
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 69

An Empirical Study on Program Comprehension with

Reactive Programming

Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini1

Abstract:

Starting from the first investigations with strictly functional languages, reactive programming has
been proposed as the programming paradigm for reactive applications. The advantages of designs
based on this style over designs based on the Observer design pattern have been studied for a long
time. Over the years, researchers have enriched reactive languages with more powerful abstractions,
embedded these abstractions into mainstream languages – including object-oriented languages – and
applied reactive programming to several domains, like GUIs, animations, Web applications, robotics,
and sensor networks. However, an important assumption behind this line of research – that, beside
other advantages, reactive programming makes a wide class of otherwise cumbersome applications
more comprehensible – has never been evaluated. In this paper, we present the design and the results
of the first empirical study that evaluates the effect of reactive programming on comprehensibility
compared to the traditional object-oriented style with the Observer design pattern. Results confirm
the conjecture that comprehensibility is enhanced by reactive programming. In the experiment, the
reactive programming group significantly outperforms the other group.

Keywords: Reactive Programming, Controlled Experiment, Program Comprehension

Reactive applications are a wide class of software that needs to respond to internal or ex-

ternal stimuli with a proper action. Examples of such applications include user-interactive

software, like GUIs and Web applications, graphical animations, data acquisition from

sensors, and distributed event-based systems.

Over the last few years, reactive programming (RP) has gained the attention of researchers

and practitioners for the potential to express otherwise complex reactive behavior in intu-

itive and declarative way. RP has been firstly introduced in Haskell. Influenced by these

approaches, implementations of RP have been proposed in several widespread languages,

including Java, Javascript and Scala. Recently, concepts inspired by RP have been applied

to production frameworks like Microsoft Reactive Extensions (Rx), which received great

attention after the Netflix success story. Finally, a lot of attention in the front-end devel-

opers community is revealed by the increasing number of libraries that implement RP

principles, among others React.js, Bacon.js, Knockout, Meteor, and Reactive.coffee.

The relevance of RP comes from the well-known complexity of reactive applications,

which are hard to develop and understand, because of the mixed combination of data and

control flow. The Observer design pattern is widely used for such applications. It has the

advantage of decoupling observers from observables. But, when it comes to program read-

ability, it does not make things easier, because of dynamic registration, side effects in call-

1 Technische Universität Darmstadt, Fachbereich Informatik, Fachgebiet Softwaretechnik, Hochschulstr. 10,

64289 Darmstadt, Deutschland, <lastname>@st.informatik.tu-darmstadt.de



70 Guido Salvaneschi et al.

backs, and inversion of control. In contrast, RP supports a design based on data flows and

time-changing values: the programmer states which relations should be enforced among

the variables that compose a reactive program and the RP runtime takes care of perform-

ing all the required updates. Dependencies are defined explicitly instead of being hidden

in the control flow. Combination can be guided by types as opposed to callbacks that re-

turn void. Contrarily to the Observer pattern, control is not inverted and less boilerplate

is required, since collecting dependencies and performing the updates is automatized by

the framework. Based on these arguments, it has been argued that RP greatly improves

over the traditional Observer pattern used in OO programming both from the software de-

sign perspective as well as from the perspective of facilitating the comprehensibility of the

software.

Yet, little empirical evidence has been provided in favor of the claimed advantages of RP

– especially enhancement of comprehensibility. Despite the intuition about its potential,

the reactive style is not obviously more comprehensible than the Observer design pattern.

For example, in the Flapjax paper [Me09] a Javascript application based on Observer is

compared against a functionally equivalent RP version. The authors argument that the RP

version is much easier to comprehend. However, the reader is warned that: “Obviously, the

Flapjax code may not appear any ‘easier’ to a first-time reader”. Doubting, at this point,

is legitimate: does RP really make reactive applications easier to read? Also, it is unclear

how much expertise is required to find a RP program “easier” – if ever.

To fill the gap, this paper provides the first empirical evaluation of the impact of RP on pro-

gram comprehension compared to the traditional technique based on the Observer design

pattern. The experiment, based on the REScala language [SHM14], involves 38 subjects

that where divided into an RP group and an OO group. They were shown a reactive appli-

cation and their understanding of the reactive functionalities was measured. To the best of

our knowledge, such a study has never been conducted before. Results show that (1) RP

increases correctness of program comprehension, (2) comprehending programs in the RP

style does not require more time than comprehending their OO equivalent, and (3) in con-

trast to OO where score results are correlated to programming skills, with RP (advanced)

programming skills are not needed to understand reactive applications. The last result sug-

gests that RP lowers the entrance barrier required to understand reactive applications.

References

[Me09] Meyerovich, Leo A.; Guha, Arjun; Baskin, Jacob; Cooper, Gregory H.; Greenberg,
Michael; Bromfield, Aleks; Krishnamurthi, Shriram: Flapjax: A Programming Language
for Ajax Applications. In: Proceedings of the 24th ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems Languages and Applications. OOPSLA ’09, ACM,
New York, NY, USA, pp. 1–20, 2009.

[SHM14] Salvaneschi, Guido; Hintz, Gerold; Mezini, Mira: REScala: Bridging Between Object-
oriented and Functional Style in Reactive Applications. In: Proceedings of the 13th Inter-
national Conference on Modularity. MODULARITY ’14, ACM, New York, NY, USA,
pp. 25–36, 2014.


