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Abstract: One of the basic tasks of constraint-based testdata generation is the selec-
tion of paths to be executed and the construction and solution of the associated path
constraint. Here the problem of infeasible paths is not negligible. In this paper a new
constraint-based method applicable to general control-flow-graphs is proposed for se-
lecting feasible paths and at the same time constructing the associated path constraint.
The method also allows the flexible application of methods for predicting control flow,
thereby enhancing the identification of infeasible paths in advance.

1 Introduction

When automating software test the same tasks have to be carried out as for manual software
test, among them the selection of test data. While randomized techniques allow unbiased
coverage of the input domain, they in some cases fail in achieving required code coverage.
This problem arises mostly from the fact that some specific paths through the system-
under-test (SUT) are related to only a small subset of the input domain, and therefore are
difficult to hit randomly.

Gotlieb[GBR98] originally introduced a constraint-based concept for generation of test
data covering a given statement in the SUT, based on the semantics of control-flow con-
structs, such as while and if. The method can examine sequential constructs in parallel,
thereby predicting parts of the control flow and allowing for elimination of some infeasible
paths in advance. The concept is Turing-complete in theory, but in practice a considerable
amount of effort is necessary to extend it to languages used in industrial practice. Sy
and Deville[SD01] modified this method so that it applies to control-flow-graphs (CFGs),
however without path prediction.

An alternative method incorporating both applicability to CFGs and path prediction, is
introduced in this paper. The paper has three further parts. In Section 2 the method is
described, followed by a short report on a first implementation in Section 3. Finally,
conclusions are drawn in Section 4.
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1.1 Constraint Handling Rules

Constraint Handling Rules (CHR) is a declarative high-level language for specifying cus-
tomised constraint solvers[Frü98]. A CHR program consists of a set of guarded rules
which are used to transform a given constraint goal consisting of user-defined and builtin
constraints until it is solved.

The rule forms available in CHR are simplification, written as H ⇔ G|C, and propagation,
written as H ⇒ G|C, with the head H being a conjunction of user-defined constraints,
the guard G a conjunction of built-in constraints and the body C a conjunction of built-in
and user-defined constraints.

Simplification rules model replacement of user-defined constraints by logically equivalent
constraints. Propagation introduces new, logically redundant constraints, which may lead
to further simplification, e.g. in case of A ≤ B, B ≤ C ⇒ A ≤ C. The language CHR∨

extends the theory of CHR by search capabilities by introducing disjunction in rule bodies.

2 The Method

In terms of constraint programming semantics, the problem at hand is best described as
constructively proving the existence of a feasible path through the CFG from some node
a to some node b. A path is feasible if and only if there is some input to a which can lead
to execution of the path, otherwise it is infeasible. Consider, for example, the following
program operating on two input arrays a and b, both with length l:

equal:=true;
for i=1 to l do

if a(i)!=b(i) then equal:=false; break; end if
end for
if equal then print "Arrays are equal!"; end if

Given that a path is desired in which the print-statement is executed, any path via the
statement equal:=false is infeasible. As a, b and l are to be found according to
the desired path, there is a potentially infinite set of infeasible paths. Large subsets of
infeasible paths can be excluded by a proper search strategy.

The input to the algorithm shall be given in the form of a CFG, consisting of a set of nodes
and a set of edges. In the following a → b shall express the fact that there is an edge
from node a to node b. Further a →+ b expresses that there is a non-empty sequence of
edges from a to b. The nodes are labelled by their code text, and the edges are labelled by
their associated conditions. An example for an implementation of the greatest-common-
divisor-algorithm is shown in Figure 1.

The constraint i Bn o shall be fulfilled if and only if the body of node n transforms the
input i to the output o. Similarly, o Ca→b i is fulfilled if and only if the memory states o

and i are equal and fulfill the condition for edge a → b.
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Figure 1: Labelled CFG of a gcd-Implementation

To express the feasibility constraint, a constraint path (a, oa, ib, b) is introduced, which is
fulfilled if and only if there is a path from a to b on which oa, the output of a, is transformed
to ib, the input of b. By not using the input of a and the output of b directly, the calculations
are simplified: oa resp. ob are easily found from ia resp. ib by the bodies of a resp. b.

The constructive proof is based on a divide-and-conquer strategy, where the path is either
completed by a direct edge or split at some node n lying on some path from a to b. This
strategy is described by the rules Divide and Conquer in the following CHRv program.
Note that these two rules actually have to be read as a disjunction for the program to be
declaratively correct.

PredictVar @ path (a, oa, ib, b) ⇒ v ∈ constvar (a, b) | oa.v = ib.v .

PredictPath @ path (a, oa, ib, b) ⇔ n ∈ allpaths (a, b)
| path (a, oa, in, n) , path (n, on, ib, b) ,

in Bn on .

Conquer @ path (a, oa, ib, b) ⇔ a → b | oa Ca→b ib .

Divide @ path (a, oa, ib, b) ⇔ a →+ n, n →+ b

| path (a, oa, in, n) , path (n, on, ib, b) ,

in Bn on .

The rule PredictVar handles the case of variables which cannot be modified between on
any path from a to b. This is the case when the definition nodes for v are either not
reachable from a or cannot reach b, and is expressed by the constraint expression v ∈
constvar (a, b).

The rule PredictPath predicts control flow by splitting the query at nodes which are tra-
versed in any path from a to b, if any such node exists, using the builtin constraint n ∈
allpaths (a, b). A special case of such nodes are the so-called dominators, which can be
found efficiently from the CFG[LT79], and can be extended to the general case by using
an appropriately chosen subset of the CFG with a as entry and b as exit node.

In the example, PredictPath can predict that the if-statement containing the print-
statement must be executed. One of the predecessors of the if is infeasible due to the
conflicting assignment, leaving only those paths exiting the loop normally, all of which
are feasible.
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3 Implementation

A prototype was implemented in Java for an imperative subset of Java. The builtin solver
was implemented in JCHR[VWSD05] and specifically optimised for both solving and
early inconsistency detection. To avoid recurring search of path subsets, Divide was refined
to only select direct successors of a resp. predecessors of b.

Preliminary measurements on the generation rate of criteria-fulfilling test-inputs have been
executed. They show that the new algorithm is about 105 times faster than random test-data
generation for the hard-to-hit cases, while in simpler cases it is about 103 times slower.

4 Conclusions and Outlook

The algorithm presented is a generally applicable algorithm dealing directly with the CFG
and performing control-flow prediction. However, to avoid bias introduced from the user-
specified goals and to allow statistical evaluation of the results based on large test-input
sets, it is recommended to use the algorithm only as a second complementary step to
random test data generation.

Further work will focus on statistically controlling path length and finding mutually exclu-
sive choices of path split-points, as well as on systematic performance measurement and
extension of the supported language set in the prototype.
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