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Abstract: Large traffic network systems require handling huge amounts of data, often
distributed over a large geographical region in space and time. Centralised processing
is not then the right choice in such cases. In this paper we develop a parallelised Gaus-
sian Mixture Model filter (GMMF) for traffic networks aimed to: 1) work with high
amounts of data and heterogenous data (from different sensor modalities), 2) provide
robustness in the presence of sparse and missing sensor data, 3) able to incorporate dif-
ferent models in different traffic segments and represent various traffic regimes, 4) able
to cope with multimodalities (e.g., due to multimodal measurement likelihood or mul-
timodal state probability density functions). The efficiency of the parallelised GMMF
is investigated over traffic flows based on macroscopic modelling and compared with
a centralised GMMF.

The proposed GMM approach is general, it is applicable to systems where the
overall state vector can be partitioned into state components (subsets), corresponding
to certain geographical regions, such that most of the interactions take place within the
subsets. The performance of the paralellised and centralised GMMFs is investigated
and evaluated in terms of accuracy and complexity.

Keywords: Parallelised Gaussian Mixture filters, vehicular traffic state estimation, multi-
modal probability density function.

1 Motivation

The vehicular traffic dynamics inherently exhibits multiple regimes and this complex and
nonlinear behaviour requires methods able to represent well multimodal probability den-
sity functions. In such situations the Gaussian Muxture Model (GMM) approach [AS72]
is the preferred choice. The GMM filter (GMMF) is appealing and powerful for solving
nonlinear estimation problems and these are the cases when [ALS07]: 1) the system and/
or measurement noises can be represented using Gaussian mixtures, 2) the measurement
likelihood function is multimodal and is hence well represented by a Gaussian mixture,
3) the system dynamics can be multimodal and the GMMF is a good choice for capturing
this multimodality in the probability density function of the system state.



This paper presents a parallelised Gaussian Mixture filter (GMMF) for vehicular traffic
flow estimation. Other works on Gaussian Mixture filtering have been proposed to solve
different problems, e.g., on positioning and navigation in [AL08a, ALCL+08, AL08b,
ALS07]. However, to our knowledge the application of the GMM approach to vehicu-
lar traffic problems is limited. A work related with the GMMF is the centralised mix-
ture Kalman filter (a sequential Monte Carlo approach combined with Kalman filtering)
[SMH03] developed based on first order traffic models (without speed estimates). Switch-
ing state space piecewise affine models are used to model the multimodalities due to con-
gested and free-flow traffic modes.

Our observations of the conditional likelihood of particle filters for vehicular traffic [MBH07]
is that it can be multimodal (as it can be seen on Fig. 1) and this is one of our motivations
for applying the GMMF to vehicular traffic problems. Another reason for multimodality is
in the traffic behaviour itself: in presence of different regimes (e.g., free flow, congested,
synchronised).
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Figure 1: Multimodality observed in the likelihood for the measured real traffic data (number of
vehicles) within the particle filter developed in [MBH07].

One of the challenges in the Gaussian mixture filtering is the choice of the number of
Gaussian components and the adaptation of this number. Different methods are available in
the literature, e.g., the Figueiredo-Jain algorithm [M. 02] and other components reduction
methods [ALS07] such as merging and forgetting.

The remaining part of this paper is organised in the following way. Section 2 presents the
theoretical background for the Bayesian estimation, Section 3 introduces the centralised
Gaussian Mixture Model filtering approach. Section 4 presents the parallelised GMMF
for vehicular traffic. Section 5 presents results from the parallelised GMMF. Finally, con-
clusions are given in Section 6.



2 Bayesian Estimation

Consider the discrete-time nonlinear non-Gaussian system model

xk = f(xk−1) + vk−1, (1)
zk = h(xk) + nk, (2)

where the system state xk has to be estimated in time k = 1, 2, . . . , zk is the measurement
vector, vk is the state noise, nk is the measurement noise. The noises vk and nk are
assumed to be mutually independent and independent of the initial state x0.

Since the system and the measurements are stochastic, the exact state cannot be inferred
from the measurements, only the probability density function (pdf) of the state p(xk|z1:k)
can be determined given all past and current measurements z1:k , {z1, . . . , zk} from sam-
ple step 1 to k. So, the goal of the state estimation problem is to determine the conditional
(posterior) pdf p(xk|z1:k).

The posterior can be determined recursively according to the prediction and measurement
update steps.

