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Abstract: Given is the following “creature’s exploration problem”: n creatures are
moving around in an unknown environment in order to visit all cells in shortest time.
This problem is modelled as a cellular automaton (CA) because the CA model is mas-
sively parallel. Therefore, it is perfectly suited to be supported by hardware. We are
trying to simulate the CA as fast as possible by the use of the FPGA technology. We
need a very fast simulation because we want to observe and evaluate much different
behaviours of the creatures. Our main goal in the background is the optimisation of
the behaviours of the creatures. In this contribution we have investigated the question
how the creature’s exploration problem can be implemented in hardware with a min-
imum of hardware resources in order to maximise the number of cells which can be
computed in parallel (or to speed up the simulation). We have designed and evaluated
four different implementations that vary in the combination or separation of the logic
for the environment, for the creatures and for the collision detection.

1 Introduction

In order to speed up significantly the execution of a Cellular Automaton hardware support
is necessary. Previous investigations [HHO04] have shown that a speed up of hundreds to
thousands is possible by the use of dedicated FPGA logic compared to software simulation
on a personal computer. The resources needed to implement a Cellular Automaton in
hardware depend on the number of cells in the field, the kind of neighbourhood and the
complexity of the rule.

In this contribution, we are researching a special problem, in which an automaton cell con-
sists of two parts, a simple one and a complex one. The goal is to minimise the hardware
resources of a FPGA implementation in order to enlarge the size of the field that can be
computed fully in parallel.

The problem used as example is the following: A number of creatures with local intelli-
gence shall move around autonomously in an environment in order to visit all empty cells
in shortest time (with a minimum number of time steps, i.e. generations). The environ-
ment is given by a field of cells, called the environment cells. The environment cells are
either of type empty or of type obstacle. A creature can move to an empty cell if no other
creature tries to move to the same position (otherwise this is a conflict situation). The
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creature’s behaviour is given by a state machine, which reacts on an input signal m (move,
creature can move). If the creature cannot move, it will turn to the right or to the left. The
state machine is implemented by a state table.

The main goal of our so called “creature’s exploration problem” — which is not addressed
here in detail — is to find out the absolute optimal state machines for a given number of
states to explore an unknown environment. It is very time consuming to find out the opti-
mal behaviour if the number of states are larger than 5 or 6. We found an optimal behaviour
(fig. 1) for one creature for a given set of initial configurations (environment plus the initial
position and state of the creature) by the use of FPGA logic. Even with FPGA technology,
it is not easy to find the optimum because the set of solutions is growing exponentially with
the number of states. Like in software, the hardware implementation must try to simplify
the complexity of the search procedure, e.g. by avoiding to test equivalent state machines
and by not generating state machines with less states than required.

The problem of finding optimal solution of moving agents using a state machine has also
been addressed in [MSPPUO02], and the problem has practical applications like mowing
a lawn [Ko0z92] or exploring an unknown environment by robots. In contrast, this con-
tribution is focused on the minimisation of the hardware resources. We use the cellular
automata model, because all the cells can update their state independently in a synchro-
nous operation mode. Such models are called massively parallel and they are perfect
models to be efficiently mapped into hardware.

Results of our preceding investigations were presented in [HHHTO04, HH05, HHHO04,
HHO4]. The goal of these investigations was to find out the best behaviour for several
moving creatures by the aid of FPGA acceleration. The current work is focussed on min-
imising the hardware resources in order to be able to simulate as many automatons as
possible in parallel.

2 Formal description of the problem

The problem consists of two types of cells: (a) environment cells and (b) creatures. The
environment cells are simple, static in their state and have four fixed links to their neigh-
bours. The creatures are variable in their location and they have a variable state (direction,
control state). Moreover, a creature has only one dynamic link to the neighbour in front of
its moving direction. In the classical uniform CA model the union of these types forms a
complex cell, which can be switched dynamically to the actual needed type. Environment
cells carry either the value free or obstacle. Free cells can be visited whereas obstacles can-
not. The border of an environment must be defined by cells of type obstacle. A rectangular
environment can be described by

e the size n; and n, with n,,n, € NN,

e the positions of the obstacles including the border positions H C {c | ¢ = (z,y) €
NoxINg A 0<z<ny, AN0<y<n,}=P,

e theborder {c |c= (z,y) € P A (zx €{0,n, —1}Vye{0,n, —1})}CH
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where P is the set of all possible positions. The free cells are given by IF := P\H.
Each creature (with index i € I, |I|] = number of creatures) is defined by its actual posi-
tion, direction and control state at the time step t € INg:

e position: p; ; € IF,

e direction: ;4 € {0,1,2,3} =: D, where 0 represents north, 1 represents east etc.,

e controlstate: s;; € $={v|veNy A 0<v < S} withs;g:=0

The number of possible control states is S which is a measure for the “brain power” of the
creature. The creature looks one cell ahead in its actual moving direction r; ; and is able
to read information from that position. We call the corresponding cell front cell and the
position front position, which is defined as p; ; € T by

