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Abstract—Manycore processor systems are likely to be the
future system structure, and even within range for usage in
desktop or mobile systems. Up to now, manycore processors
like Intel SCC, Tilera TILE or KALRAY’s MPPA are primarily
intended to use for high performance applications, utilizing
several cores with direct inter-core communication to avoid access
to external memory. The spreading of these manycore systems
brings up new application scenarios with multiple concurrently
running high-dynamic applications, changing I/0O characteristics
and a not predictable memory usage. Highly dynamic workloads
with varying memory usage have to be utilized.

In this paper the memory management of various manycore
platforms is addressed. In more detail the Tilera TILE-Gx
platform will be explained, presenting results of own evaluations
accessing its memory system. Based on that, the concept of
the autonomous self-optimizing memory architecture Self-aware
Memory (SaM) exemplarily was implemented as a software
layer on the Tilera platform. The results show that adaptive
memory management techniques can be realized without much
management overhead, in return achieving higher flexibility and
and simple usage of memory in future system architectures.

I. INTRODUCTION

The continuously increasing integration level of CMOS
devices and the limited increase of the CPU frequencies is
leading to manycore systems. Up to now, these systems are
mainly designed for executing high performance applications
on several cores by using direct inter-core communication over
shared on-chip caches or small per-core memories. So far, the
connection to the system memory commonly is realized over
only a small number of controllers to just one or a few external
memory components. This lack in the memory system leads to
inefficient memory assignment and causes congestion [1] get-
ting worse scaling the core count or integrating heterogeneous
cores. Furthermore, with the increasing number of cores, the
so called memory wall [2], the difference between the uprising
CPU speed and the slow external memory, also gets more and
more important.

In addition, concurrently running multiple applications
calls for a dynamic memory management. In most cases, an
initial optimal dynamic assignment of memory regions to tasks
is often not feasible, caused by data locality issues, placement
restrictions and memory regions, which are already occupied
by other tasks. To be able to scale the memory with the
rising core count, we propose Self-aware Memory (SaM) [3]
in order to approach the optimization problem of managing
and assigning memory to tasks in high-dynamic application
scenarios.
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In this paper the memory management of different many-
core platforms is addressed. In more detail the architecture and
usage of the Tilera TILE-Gx platform will be explained. We
present results of own measurements accessing the memory
system. The first two address the access to private and shared
memory. A third evaluation shows the results of message
passing based direct communications between the cores. The
experiences made within these evaluations confirm the re-
strictions of the memory access and management of current
manycore architectures as well as their thereby restricted
application scenario.

Based on these evaluations, the concept of the au-
tonomous self-optimizing memory architecture Self-aware
Memory (SaM) exemplary was adapted to the Tilera platform.
Since modifications in the system structure and memory man-
agement in hardware are not possible for existing systems, we
implemented SaM as a software abstraction layer running on
top of the existing memory management and system structure.
Aside from the fact that an additional software layer cannot
be faster than the original HW-based memory accesses and
management, the results show that adaptive memory manage-
ment techniques can be realized without much management
overhead, in return achieving higher flexibility and simple
usage of memory in future system architectures.

The paper is organized as follows. In Section II the
architecture of the Tilera TILE-Gx platform and the results of
our measurements are presented. Additionally we present other
current manycore systems in Section III. A short introduction
to Self-aware Memory is given in Section IV. Section V and
VI cover the adaptation and implementation of SaM to the
Tilera TILE-Gx platform and first results of evaluations with
the self-optimization mechanism on this machine. The paper
concludes in Section 6 and gives an outlook regarding ongoing
research.

II. TILERA TILE

For this paper the measurements of the existing memory
system as well as the exemplary adaptation of SaM was done
on a system using a TILE-Gx 8036 processor. Because of that
and in contrast to other manycore systems, which are presented
in Section III, the Tilera TILE platform is explained in more
detail in this section.

