 300 ppi (Pixel pro Zoll)
 für Auflösung über 450 ppi (Pixel pro Zoll)
 Komprimierung: JPEG
 Bildqualität: Maximal
Graustufenbilder:
 Neuberechnung: Bikubische Neuberechnung auf 300 ppi (Pixel pro Zoll)
 für Auflösung über 450 ppi (Pixel pro Zoll)
 Komprimierung: JPEG
 Bildqualität: Maximal
Schwarzweißbilder:
 Neuberechnung: Bikubische Neuberechnung auf 1200 ppi (Pixel pro Zoll)
 für Auflösung über 1800 ppi (Pixel pro Zoll)
 Komprimierung: CCITT Gruppe 4
 Mit Graustufen glätten: Aus

Richtlinien:
 Richtlinien für Farbbilder
 Bei Bildauflösung unter: 150 ppi (Pixel pro Zoll)
 Warnen und weiter
 Richtlinien für Graustufenbilder
 Bei Bildauflösung unter: 150 ppi (Pixel pro Zoll)
 Warnen und weiter
 Richtlinen für monochrome Bilder
 Bei Bildauflösung unter: 600 ppi (Pixel pro Zoll)
 Warnen und weiter

FONTS --
Alle Schriften einbetten: Ja
Untergruppen aller eingebetteten Schriften: Ja
Untergruppen, wenn benutzte Zeichen kleiner als: 100 %
Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Schrift immer einbetten: []
 Schrift nie einbetten: []

FARBE --
Farbmanagement:
 Einstellungsdatei: None
 Farbmanagement: Farbe nicht ändern
 Wiedergabemethode: Standard
Geräteabhängige Daten:
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Entfernen
 Rastereinstellungen beibehalten: Nein

ERWEITERT --
Optionen:
 Überschreiben der Adobe PDF-Einstellungen durch PostScript zulassen: Nein
 PostScript XObjects zulassen: Nein
 Farbverläufe in Smooth Shades konvertieren: Ja
 Geglättene Linien in Kurven konvertieren: Nein
 Level 2 copypage-Semantik beibehalten: Ja
 Einstellungen für Überdrucken beibehalten: Ja
 Überdruckstandard ist nicht Null: Ja
 Adobe PDF-Einstellungen in PDF-Datei speichern: Ja
 Ursprüngliche JPEG-Bilder wenn möglich in PDF speichern: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Prologue.ps und Epilogue.ps verwenden: Nein
 JDF-Datei (Job Definition Format) erstellen: Nein
(DSC) Document Structuring Conventions:
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja

PDF/X --
Standards - Berichterstellung und Kompatibilität:
 Kompatibilitätsstandard: PDF/X-3 (kompatibel mit Acrobat 5.0)
 Wenn nicht kompatibel: Fortfahren
Wenn kein Endformat- oder Objekt-Rahmen festgelegt ist:
 Links: 0.0 Rechts: 0.0 Oben: 0.0 Unten: 0.0
Wenn kein Anschnitt-Rahmen festgelegt ist:
 Anschnitt-Rahmen auf Medien-Rahmen festlegen: Ja
Standardwerte, sofern nicht im Dokument festgelegt:
 Profilname für Ausgabe-Intention: ISO Coated
 Kennung der Ausgabebedingung:
 Ausgabebedingung:
 Registrierung (URL):
 Überfüllung: "False" eingeben

ANDERE ---
Distiller-Kern Version: 7050
ZIP-Komprimierung verwenden: Ja
ASCII-Format: Nein
Text und Vektorgrafiken komprimieren: Ja
Minimale Bittiefe für Farbbild Downsampling: 1
Minimale Bittiefe für Graustufenbild Downsampling: 2
Farbbilder glätten: Nein
Graustufenbilder glätten: Nein
Farbbilder beschneiden: Ja
Graustufenbilder beschneiden: Ja
Schwarzweißbilder beschneiden: Ja
Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
Bildspeicher: 1048576 Byte
Optimierungen deaktivieren: 0
Transparenz zulassen: Nein
ICC-Profil Kommentare parsen: Ja
sRGB Arbeitsfarbraum: sRGB IEC61966-2.1
DSC-Berichtstufe: 0
Flatness-Werte beibehalten: Ja
Grenzwert für künstlichen Halbfettstil: 1.0