(Tits yix +1) if 74 =0 (north)
L) (@ip 1, yie) if rip =1 (east) ) N
PRt= 0 (@i, yix — 1) if 714 = 2 (south) with (23,1, yi1) = Pit.
(i — 1, yix) if 7y = 3 (west)

Other front cell’s features are tagged in the same way, e. g. h is the obstacle information
of the front cell.

A creature must move to its front position if the front cell is reachable. The front cell
is reachable (1) if the environment cell is free (not an obstacle) and (2) not occupied by
another creature and (3) there is no conflict: If more than one creature wants to move to
the same front cell, a conflict exists that must be resolved. There are several solutions to
resolve the conflicts, such as

1. Only one creature is allowed to move, selected by an arbitration process that needs
to be defined.

2. No creature will move, because the creatures can look one position farther (increased
neighbourhood distance = 2)

3. The front cell overtakes the additional task to observe conflicts and in such a case, it
sends a stop signal to the creatures. Thereby the creatures in conflict are prevented
from moving.

Hochberger [Hoc98] has solved the problem of conflict resolution in another way using a
two phase algorithm. In the first phase, one of the creatures is selected by the front cell
and the front cell changes some hidden control bits accordingly. In the second phase, each
creature knows how to behave by interpreting the hidden control bits.

For the cases 2 and 3 the moving condition m; ; describes whether the creature ¢ can move
or not:

S true Whenpg,t €F A Vjer ((z =j)V (p;’t #pjt A p;,t + p;’t))
wt false otherwise
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and the next position p; ;1

| Pip ifmyy = true
Pit+1 = piy  if m;, = false

Depending on the moving condition the next position is

| Pip ifmyy = true
Pit+1 = piy  if m;, = false

Simultaneously with a possible move, the creature may change its state s; ; and its direc-
tion r; ; according to the next state function f and the output function g (turn right or left)
which both are stored in the “brain” of the creature, i. e. in a memory table.

Sitr1 — f(sie, M)

Tit41 < (rie + g(Sie,mi ) mod 4

A state machine is formed by connecting the memory with a state register s and a direction
register r as shown in figure l1a. The output actions of the creature are

R =turn right if the creature can’t move (moving condition = false), coded by “0”
L =turn left if the creature can’t move (moving condition = false), coded by “1”
Rm =move and turn right, if the creature can move, coded by “0”
Lm =move and turn right, if the creature can move, coded by “1”

Note that the state machine belongs to the creature and also has to move if the creature
moves. A move of a creature in the CA model can be accomplished by copying the crea-
ture’s state to the front cell and deleting the creature on its current position. The best
6-state behaviour for one creature exploring 24 different environments was determined by
enumeration using FPGA technology (fig. 1b) in preceding investigations.
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Figure 1: A state machine (a) models the behaviour of a creature. The best 6-state algorithm (b).
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3 Implementation Variants

The current goal is to reduce the amount of hardware resources needed for an FPGA
implementation in order to increase the amount of cells, which can be computed in parallel.

The following variants have been considered (1) Uniform: classical uniform cellular au-
tomata, (2) Separated: separate creatures (complex rule) attached to the environment,
(3) Augmented A: The environment is augmented with parts of the creature’s state and
additional logic, (4) Augmented B: The environment is augmented with an index and
additional logic.

In the uniform variant, the state of a cell is the union of the type environment and the type
creature. In the separated variant, the creatures are stored as individuals which can read
the environment. In the augmented variants the environment is augmented with additional
information such as creature’s index (identification number), creature’s direction or index
(own position) of the environment cell.

In the Uniform Variant, all cells are of the same type which is the union of all types
which have to be modelled. Each cell has the same capabilities (attributes and rules)
which are not necessarily used in every generation. It’s also possible to say that the cells
are polymorphic. In our case, the capabilities of the environment are joined with the
capabilities of the creature.