The Tilera TILE-Gx processors are a group of commer-
cially available manycore processors and a follow-up of the
MIT RAW project [4]. As well as the Intel SCC [5] the Tilera



systems use a tiled architecture and are designed to execute
parallel applications like streaming applications, which mainly
communicate directly between the cores, therefore using a
shared cache [6]. Access to the external memory, depending
on the core count of the processor, is achieved over one to four
memory controllers. In 2008 the first Tilera processor TILE64
was published. Since then the manycore architecture was
extended with the TILEPro and the TILE-Gx which is used
in the following evaluations. There are TILE-Gx processors
available with 9, 16, 36 and 72 cores up to now.

Eponymous for this architecture are the processor cores,
called tiles. By using several small VLIW processors to build
up identical cores, arranging them in a regular grid and
connecting them over a network-on-chip (NoC), a high amount
of these similar tiles could easy be combined to one processor.

The NoC connects all tiles of the system among themselves
as well as to the external memory modules and further 1/O.
In order to achieve a high parallelization, the NoC consists
out of 5 independent nets. Each tile is directly connected to
its 4 surrounding adjacent tiles over a dedicated switch, which
handles the redirection of the data packages over one of the
5 networks. Each of these networks has a special purpose
- 3 of them are reserved for memory accesses, the cache
management and coherency and their usage is transparent
for the programmer. The 2 other ones are used for data
transfer to the external I/O and direct inter-core connections.
In the following evaluation and implementation the User Data
Network (UDN) was used for the inter-core communication,
because it is freely usable by the programmer.

A. Memory Architecture and Management

The memory of the TILE-Gx architecture is made both for
shared memory and message passing, providing the program-
mer more flexibility and covering a bigger field of applications.
In the standard operation mode a Linux operating system is
used to provide an abstract system access with shared memory
programming. In addition it is possible to pin tasks to distinct
cores, directly exchanging message over the UDN. The Bare
Metal Environment (BME) mode is available as a third mode,
in which no normal operating system (and its libraries) runs
any longer and the user has exclusive control over the whole
system.

The compute cores are arranged in a grid and connected
with a regular mesh network. Each tile has its own L1 and
L2 cache. The memory controller are connected at the border
of the grid to some individual tiles, depending on the specific
processor version. For this paper we had access to a version
with 36 cores and 2 memory controllers, each connected to
the network on 2 positions. As can be seen in Figure 1 the
left one is connected to the tiles with the numbers 6 and 24,
the right one to the ones with the number 11 and 29. Thus,
the next memory controller is accessible over a maximum of
3 tiles, a distinct controller with 6 hops.

A memory page is always administrated by one single tile,
the so called home tile. Memory accesses of other cores to
this page are first routed to the responsible home tile and
answered using its L2 cache. In case of a miss the data is first
updated in the L2 cache of the home tile and then sent to the
requesting core. Accessing an already cached value therefore
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can be answered without an external memory access. But in
case of cache miss the data is not directly transfered to the
requesting core. This behavior is described as L3 cache by
Tilera and is realized in a transparent way in hardware and the
hypervisor.

Cache coherency for the pages is also guaranteed by the
home tile, which keeps a list of all tiles which may have local
copies in their caches. In case of a modification, invalidation
messages are sent to all listed tiles.

B. Measure Methodology

The measured time periods are very short, about some
hundreds CPU cycles. With that a high-level timing method is
not usable, due to their limited resolution, unclear processing
times or a context switch to the kernel. A method with constant
run-time, high resolution and as low as possible influence on
the run-time behavior was needed for our evaluations.

We achieved this with two preprocessor macros. In the first,
which is called at the start of the measurement, two variables
are declared, which are only used in the second macro. Then in
a single machine code instruction, which is always processed
in a single CPU cycle, a value of the special purpose register
containing the program counter is saved in the normal register
(r30). We block the register r30 using a compiler flag. This is
done to abstain it from the clobber list, which holds all multiply
used registers, due to efficiency reasons, so that the register
value can be changed without saving/restoring it before. This
is usable for our measurement, but maybe not within real
systems.