ENDE DES REPORTS ---------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

3500 Surpeany) oy Surkyrdwoxe weiderp 309[(qo uy :g a1

G'0=s1awelp|
10‘0=S1s00J8)8W!
PUMSIIAL T 3
[—
L— 3IMIZM
—d
Y STTCC
— MM — — sIMEM - —
JOBJUOY HUOD | | JOBJUODEUOD [——
HQEIVVIeIgHelole) I Nl To =TV [VIefg H oY eke]
JOBJUOD) ZUOD JOBIUO) | U0D
«CGCOQEQO”_\QEOO
1OEJLOD-9u®d JORIU00-GUOD J0}09UU0D:Z09| 110J08UU0D | 0T
spunggq s[pung:Zq SpuNgT9q
- — - (- I
J0}09UU0D GOD [T—— N ERNEE]
sIpung’sq s|pung:¥q sipung’eq s|pung:¢q slpung‘lq nNo37Inds
JUSUOdWI0) ZdWo))| [euueyy Yo |— Inodgijds TOUUBUD €0 [ENNENORATE] [euueyy 1 yo —— AIABD[ABD
BSPON U

BOIVIED 2B TOAQDUBUD 00 BOIVIED | €0

* ;

273

I\D

Figure 3: Example for the threading of cable bundles

With the help of the object diagrams, we had a lot of fruitful discussions with our domain
experts. For example, in a first attempt our domain experts proposed that each channel
object has its own attributes for the humidity and for the maximum temperature. We
recognized, that many channel objects had the same values for these attributes and asked
the domain experts, when these values will differ. They told us, that these values are
determined by the car area and they differ only when the car area is changed. Thus, we
moved the humidity and temperature attributes from the channels to the containing car
areas thereby reducing the data redundancy a lot.

Similarly, at the beginning, each wire had its own attributes for meter costs, diameter and
wire type. After some while, we found out that only 7 different wire diameters are used
in a car and that the costs per meter were the same for all wires with the same diameter
and the same wire type. To improve this, we introduced a catalogue of wire kind objects
holding the price information and each wire just refers to its wire kind. Thereby, it became
easy to handle changing market prices for wires. Later on, we introduced such catalogue
objects also for contact kinds, connector kinds, chip kinds, etc.

Another important point was the discussion of associations. We did not ask our domain
experts whether class CarArea should have a contains association to class Channel
or whether we should introduce a composite pattern at this place. Due to our experiences,
it is not fruitful to discuss with non software domain experts on this level of abstraction.
Instead, we asked our domain experts, whether there is an example of deeper nesting of
car areas. Indeed, some car areas contain sub car areas. In addition, there were examples
where car areas contained cavities which in turn contained channels. Thus, we decided to
use a composite pattern to model this hierarchy and told our domain experts that arbitrary
nesting of car areas, cavities, and channels are enabled, now.

In turn, the object diagrams provided the domain experts with a clear understanding how
the software models the different aspects of the application domain. This facilitated the
description of the requirements, considerably. As an example for a more complex require-
ment description developed this way, we may consider the computation of threading costs
for cable bundles. Figure 3 shows a small example for a wiring harness connecting three
components where the right component is reached via a car area changeover that is pro-
tected by a rubber spout. To mount the wiring harness, some cable bundle needs to be
threaded through the spout. This is a very tedious work with high mounting costs.

274

Computing Threading Length and Threading Direction
Consider each wire passing a rubber spout and sum up all lengths of all used
cable channels before the spout. The distance of spouts and cavities is
computed via the lengths of the cable channels. Consider only cavities
connected by wires threaded through the spout. Compare the maximal lengths
for each side of the spout. The lower one is the required threading length. This
also identifies the threading side, i.e the side from which the cable bundle is
threaded through the spout. Consider also the number of plugs at the threading
side.