Prediction (prior):

p(xk|z1:k−1) =
∫
p(xk|xk−1p(xk−1)|z1:k−1)dxk−1 (3)

Update (posterior):

p(xk|z1:k) =
p(z1:k|xk)p(xk|z1:k)

p(zk|z1:k−1)

=
p(z1:k|xk)p(xk|z1:k)∫
p(zk|xk)p(xk|z1:k−1)dxk

(4)

The transition pdf in (3) is

p(xk|xk−1) = pvk−1(xk − f(xk−1)) (5)

and the likelihood

p(zk|xk) = pnk
(zk − h(xk)) (6)

In the next section we introduce the general formulation of Gaussian mixture model filter-
ing and we present two approaches for parallelisation. Although the parallelisation is ex-
plained for traffic networks, the same approach can be followed for other processes where
the overall state can be partitioned into subsets of states where the interaction between the
states takes mainly place within one subset.



3 A Gaussian Mixture Model Filter (GMMF) for Traffic Estimation

In this paper we consider the problem of traffic flow estimation by a mixture of Gaussian
components. In the GMMF [AS72] both the prior state probability density function (pdf)
p(xk|z1:k−1) and the posterior pdf p(xk|z1:k) can be Gaussian mixtures

p(x) =
mx∑
i=1

αiN x
Σ(x, µi,Σi), (7)

where N x(x, µi,Σi) is the Gaussian pdf with vector mean µi and covariance matrix Σi;
αi are weights, such that

∑mx

i=1 αi = 1; mx is the number of Gaussian mixture compo-
nents.

The likelihood can also be represented as a Gaussian mixture [ALS07]

p(z|x) =
mz∑
j=1

βjNn
R(z, µnj , Rj), (8)

where the mean vector µnj and the covariance matrix Rj for each mixture component are
used to form the mixture and represent the measurement pdf; m is the number of Gaussian
components, such that

∑mz

i=1 βj = 1.

The mean vectors and covariance matrices of the Gaussian mixture (7), resp. of (8) can be
calculated by two main approaches [PKIK06]: maximum likelihood estimation (Expecta-
tion Maximisation) or Bayesian estimation.

Within recursive Bayesian estimation, in accordance with (4), (7) and (8) the posterior
state pdf can be calculated with the Gaussian mixture [ALS07]

p(x|z) =

∑mz

j=1 βjNn
R(z, µnj , Rj)

∑mx

i=1 αiN x
Σ(x, µi,Σi)∫ ∑mz

j=1 βjNn
R(z, µnj , Rj)

∑mx

i=1 αiN x
Σ(x, µi,Σi)dx

=

∑mz

j=1

∑mx

i=1 αiβjNn
R(z, µnj , Rj)N x

Σ(x, µi,Σi)∑mz

j=1

∑mx

i=1

∫
αiβjNn(z, µnj , Rj)N x(x, µi,Σi)dx

=

∑mz

j=1

∑mx

i=1 αiβjNn
Pi,j

(z, µnj , Pi,j)N x
P̂i,j

(x, x̂i,j , P̂i,j)∑mz

j=1

∑mx

i=1

∫
αiβjNn(z, µnj , Pi,j)

, (9)

where

Pi,j = HjΣiH ′j +Rj (10)

x̂i,j = µi +Ki,j(z −Hjµi), (11)



P̂i,j = (Σ−1
i +H ′jR

−1Hj)−1 (12)

= (I −Ki,jHj)Σi (13)

Ki,j = ΣiH ′jP
−1
i,j (14)

where I is the identity matrix and ′ denotes matrix transpose operation.

The mean vector of the mixture (7), can be calculated as [AL08b]

µ =
mx∑
i=1

αiµi (15)

and the covariance matrix is in the form

Σ =
mx∑
i=1

αi(Σi + (µi − µ)(µi − µ)′). (16)

The second approach for estimating the GMM parameters is the Expectation Maximisation
(EM). Given the data z, the EM algorithm calculates iteratively the maximum likelihood
parameter estimates. During the expectation step (E-step), the log-likelihood function is
formed

Q(θ, θ́ ) = E[lnL(θ|z, θ́ )] (17)

where θ́ is the previous estimate for the GMM parameters, θ is the new estimate,E(.) is the
mathematical expectation operation. The maximisation (M-step) is to maximise Q(θ, θ́ )
with respect to θ and set:

θ́ ← arg maxθQ(θ, θ́ ) (18)

The steps are repeated until convergence is reached based on a suitably selected threshold.
In our implementation the GMMF is used to propagate the posterior state pdf p(x), after
performing the prediction step using METANET traffic model [PB89, KPD+02]. The mul-
timidality in the traffic behaviour stems from high speed/ low density and low speed/ high
density. In our implementation the update of the parameters θ = {α1, µ1,Σ1, . . . , αmx

,
µmx

,Σmx
} of the GMMF is performed using the Expectation Maximisation (EM) algo-

rithm [PKIK06].