After the following program code which should be mea-
sured, the second macro is called. In this, the program counter
is saved into another register again with a single machine code
instruction. After moving the register values to the previously
declared variables the duration can be calculated. The second
register doesn’t have to be blocked, because the measured
program code is finished at that time and an influence on the
run-time is not given any more. With these two macros the
measurement method has a constant run-time and no context
switches or jumps are needed.

In the normal mode of the Tilera system, the operating
system often disturbs the measurements e.g. by the scheduling.
In addition the network is used by other tasks. To ensure
that the measurement is not disturbed we used the so called
dataplane modes. With it, running applications on a core are
no longer interrupted, and only 1 core has to run Linux for the
management and ssh connections to the systems. We used core
0 for that, because it is neighbor to a tile, which is connected
to the memory, and can access the left and in this evaluation
unused external memory without disturbing the rest of the
network.

In the following the results of evaluations using 3 different
memory usage scenarios are presented.

C. Private Memory

The first scenario covers access times to private memory.
We reserved a segment as private memory in the right memory
module and then access it from all cores. The segment is set
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Fig. 1. Minimal access times in cycles for read accesses to private memory

as uncachable, so the data is not buffered on core side and
repeated measurements always get the same results.

After the memory assignment we accessed from each core
1,000,000 times a defined memory value. Every time the
duration is measured and out of all the minimum, maximum
and the mean calculated. For core 0 no results are available
because this core is used to run the operating system. Of
special interest are the minimal access times as can be seen
in Figure 1, because they represent the access times without
any disturbance e.g. by other messages in the network. The
repeated measurement allows us to increase the probability that
for each core the minimal time was measured at least once.
This minimal access time is determined by the hardware and
cannot be undercut by a software based solution. The influence
of the distance between the core and the memory can be seen in
the printed values in Figure 1. Routing in horizontal direction
always needs 2, in vertical direction 5 cycles. This forms a
contrast to the official documentation, in which the transfer
cost should be similar independent of the direction the data is
routed to.
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Fig. 2. Maximal access times in cycles for read accesses to private memory

The results also show that the distance to the data source
is not negligible — for the core with the highest distance,
13,5 % of the access time are due to the network transfer.
This percentage will increase with an increasing core count. In
addition these times are only minimal access times, collected
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while a single core had exclusive access to the network and
memory without any disturbance. Figure 2 presents the values
for the maximal access times of the same evaluation. These
values are collected also with only the test application running
on only one core, maybe disturbed by some message of core
0. With applications running concurrently on all cores, the
maximal values will be still higher. In real systems with a
high load, the minimal values are not reachable and even the
average and maximal values will be much higher.

D. Shared Memory

The second scenario covers access times to shared memory.
This is the recommended mode of Tilera for the most jobs [7].
On these grounds the NoC is designed for high performance,
providing more bandwidth to the automatically managed mem-
ory network than to the network which is freely usable by the
programmer.

MEM

Fig. 3. Minimal access times in cycles for read accesses to shared memory

For the evaluation we used common memory, a shared
memory variant of Tilera. First we assigned shared memory
from a predefined tile (tile #30). Then the process forks
processes to all other tiles — except core 0 with the operating
system. In each measurement round the home tile changes the
value in the shared memory, which invalidates the caches of
the other tiles. Then all other tiles access the memory and
measure their access time. To not disturb each other the tiles
access the memory in a sequential order. With that, we always
get comparable results, because the values cannot be taken out
of the local caches but have to be received over the network.
The minimal access times are shown in Figure 3, obtained
from repeated measurements, in which also the maximum and
mean was calculated.

As can be seen the access times to shared memory are
shorter than at private memory. A reason for that is that
the usage of caches cannot be completely prevented, some
buffers like the TLB for the address translation are still used.
According to the documentation, the data values are always
loaded from the cache of the home tile of the memory segment
(here tile 30). The measured values suggest, that the home tile
is involved at all. In fact the tiles directly access the used
left memory controller. This behavior could not be declared,
accessing the value over the cache of the home tile would be
much faster.



In Figure 3 tile #12 seems to be an aberration. This access
time is only possible in case of a cache usage. Also the
results have been the same for minimal and maximal values. A
repeated evaluation showed, that sometimes some other tiles
or not a single one could also have these values in a non
reproducibly way.

