
cba

Steffen Becker et. al. (Hrsg.): Software Engineering und Software Management,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Inferring Visual Contracts from Java Programs

Abdullah Alshanqiti1, Reiko Heckel2, Timo Kehrer3

Abstract: In this work, we report about recent research results on “Inferring Visual Contracts
from Java Programs”, published in [1]. In this paper, we propose a dynamic approach to reverse
engineering visual contracts from Java programs based on tracing the execution of Java operations.
The resulting contracts give an accurate description of the observed object transformations, their
effects and preconditions in terms of object structures, parameter and attribute values, and their
generalised specification by universally quantified (multi) objects, patterns, and invariants. We explore
potential uses in our evaluation, including in program understanding and testing, and we report on
experimental results w.r.t. completeness (recall) and correctness (precision) of extracted contracts.

Keywords: Visual contracts, graph transformation, model extraction, dynamic analysis, reverse
engineering, specification mining

Summary
Visual Contracts provide a precise high-level specification of the object graph transformations
caused by invocations of operations on a component or service. They link static models (e.g.,
class diagrams describing object structures) and behavioural models (e.g., state machines
specifying the order operations are invoked in) by capturing the preconditions and effects of
operations on a system’s objects.

Visual contracts differ from contracts embedded with code, such as JML in Java or Contracts
in Eiffel, as well as from model-level contracts in OCL. They are visual, using UML notation
to model complex patterns and transformations intuitively and concisely; abstract, providing
a specification of object transformations at a high level of granularity to aid readability and
scalability; deep, capturing the transformation of internal object structures besides input /
output behaviour; and executable, based on graph transformation they support model-based
oracle and test case generation, run-time monitoring, service specification and matching,
state space analysis and verification. However, the detailed specification of internal data
states and transformations, referred to as deep behavioural modelling, is an error-prone
activity.

In this paper, we report on a line of research whose key idea is a dynamic approach to reverse
engineering visual contracts from sequential Java programs based on tracing the execution
of Java operations. The resulting contracts give accurate descriptions of the observed object
1 Department of Computer Sciences, University of Leicester. a.m.alshanqiti@gmail.com
2 Department of Computer Sciences, University of Leicester. reiko@mcs.le.ac.uk
3 Institut für Informatik, Humboldt-Universität zu Berlin. timo.kehrer@informatik.hu-berlin.de

cba doi:10.18420/se2019-11

S. Becker, I. Bogicevic, G. Herzwurm, S. Wagner (Hrsg.): SE/SWM 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 53

https://creativecommons.org/licenses/by-sa/4.0/
a.m.alshanqiti@gmail.com
reiko@mcs.le.ac.uk
timo.kehrer@informatik.hu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/se2019-11


2 A. Alshanqiti, R. Heckel, T. Kehrer

transformations, their effects and preconditions in terms of object structures, parameter
and attribute values, and allow generalisation by multi objects and patterns and general
invariants. The restriction to sequential Java is due to the need to associate each access to a
unique operation invocation.

Given a Java application, the process starts by selecting the classes and operations within the
scope of extraction and providing test cases for the relevant operations. We proceed by (A)
observing the behaviour under these tests using AspectJ instrumentation and synthesising
rule instances as pre/post snapshot graphs of individual invocations; (B) combining the
instances into higher-level rules by abstracting from non-essential context; (C) generalising
further by introducing multi objects and patterns; (D) deriving logical constraints and
assignments over attribute and parameter values; and (E) identifying universally shared
conditions and structures as invariants captured separately.

First solutions to variants of (A) and (B) were developed in our earlier work and have been
summarized, consolidated and extended in [2, 3] which also presents a prototype tool and
explores its potential uses in program understanding, testing and debugging. In this paper,
we raise further the level of abstraction by supporting, in addition to previous work, the
inference of multi patterns in (C), attribute assignments in (D) and universal context in (E),
and exploiting subtyping throughout the process. We support the use of visual contracts
as deep oracles by exporting contracts to the model transformation tool Henshin [4] and
controlling the (otherwise non-deterministic) model execution by comparing the effect of
each test invocation with the rules in the operation’s contracts. This technology is used in a
new evaluation of completeness (recall) and correctness (precision) of extracted contracts.
Finally, we report on improved tool support, and we discuss two further application scenarios
for our approach and tool in the field of model-based software engineering, namely the use
of visual contracts for model-based (or visual) debugging as well as the automated learning
of complex model editing operations by examples [5].

References
[1] Abdullah Alshanqiti, Reiko Heckel, and Timo Kehrer. “Inferring visual contracts from

Java programs”. In: Automated Software Engineering (2018), pp. 1–40.
[2] Abdullah Alshanqiti and Reiko Heckel. “Extracting Visual Contracts from Java

Programs”. In: ASE’15. IEEE. 2015, pp. 104–114.
[3] Abdullah Alshanqiti, Reiko Heckel, and Timo Kehrer. “Visual contract extractor: a

tool for reverse engineering visual contracts using dynamic analysis”. In: ASE’16.
ACM. 2016, pp. 816–821.

[4] Daniel Strüber et al. “Henshin: A usability-focused framework for emf model transfor-
mation development”. In: ICGT’17. Springer. 2017, pp. 196–208.

[5] Timo Kehrer, Abdullah Alshanqiti, and Reiko Heckel. “Automatic inference of
rule-based specifications of complex in-place model transformations”. In: ICMT’17.
Springer. 2017, pp. 92–107.

54 Abdullah Alshanqiti et al.