Figure 4: First iteration requirement description (translated from German)

Originally, the computation of these threading costs was quite unclear and hard to explain,
cf. Figure 4. This first textual requirements description was hard to implement since it
was quite unclear, how one finds the wires on the two sides of a spout and how the length
is computed. With the help of example object diagrams, it became clear, that one has
to consider the bundles within the spout. In addition, it became clear that there are two
cases to be considered. If the spout leads directly to a channel, one may just lookup the
bundles in that channel. If the spout leads to a node, one has to consider all channels
attached to the node. In the project, the object diagrams were just discussed with the
software developers. In this exceptional case, we lazily did not write down the improved
requirements description that resulted from the discussion. However, for this paper, we
created an improved textual requirements description referring to the object diagram of
Figure 2 in order to exemplify how the object diagrams helped to improve the requirements
description, cf. Figure 5.

To summarize, with the help of the object diagrams the requirements became very detailed
and concrete. Such detailed requirements accompanied with elaborated object diagram
example were an excellent basis for the implementation of the desired functionality. Thus,
the object diagrams enabled our domain experts to contribute very valuable aids to the
design and implementation of the system.

Usually, architecture and class diagrams play an important role in software projects. Com-
monly, these diagrams are used for design discussions. In the OBA project, most of the
design decisions have been done based on the discussion of object diagrams. At the first
glance, class diagrams have been derived from these object diagrams by just collecting
the employed classes, attributes and associations. Actually, during the editing of object
diagrams, we used class diagrams mainly as a glossary. This means, if one creates a new
object, he decides whether the type of this object is already known and may be reused
or whether a new object kind, i.e. a new class needs to be introduced. Similarly, we
handled the reuse of attribute declarations and associations. Thereby, the class diagrams
leveraged the consistent use of classes, attributes and links through the different object
diagrams. However, inheritance structures and design patterns were introduced at class
diagram level. This was the task of the software experts. Discussing these class diagrams
with the domain experts was not fruitful.

Due to the lack of space, we are not going to explain Figure 6. The point we want to

275

Threading Length

e If abundle of wires, cf. bundle b4 in Figure XRemark: Figure 4inthis paper) ‘naadg to
be threaded through a spout sp1, this requires mounting time according to
the number of connectors that need to be threaded and to the length of the
bundle that needs to be threaded.

e To compute the threading length, both sides of the spout have to be
considered, in our example channel ch4 and node n1 are direct neighbors of
spout sp1l.

¢ If the direct neighbor is a channel, we consider the wires belonging to bundles
that belong to the spout and to the neighbor channel. In our example, channel
ch4 contains bundle b5 containing wires w1l and w2.

o If the direct neighbor is a node, we consider the neighbor channels connected
to that node. Only, wires belonging to the spout and to one of these neighbor
channels are considered. In our example, this are again wires w1 and w2.
Note, wire w3 must not be considered since it does not cross the spout.

¢ The length of a wire is the sum of the lengths on channels containing bundles
that contain the wire.

e The maximal length of the two sides of the spout is the threading length.

Figure 5: Improved requirement description based on object diagrams (Created to exemplify object
diagram discussions)

make is, that our method implementation with story diagrams use a graphical notation (cf.
[KNNZ00, DGZ05, Ziin02]) that again employs a variant of object diagrams. Since ob-
ject diagrams have already become familiar to our domain experts during the requirements
analysis, with some training, our domain experts were able to review our implementation.
We had a lot of fruitful discussions, where the software developers explained their story
diagrams and then the domain experts started to point to special cases. In these discus-
sions, the domain experts again used object diagrams to illustrate the special cases they
were concerned about. Then the software developers used simple walk throughs to check
whether these special cases were already addressed or whether the story diagram had to be
adapted to handle such a special case, appropriately. Actually, in the threading length ex-
ample, such a review discussion revealed that the first implementation attempt erroneously
considered wires that only bypass a spout.

To summarize the implementation phase, the use of story diagrams enabled our domain
experts to review our implementation and to point us to special cases. In our experience,
similar reviews by our domain experts would not have been possible for an implementation
in a textual programming language like Java or C++.