E. Message Passing

The third scenario covers times for message passing be-
tween tiles. Such messages are sent over the previously
described User Data Network (UDN). Neither the operating
system nor any standard program make use of this network.
Therefore, it is freely usable by the programmer and one has
absolute control over every single message. This measurement
is of special interest because the SaM implementation pre-
sented in Section V primarily relies on the UDN.

For these measurements, tile #1 acts as a server. Whenever
a message is received, it is returned to the sender immediately.
We measured the time between sending a message to tile
#1 and receiving the answer on all other tiles. Again, the
measurement is repeated multiple times (1,000,000) to increase
the probability of finding the hardware inherent minimum.
Figure 4 presents the results.
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Fig. 4. Minimal round-trip-time in cycles, echo from tile 1

In general, the measured times do increase as expected with
the distance to tile #1. However, there are some minor fluc-
tuations. We expect these to be caused by the implementation
of the API used to access the network. An example is active
waiting for incoming messages in a loop.

FE. Measurement Validation

As declared in the former sections, the measured memory
access times strongly depend on the position of the tile in
the grid and its assigned and accessed memory modules.
As expected for currently available manycore systems, the
access times are at a minimum 13,5 % higher for the farthest
compared to the nearest tile. Moreover, the value for this
slowdown can only achieved, when the whole system and
network can be exclusively used by a single core. In real
application scenarios, this actually will never be the case. With
rising core count the slowdown instead will rise to a much
higher level due to mutual interference using the same network
or in accessing the same memory component.
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III. RELATED WORK

In addition to the already presented Tilera TILE architec-
ture, we outline the architecture of some current manycore
systems and their memory management in this section. As
depicted in the following current manycore systems are not
used as a scaled general purpose processor for flexible use with
dynamic application scenarios. Most often they are designed
to fulfill special needs and are used as co-processors or within
the optimized and specialized high performance computing
area using distinct parallel programming models. So, too,
the memory management and accessibility often is provided
in a restricted way. In the following we point out these
specialization and accompanying restrictions.

A. RAMP Blue

RAMP Blue [8] is a FPGA-based multicore processor,
developed at the University of California. Based on 84 Xilinx
FPGAs, 1008 simulated compute cores could be achieved,
running 12 MicroBlaze CPUs on each FPGA. Each core has
1 GB of exclusive memory on external memory modules, for
usage with message passing. As shown in Figure 5 the system

= MEM
F———————————

MEM | =
Control
FPGA
= | MEM
MEM | =
Fig. 5. Structure of a RAMP Blue board (simplified)

contains a multistage network. A control FPGA and 4 FPGAs
are aggregated on a board, each connected over a 5Gb/s
ring bus. Multiple boards are connected via 10 Gb/s Ethernet
in a 3D mesh network, the system uses processors without
MMU running an adapted Linux (uClinux). Evaluations using
benchmarks pointed out, that the overall system performance
is limited by the high communication cost due to a software-
based manual send and receive mechanism.

B. KALRAY MPPA

KALRAY’s MPPA (Multi-Purpose Processor Array) many-
core [9] is designed mainly as a dataflow architecture. The
VLIW cores of the processor are grouped to clusters, con-
taining a system core and integrated memory. The MPPA can
be programmed by a c-based parallel dataflow model or with
posix C/C++, which enables threading within a single cluster.
The external main memory is connected over only two memory
controllers, which also leads to differing memory access times.

C. Intel SCC

The Intel SCC (Single-chip Cloud Computer) [5] is the
result of a project to evaluate different challenges of future



manycore architectures, like a tiled architecture, network-on-
chips, communication structures and programming models. Its
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Fig. 6. Intel SCC Structure

main purpose lies in executing message passing applications,
which communicate over the Message Passing Buffer (MPB),
a distinct per-core cache-like memory. Access to the external
connected memory is realized over four memory controllers.
An initial memory assignment has to be manually done in
advance of starting the system and executing applications.
Depending on the locality of the used compute core, the access
times to the external memory modules strongly differ. As
shown in Figure 6, it consist out of 48 small Pentium 54C
based cores, grouped on tiles, consisting of 2 cores, caches, a
Message Passing buffer (MPB) and a router. The four external
memory modules are each pre-assigned to 6 tiles and can be
accessed over a connection. In addition to its main message
passing purpose, an operation mode with shared memory is
designated, but with no hardware cache coherency.