9] =

hesr hesr hesr

hesr hesr hesr

Figure 2: Uniform Implementation

The capabilities that must be combined in such an uniform cell (fig. 2) is

e h: environment attribute — obstacle (true/false)
e c: type selection — creature is on the cell (true/false)
e s: control state of the creature

r: direction of the creature

e ST: state table defining the creature’s behaviour

e CD: logic which generates a move signal m
The attributes c, s and r have to be variables. The environment attribute h shall be imple-

mented as a variable (register) in order to be able to change the environment during the
simulation.
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A state table ST defines the behaviour of the creatures. In this investigation, we assume
that the state table is common to all creatures. It shall be variable, meaning that it should
consist of registers which contents may be changed dynamically (e. g. in an optimisation
procedure). Optionally additional information for statistics (e.g. if the cell was already
visited) may be stored in each cell. The next state (s) and next direction (r') of the uniform
cell are given by the following formulas

m® = AV =w+2mod4) forweD
m = Elwl E]mel A _‘ElwzelD,wQ;éwl mt?
Snorth if cnorth A ,,,north = south

Seast if Ceast A ,reast = west

s = Ssouth if Cs‘.outh A ,rsouth = north
Swest lf cwest A ,rwest = east
f(s, false) ifcAh
s = f(s,true) if mc A
any otherwise
r+ g(s,false) mod 4 ifcAh
o= 7+ g($,true) mod 4 if ~c A1

any otherwise

with the same definition for 7 as for s.

The CD logic for collision detection generates the signal m (move) which decides whether
the creature can move or not. This signal move becomes false if (1) the front cell is an
obstacle, (2) a creature is placed on the front cell, (3) two or more creatures want to move
to the same front cell if the front cell is free.

Each creature can check the first and second condition by testing the front cell. The testing
of the third condition is more complicated: First, the front cell checks if there are more
than one creature in the neighbourhood, which want to move to it (conflict). Second, the
conflict situation is send back to all the creatures, which have caused the conflict.

Separated Variant: Another way is to separate the environment and the creature, such that
the changing state of the creatures is separated and therefore minimised. The advantage
is that complex rules for the creatures need not to be replicated in the cells, which would
results in a poor utilisation of the hardware.

Each creature has to be able to read the status of the environment cell (obstacle or not) from
the current front position. This can be achieved in hardware by the use of a multiplexer
(see fig. 3). A technical problem arises when the number of cells exceeds a certain limit,
e.g. 256 = 16 x 16 with our current FPGA technology. When exceeding the limit, the
hardware needs too many resources (wires and cascaded multiplexers) or the time delay
will be too large. Therefore, this approach is limited to a small field of 16 x 16 if the limit
is 256.
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Another problem arises with the detection of several creatures that are in conflict. There
must be a central logic that detects and resolves the possible conflicts. This logic becomes
very complex when the number of creatures is increasing. For a creature ¢ this conflict
exists if p; = p; V p; = P gets true for any j with ¢ # j € L. The generation of this logic
is described in the hardware description language AHDL (Altera HDL) by the following
statements.

DEFAULTS collisionfree[] = VCC; END DEFAULTS;
FOR 1 IN 1 TO objects - 1 GENERATE
FOR j IN 1 + 1 TO objects GENERATE

IF object[j].pos[] == front[i].pos[] THEN
collisionfree[i] = GND;

END IF;

IF object[i] .pos[] == front[j].pos[] THEN
collisionfree[j] = GND;

END IF;

IF front[i].pos[] == front[j].pos[] THEN
collisionfree[i] = GND; collisionfree[j] = GND;

END IF;

END GENERATE;
END GENERATE;

It can be seen from these statements, that complexity of the logic increases quadratically
with the number of creatures.

|
B == Y [ B
h h h p1 p2
‘ ‘ ‘ —hg, —hg,
h h h B ‘ Collision Detection ‘
p1 ‘ mi ¢m2 p2
. o o
D
psr psr

Figure 3: Each creature is connected the environment, the collision detection logic is placed between
the creatures.

In the implementation of Augmented A Variant, the cells of the field consist of so called
augmented cells which are the union of the environment A, the direction r of a creature and
the index c¢; of the creature which is active on that cell. The state of the augmented cells
is (h, ci,r). The creature index ¢; is stored decoded, which means that for each creature
an active bit is reserved. If such an active bit is set, automatically a connection is routed
to the appropriate creature via a bus system. Each creature drives an output bus d; (one bit
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wide: turn left/right as output from the state machine) and listens to an input bus (one bit
wide: move yes/no) as can be seen in fig. 4.