4 A Parallelised Gaussian Mixture Model Filter

When centralised filtering methods are applied to large traffic networks, the computational
complexity may become too high for running in real-time on a single Central Process-
ing Unit (CPU). One way to tackle this problem is the parallelisation of the filters. A
schematic representation of a parallelised scheme is shown on Figure 2. The boundary
state estimates from the previous region are initial states estimates (inflow) for the next



Figure 2: An example of partitioning a traffic network into subnetworks for parallelised simulation
[HMB07].

geographic region and this enables speeding up considerably the computational process.
Estimates of the number of vehicles crossing the boundaries between two regions and their
respective speeds are transmitted.

The traffic network is subdivided into several subnetworks (corresponding to geographical
regions), where each PU is responsible for one subnetwork and the relevant variables
of the neighboring segments are communicated (as illustrated in Fig. 2). The state of the
traffic network and the measurements can be correspondingly partitioned into S subvectors
xsk, s = 1, ..., S with xk = [(x1

k)T , (x2
k)T , . . . , (xSk )T ]T , and zk = [(z1

k)T , . . . , (zSk )T ]T .
The system (1)-(2) can now be described by

xsk = fsk(xsk−1, x̂
s
k−1, v

s
k−1), (19)

zsk = hsk(xsk, n
s
k), (20)

where s = 1, ..., S, and the vector x̂sk−1 collects all neighboring state variables that act as
an input to subnetwork s.

Instead of sending particles and/ or their weights to the CPU or the statistics of the particles
as it is in the implemented parallelised particle filters in [HMB07], in the parallelised
GMMF only the estimates of the boundary states and their covariances are transferred
via the boundaries. This provides decomposition by region and also by mode. The state
estimates are formed based on the average sum (15).

The different parallelised GMM filters can operate in general with a different number of



Gaussian components, and only whose with the most significant weights can contribute to
the formation of the estimates for the particular region.

5 Results

The experiment is performed with simulated data over the same scenario that was pre-
sented in [HMB07]. Two filters are implemented: a centralised GMMF and a parallelised
GMMF, both coping with the multimodality present in the likelihood function.

5.1 Lay-out

The network considered in [HMB07] consists of a 2-lane motorway link of 10 segments
of 1 km each. In the parallelised approach this link is divided into two sublinks (“subnet-
works”) consisting of respectively the first and the last five segments.

5.2 Scenario

Two different scenarios are used to evaluate the filter performance: one with downstream
propagating waves (in free-flow) and another with an upstream propagating shock wave
as shown in Fig. 3. These scenarios are defined by selecting the upstream and down-
stream boundary conditions. The motivation to select these two scenarios is to have
both conditions where information propagates forward and where information propagates
backward over the sublink boundaries. The state and measurement noises are taken to
be Gaussian (although any other distribution could be taken) with state noise variances,
var(ξvm,i(k)) = 0.5 (km/h)2, var(ξρm,i(k)) = 0.5 (veh/km/lane)2, and measurement noise
variances var(nvm,i(k)) = 4 (km/h)2, and var(nqm,i(k)) = 22500 (veh/h)2.

Results for segments 1-5 and 5-10 are shown respectively on Figures 4 and are obtained
with two Gaussian mixture components, with the centralised GMMF (the measurements
from segments 1 and 10 are processed in one centre), based on 10 Monte Carlo experi-
ments. The Root-Mean Squared Errors are shown in Figure 6. The same results are shown
for the parallelised GMM (two GMM algorithms run in parallel) on Figures 5 and 7.

The computational time of the centralised GMMF, is approximately 1.8 times more than
the computational time of the parallelised GMMF. In terms of accuracy the performance
of the centralised and parallelised GMMF seem to be comparable.

Current research is focused on studying the influence of the number of Gaussian mixture
elements on the estimation process and on comparison of the GMM algorithms with other
estimators.
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Figure 3: The shock wave (left) and the forward wave (right) scenario, used for the evaluation of the
filters. The travel direction is from segment 1 to 10. The colours indicate the speed. Please note the
difference in colour bar scales: the shock wave scenario includes a wider range of speed since it also
contains congested traffic.

6 Conclusions

This paper presents a parallelised Gaussian Mixture Model filter for large traffic networks.
The approach is able to cope with multimodalities both in the state probability density
function and in the likelihood function. Compared with the parallelised particle filters
developed in [HMB07], the parallelised GMMF requires less communications and less
computational costs. It is flexible and can easily be adapted to the real-time demands of
large traffic networks.
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Figure 4: Results obtained with the centralised GMMF (actual vs. estimated states) for segments 1
to 10 with the shock wave traffic scenario shown on Figure 3 (left).
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Figure 5: Results obtained with the parallelised GMMF (actual vs. estimated states) for segments 1
to 10 with the shock wave traffic scenario shown on Figure 3 (left), from 10 runs.
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Figure 6: Root Mean Squared Errors obtained with the centralised GMMF (from 10 runs).
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Figure 7: Root Mean Squared Errors obtained with the parallelised GMMF (from 10 runs).
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