D. Intel Larrabee

Intel developed Larrabee as an architecture for high perfor-
mance graphics cards. As Figure 7 shows, x86 processor cores
were interconnected with a ring bus, recreating a pipeline struc-
ture commonly found in graphics cards. Each core has access
to a part of a shared L2 cache that implements cache-coherency
in hardware [10]. Larrabee was designed as a consumer-grade
graphics card for computer games. Prototypes showed a near-
linear speedup in frame rate with the number of cores. By using

CPU  CPU CPU | CPU

MEM

Ringbus

CPU  CPU CPU | CPU

Fig. 7. Structure of Intel Larrabee

general-purpose CPUs instead of specialized vector-processing
cores, Intel attempted to provide more flexibility to developers,
ultimately resulting in higher frame rates. Because competitors
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performance could not be achieved [11], Intel stopped the
graphics card project and released a Larrabee-based coproces-
sor card for high performance computing, named Xeon Phi.

IV. SELF-AWARE MEMORY

Self-aware Memory (SaM) [3] mainly represents a memory
architecture, which enables self-management of system com-
ponents to build up a decentralized system architecture without
a central management instance as a single point of failure.
The main goal of SaM is to develop an autonomous memory
subsystem for increasing the overall system reliability, flexi-
bility and adaptability. This is crucial in upcoming computer
architectures.

With SaM the individual memory modules act as in-
dependent units and are no longer directly assigned to a
specific processor. SaM acts as an distributed and extended
memory management unit and controls memory allocation,
access rights, and ownership in a distributed manner. Figure

SaM-
Memory Memory
cPU SaM-
SaM-
NETWORK Memory Memory
cPU - el
SaM-
Memory Memory

Fig. 8. Distributed SaM structure with assigned management components

8 depicts the structure of SaM. Due to this concept, SaM
is constructed as a client-server architecture in which the
memory modules offer their services (i.e., store and retrieve
data) to client processors. The memory is divided into several
autonomous self-managing memory modules, each consisting
of a management component called SaM-Memory and a part of
the physical memory. The SaM-Memory is responsible for han-
dling access to its attached physical memory, administration of
free and reserved space, as well as mapping to the physical
address space. As a counterpart of SaM-Memory, the so called
SaM-Requester augments the processor with self-management
functionality. The SaM-Requester is responsible for handling
memory requests, performing access rights checks, and map-
ping of virtual address space of the connected processor into
the distributed SaM memory space. To enable and accelerate
the management, tables and small caching structures are used.

The SaM components transparently realize virtual to phys-
ical addresses translation. Access to shared memory is enabled
by integrating efficient synchronization techniques [12]. Mem-
ory coherency accessing shared memory regions is handled by
the memory system guaranteeing the TM principles atomicity,
consistency and isolation in a combined HW and SW approach.
This provides the programmer an easy way for accessing
shared memory and an abstract view of the memory resource.

In addition to that, research was done to establish a POSIX-
like thread model allowing thread creation and management
as well as allocation of compute nodes without a central
management instance [13].



To increase the adaptivity of SaM to high-dynamic appli-
cation scenarios, a decentralized self-optimization mechanism
was integrated [14], [15]. The concurrently ongoing self-
optimization is achieved with a five-stage cycle, containing
the stages decentralized monitoring and data preprocessing,
data analysis, optimization algorithms, decentralized consensus
building, and the actual optimization. With this a decentralzed
optimization approach for the memory assignment can be
employed with only a small overhead of additional messages
over the on-chip network.