Each active augmented cell which is occupied by a creature ¢ sends a request to its front
cell defined by r;. The front cell computes the move signal m; by checking all the con-
ditions that were mentioned above for the uniform variant. The move condition is then
sent to the appropriate creature. After inspecting the state table, the creature returns d;
(turn left/right). If the creature cannot move, the augmented cell will change its direction
accordingly. In the case, the creature can move to the front cell and copies the active bit
from the augmented cell and the new direction from the bus.

m;, d; he;r he;r he;r
[ [ |
m1 dy may |do
o o o _
s s e Ihcir Ihcz-r Ihcir

Figure 4: Each augmented cell automatically contacts the appropriate creature via a bus system,
computes the move condition and changes its direction according to the answer of the creature.

In Augmented B Variant, the implementation of the environment cells are augmented
only with an index (own position of the cell). The index is used to connect automatically
the appropriate creature to the environment cell. A creature sends its current position p;
via a bus to all cells. If a dedicated cell detects its own position on that bus, it connects
to it. In conjunction the direction r; of that creature is also connected to that cell, and a
backward connection m; is established. This is illustrated in figure 5. The environment
cell is augmented with special logic in order to compute the move signal, which is send
back via a bus to the appropriate creature.

B L 2k
h h h
Di; Ti, M [ [] ] ‘
pl:"'l? ¢m1 p2,7‘2? ¢m2 3 | 1 | 3
e e h h h
psr psr | I |

Figure 5: Augmented, Variant B — mixture of Variant A and Multiplexer

An interesting feature is the conflict detection. An active cell (environment cell connected
to a creature) asks the front cell (the neighbour in the current direction r;), if there might
be a conflict. The front cell checks if its neighbours may cause conflicts and returns the
required information. The active cell then sends the required move signal back to the
creature. By this technique, the creatures can indirectly perceive that conflicting creatures
are two cells ahead or right/left in front. Using the logic of a front cell during the com-

330



putation of the next generation (asynchronously) the neighbourhood of a creature can be
indirectly increased. The hardware implementation causes no problem and asynchronous
oscillations does not occur, because the logic of the front cell uses only local inputs.

4 FPGA Implementation

The problem was described in the hardware description language AHDL and synthesised
and configured for the Altera FPGA Cyclone EP1C20F324C7 using the Quartus II tools.
AHDL was used instead of Verilog or VHDL, because it offers much better features to
generate parameterised logic in an array. The most relevant parameters are the implemen-
tation variant, the size of the field, the number of control states of the state machine and the
number of creatures. The resources are counted in the number of needed logic elements
for that FPGA. The results of the synthesise are shown in figure 6. The maximum clock
rate depends on the variant, the field size and the number of creatures. The highest reached
clock rate was 81 MHz (8 x 8, variant 1, 2 creatures); the lowest was 40 MHz (field size
8 x 8, variant 3, 8 creatures). Note that the clock rate can be influenced by changing AHDL
description or by changing the synthesis parameters of the Quartus tool, e. g. setting the
clock rate influences the number of fitter passes. In order to compare the performance of
the different solutions, also the clock rate has to be taken into account.

16000 8000 .
(does not fit 8 x 8 cells Uniform
on the FPGA)
14000 2 creatures - 7000
Augmented A
/~ Uniform
12000 6000
Augmented B

2 2
S 10000 S 5000
£ £
K K
w w
5 8000 Augmented A r 4000 Separated
j=} j=2}
=] =]
g} g}

6000 3000

Augmented B
4000 / 2000
2000 //Sep:rated 00
8x8 12x12 16x16 field size 1 2 3 4 5 6 7 8  creatures

Figure 6: Resources needed for a FPGA implementation

For our implementation we didn’t use internal or external memory, although this would
be a possible approach. In order to process large CA fields which reside in memory the
techniques of parallel pipelined streaming have already been used in previous implemen-
tations [WH95] and [HUVWO0O0]. By these techniques p new cell states can be computed
in each memory cycle by the use of p pipelines. In the presented approach we can compute
64 cell states in parallel in one clock cycle without using memories. The shortcoming of
our approach is a limited number of cells in the field. In order to optimise the creatures
behaviours, the limited field size of a 8 x 8 was sufficient.
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5 Conclusion

The creature’s exploration problem was modelled as a cellular automaton (CA) because
CAs are massively parallel and can be perfectly supported by hardware. Time-consuming
simulations are necessary when the creatures’ behaviour has to be optimised. In order to
reduce the simulation time, as many cells as possible should be computed in parallel in the
hardware (FPGA chip). Therefore, the hardware resources have to be minimised.

Four different implementation variants have been designed synthesised for a field of dif-
ferent size and up to 8 creatures. Comparing the different variants, the “Separated” variant
was best in counts of logic elements, followed by the “Augmented B” variant. For fields
of bigger size and more creatures, the “Augmented B” variant may outperform the other
solutions because of fewer interconnections.
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