4 Lessons Learned

The main complexity of the OBA project was the sheer amount of domain details that
contribute to the construction of a car electric system. The OBA project was initiated by
our professor for car systems at the University of Kassel. Thus, the project employed

276

Spout::getThreadingCostsPerCarArea (neighbor: HierarchyElement): Double

__“allObaElems |

> parameters _
obasystem :0BASystem params Parameters

[|failure]

[guccess]

— =
(System.out.printin("ERROR: No OBA system parameters!");) J

0.0

channelNeighboi :=(Channel) neighbol ‘
1

LE

cgntains ¥ cdntains

1: Double threadingLength := Math.max (wire.getThreadingLength(this, this, channelNeighbor), threadingLeng!

[end]

[nodeNeighboi:= (Node) neighboi channelNeighboi :Channel

v
m
2
v
2

cdntains [at

- wires

> wires e Wi I s
b1 :Bundle wire :VVire b2 :Bundle

1: threadingLenght := Math.max (wire.getThreadingLength(this, nodeNeighbor, i), thr ingLeng!

_b1:Bundle > wires J wire :Wire ‘ < wires
| —

[end]

(this *> threadedConnectors
—

1: Double costs := costs + param.getThreadingTimePerConnector() * param.getCostsPerMountingTime:

[end]

®

costs + threadingLength * param.getCostsPerThreadingLength() * this.getReachabilitFactor()

Figure 6: Computation of the threading costs

277

two domain experts from the research group of car systems. For the design and imple-
mentation work, there was only two PhD student from the software engineering group
of University Kassel. At the beginning, the software engineering group thought that one
domain expert and three software developers would make a better team. However, after
roughly one and a half years of software development, we have to state that the emphasis
on domain experts was actually a key to success for the project. More precisely, since we
had only two software developers, we were forced to involve the domain experts into the
development process as much as possible. Using object diagrams we were able to do this
in the requirements analysis. After a short learning curve, the domain experts were actu-
ally driving the requirements process. For each new aspect, they developed object diagram
examples. These were discussed with the software experts in some iterations. Frequently,
the domain experts from University of Kassel had to interview the domain experts in the
contributing enterprizes in order to clarify details. Thus, the domain experts at University
Kassel served as some kind of mediator between the actual customers and the software
developers. Through object diagrams, this worked out very well. Similarly, the contribu-
tion of detailed implementation reviews by our domain experts was of unmeasurable value
for the project. Again, this was enabled by the object diagram like notation used in story
diagrams.

References

[BRJ99] Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language
User Guide; Addison Wesley, ISBN 0-201-571168-4, 1999

[DGZ05] I. Diethelm, L. Geiger, and A. Ziindorf: Applying Story Driven Modeling to the
Paderborn Shuttle System Case Study; book chapter in S. Leue and T.J. Systd (Eds.):
Scenarios, LNCS 3466, pp. 109133, 2005. Springer-Verlag 2005

[Fu02] Fujaba Homepage, Universitit Paderborn, http://www.fujaba.de/.

[GSZR et al. 05] R. Gemmerich, S. Semmelrodt, A. Ziindorf, C. Reckord, J. Leohold, J. Trippler, L.
Brabetz, D. Miiller, U. Schrey, H.-G. Weil: An integrated approch for the generation
and optimization of car electric systems. VDI (Hrsg.): 12th International Conference
and Exhibition Electronic Systems for Vehicles Baden-Baden. 2005, pp. 597-608

[JBR99] Ivar Jacobson, Grady Booch, James Rumbaugh: The Unified Software Development
Process; Addision Wesley, ISBN 0-201-57169-2, 1999

[KNNZ0O] H. Kohler, U. Nickel, J. Niere, A. Ziindorf: Integrating UML Diagrams for Pro-
duction Control Systems; in Proc. of ICSE 2000, Limerick, Ireland, acm press, pp.
241-251(2000)

[Ziin02] Albert Ziindorf: Rigorous Object Oriented Software Development with Fujaba.
http://www.se.eecs.uni—kassel.de/se/fileadmin/se/publications/Zuen02.pdf 2002

278