V. IMPLEMENTATION

Up to now there are 3 different evaluation prototypes
for Self-aware Memory. The most common prototype is a
SystemC-based simulation [3], [14], [15], which easily can be
parameterized and adapted to several test scenarios and system
structures. With this, the memory management mechanism and
the self-optimization process was evaluated and developed. In
addition a coarse-grained implementation using several FPGA
boards [13], [12], each representing a CPU or memory compo-
nent, connected over Ethernet is available. The third prototype
exists as a SW daemon, running on normal PC and redirecting
memory access to other nodes, which also can be connected to
the FPGA-based version via Ethernet. The goal of this work
was to adapt and implement the concept of the Self-aware
Memory to the Tilera platform to exemplarily demonstrate a
high-dynamic and adaptive memory management on a existing
manycore system.

A. Tracing

This work is motivated to enable a flexible memory man-
agement for high-dynamic application scenarios. Up to now
there are no predefined benchmark scenarios for manycore sys-
tems available. To simulate these dynamic application scenario,
we use a collection of memory traces we got from several
benchmarks. This allows us to replay exactly the same scenario
several times with changed parameters. Along with that it
enables us, to easily run different evaluations with variable
program and memory access phases. For each tile representing
a CPU, an application scenario using a sequence of traces is
provided.

B. Scenarios

The implementation on Tilera is also parameterizable to
enable an easy evaluation of different application scenarios.
The scenario definition is provided by a included file in
which all important parameters are defined. Every tile can be
configured as SamRequester or SamMemory component. The
size of the memory nodes can be configured as well as the
size of the used management tables. For each tile representing
a CPU, an application scenario using a sequence of traces
is provided. For the optimization cycle, the parameters of
the decentralized monitoring are provided, e.g. the radius of
the broadcast in which the status messages are exchanged. A
bigger radius leads to a more global optimization knowledge,
but also results in a higher overhead and additional messages.
Associative counter arrays are used to arrange and pre-validate
the collected information. The threshold of these arrays, which
is used to launch the analysis stage of the cycle, as well as the
used optimization algorithm can also be configured.
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C. System Configuration

For the communication between the tiles we choose the
previously addressed User Data Network (UDN). In the de-
centralized design of Self-aware Memory the nodes do not
have prior knowledge of the system structure and are inde-
pendent of a distinct network structure. Because of that, for
the ongoing decentralized monitoring the status messages are
exchanged using broadcasts with a distinct radius. The UDN
doesn’t support broadcasts, so this behavior is simulated in
sending out messages to all neighbors in the regular grid. The
implementation stays as software abstraction layer on top of
the existing system. Therefor it adapts the existing memory
management. In the presented evaluation we implemented the
SaM layer as single tasks, each running exclusively on a tile.
The memory accesses are blocking, so only one access can be
done at one time. This restriction also affects the memory side
in which only one message can be handled. So no concurrent
memory accesses and monitoring exchange with neighbors are
supported up to know.

D. Optimization

Every tile periodically sends out status messages to its
neighbors. The content of these messages is depending on the
chosen optimization goal. In the simplest way these messages
are used to discover the system structure and the distance
between the neighbors. The thereby discovered system view
can also be resent to other neighbors, so that the total view
of the system grows gradually. If a threshold of an associative
counter array is exceeded, the optimization algorithm is called,
which then calculates an optimization advice. An optimization
advice contains a list of possibly exchanged memory segments.
This advice is sent to the involved nodes which evaluate the
advice and agree or reject the advice. As the last step the actual
optimization, normally an exchange of memory segments, is
executed.

VI. EVALUATION

In this paper we present first results of the optimization
cycle on the Tilera system, deploying as algorithms a locality
optimization and a load compensation. Two scenarios are
shown in Figure 9. In the following tables the node number
correspond to the ones in these figures. During the evaluation
we encountered some bigger problems with the Tilera system,
which froze the total system while using the implementation
on big scenarios or big memory segment sizes. This behavior
could be isolated as a possible problem in the operating system.
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CPU-—>» MEM <«—CPU

I S
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(a) Locality Optimization (b) Load Compensation

Fig. 9. Evaluation Scenarios



Due to this problem in the following we present first results
using a reduced system of 3 x 3 tiles and application scenarios
with reduced segment sizes and run-time. Using patched op-
erating system versions, results of additional evaluations with
increasing sizes and scenarios will be subsequently provided.

A. Locality Optimization

As a first evaluation the locality optimization as optimiza-
tion algorithm is presented. With this, memory segments are
moved to minimize access times to different memory compo-
nents. A scenario for that can be seen in Figure 9(a) in which
arrows point to the initial suboptimal memory assignment.

In our implementation the threshold overflow of the as-
sociative counter array, counting the access rate to a segment,
triggers the optimization algorithm. The algorithms determines
if another known memory node is more narrow to the accessing
CPU node. Following this, an advice is generated and sent to
the possible participants. After a positive answer the segment
is directly exchanged.

TABLE 1. RESULTS OF THE LOCALITY OPTIMIZATION, MEMORY

NODES

Optimization activated deactivated

Tiles 4 9 11 16 4 9 11 16
Messages out | 27512 30156 26886 26343 | 27623 27623 27623 27623
Words out 55271 60514 54026 52911 | 55263 55263 55263 55263

1/0 segments | 3/4 4/2 3/4 4/4 0/0 0/0 0/0 0/0

Tables I and II present the results of the evaluation with
and without optimization for memory and CPU nodes. For
this quicksort benchmarks are used, concurrently accessing 17
memory segments. The monitoring sends out a status message
every 20ms and uses a radius of 2 for broadcasting these
messages to its neighbors.

TABLE II. RESULTS OF THE LOCALITY OPTIMIZATION, CPU NODES
Optimization activated deactivated
Tiles 3 5 15 17 3 5 15 17
Duration (10° cycles) | 154 154 155 152 | 129 130 131 130
Moved Segments 4 2 4 4 0 0 0 0
Access time (cycles) | 5249 5260 5298 5188 | 4287 4303 4308 4348

The higher values with activated optimization are due to
the periodical exchange of status messages. As previously
mentioned, the memory nodes cannot process these status
messages and memory accesses at the same time in our
implementation. This overhead can be reduced in adapting the
exchange frequency. As can be seen in Table III, most of the
additional costs are caused by the status messages and the
transfer of the moved segments. The slightly changed values
compared to Table I are due a different evaluation run. With
the operating system problems we had to reduce the size of
the transfered data segments. Without that, the transfer time is
increased while the number of status messages is kept constant.
But as can be seen in Table II the access to the new location is
faster after the optimization. So with more realistic application
scenario sizes and without the given limitations of the Tilera
system, the optimization would be profitable and outbalance
the additional management costs.
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TABLE III. MESSAGE IN THE STAGES OF THE OPTIMIZATION CYCLE

Tiles 4 9 11 16
regular 15129 53901 37259 4173
busy 0 8 2 0
moved 2 2 3 3
transfer 20 20 21 21
suggestion 2 2 3 3
answer 1 6 3 0
status 70 110 70 110
Messages out 15254 54049 37361 4310
Words out 30732 108269 74951 8814
I/0 segments 172 6/2 3/3 0/3

B. Load Compensation

As second presented evaluation, a load compensation opti-
mization was evaluated. Segments of highly occupied memory
nodes are moved to less charged ones. A scenario for that can
be seen in Figure 9(b) in which arrows also point to the initial
suboptimal memory assignment. Here the segments of 3 CPU
nodes are initially assigned to one single memory node.

TABLE IV. RESULTS OF THE LOAD COMPENSATION, MEMORY NODES
Optimization activated deactivated
Tiles 4 9 11 16 4 9 11 16
Msg. out 33459 34596 33389 37246 | 82869 14280 0 40966

Words out 67911 69990 67314 75305 | 165789 28569 0 81957
1/10 segments | 5/9 718 9/4 717 0/0 0/0  0/0  0/0

As in the first example, a threshold overflow of the as-
sociative counter array is used to trigger the optimization
algorithm which sends out an optimization advice. In this
example most of the work of the optimization algorithm is
done to evaluate the advice by the participants. The algorithms
therefor compares the load of its own node and the load of the
initiator. In case of a higher load an exchange is done.

TABLE V. RESULTS OF THE LOAD COMPENSATION, CPU NODES
Optimization activated deactivated
Tiles 3 5 10 15 17 3 5 10 15 17

Duration (10%) 222 223 224 190 215 | 209 209 209 139 138

Moved Segments | 3 7 4 3 11 0 0 0 0 0

7456 7440 7512 6395 7317|6984 6974 6970 4558 4581
Duration & Access time in cycles

Access time

Tables IV and V present the results of the evaluation with
and without optimization for memory and CPU nodes. During
the evaluation the monitoring sends out a status message every
40ms and also uses a radius of 2 for broadcasting these
message to its neighbors.

TABLE VI MESSAGE IN THE STAGES OF THE OPTIMIZATION CYCLE
Tiles 4 9 11 16
regular 29799 34554 36428 37334
busy 0 6 3 7
moved 9 6 7 5
transfer 72 42 61 41
suggestion 12 15 15 13
answer 14 14 13 14
status 42 66 42 66
msg. out 29948 34703 36569 37480
words out 60891 69920 73942 75482
segm 1/0 4/9 8/6 717 8/5




As can be seen in these two tables, the CPU cycle count
for the execution is more balanced with activated optimization.
Instead of even unused nodes in the execution with deactivated
optimization, the number of messages on memory node side
are good balanced.

The values in Table VI show, just as in the first evaluation,
that most of the additional costs are caused by the fine-granular
transfer of the moved segments. But the optimization goal of
good balanced memory loads could be achieved nevertheless.
So again as in the previous example in scaling the scenarios
and without the given limitations of the Tilera system, the
optimization would be more profitable.

VII. CONCLUSION AND OUTLOOK

This paper presents evaluation of the memory management
of existing manycore systems. In more detail the architecture
and usage of the Tilera TILE-Gx platform was addressed. First
we measured the existing memory management of the available
Tilera platform, second we adapted the the concept of the
autonomous self-optimizing memory architecture Self-aware
Memory to it.

Our measurements on the Tilera TILE-Gx system pointed
out some weak spots in current manycore architectures. As
expected, the measured access times to external connected
memory modules strongly depend on the position of the tile
in the grid. This holds true for access to private and shared
memory. The access times distinguish themselves from e.g. a
minimum of 13,5 % for the farthest compared to the nearest
tile accessing private memory, when the whole system and
network can be exclusively used by a single core. In reality,
this will never be the case in using manycore systems, even
less with the promised high-dynamic application scenarios.
Moreover, scaling up the number of cores will significantly
rise the slowdown due to mutual interference using the same
network or in accessing the same memory component.

With the adaptation and implementation of the Self-aware
Memory concept to the Tilera system, we demonstrated that
high-dynamic and adaptive memory management techniques
are feasible in combination with manycore architectures. Mod-
ifications in the system structure and memory management
of the existing hardware system were not possible for the
evaluations. Therefore we implemented SaM as a software
abstraction layer running on top of the existing memory
management and system structure. The results of the evaluation
showed that adaptive memory management techniques can be
realized without much additional messages, in return achieving
higher flexibility and and simple usage of memory in future
system architectures. To take advantage of these mechanisms,
the results and experiences have to be adapted to future
manycore architectures and directly integrated in the hardware.
As presented, current systems often contain multiple different
networks. Moving the monitoring and management messages
to an additional or currently unused network, would separate
the ubiquitous management from the data transfers and make
the optimization profitable furthermore.

In this paper we presented first results with reduced sce-
nario sizes, due to the repeated operating system crashes on the
Tilera system. Currently, we work on fixing these problems.
Additional evaluations, scaling the number of tiles, applying
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bigger application scenarios and increased test run-times are
the next steps on our agenda.

To further improve the results of the optimization process,
aspects from machine learning in combination with program
phases could be examined in the future. Adapting and evaluat-
ing the presented mechanisms to new and upcoming memory
connections like 3D-stacked memory or optical connections,
accompanied with a change in the system structure, will be
another challenging step.
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