
Sanitizable Signatures:
How to Partially Delegate Control for Authenticated Data

Christina Brzuska Marc Fischlin Anja Lehmann
Dominique Schröder

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. Sanitizable signatures have been introduced by Ateniese et al. (ESORICS
2005) and allow an authorized party, the sanitizer, to modify a predetermined part
of a signed message without invalidating the signature. Brzuska et al. (PKC 2009)
gave the first comprehensive formal treatment of the five security properties for such
schemes. These are unforgeability, immutability, privacy, transparency and account-
ability. They also provide a modification of the sanitizable signature scheme proposed
by Ateniese et al. such that it provably satisfies all security requirement. Unfortunately,
their scheme comes with rather large signature sizes and produces computational over-
head that increases with the number of admissible modifications.

In this paper we show that by sacrificing the transparency property —thus allowing to
distinguish whether a message has been sanitized or not— we can obtain a sanitizable
signature scheme that is still provably secure concerning the other aforementioned
properties but significantly more efficient. We propose a construction that is based
solely on regular signature schemes, produces short signatures and only adds a small
computational overhead.

1 Introduction

Digital signatures usually provide integrity and authenticity of digital data. This, in partic-
ular, implies that even slight modifications of the data make the signature invalid. There
are, however, some cases where allowing such modifications while retaining the authen-
ticity to a certain extend may be desirable. For example,

• Governmental organizations like the World Health Organization (WHO) may ask
medical facilities to provide medical records for infectious disease surveillance pro-
grams. Allowing the administration of such facilities to sanitize parts of the records
(which are authenticated by medical personal through signatures) like patient names
or information about psychological treatments eases the overhead. At the same time
it still marks the resulting data as authenticated by medical personal.

• Authenticated multimedia data like videos may require some editing, e.g., because
of graphic content or to insert local commercials into the data.

117



• Authenticated routing information as in the Secure Border Gateway Protocol needs
to be updated frequently, while the reliability of the data must be ensured.

As another example, consider the recent discussion about German identity cards and the
digital data stored on the card [Bun08]. The data includes common information about
the holder like the name, date of birth and address. These data are not signed, though, to
guarantee deniability of transactions —else a party retrieving such signed data can show
this as a proof for a transaction to third parties— and to possibly enable modifications
by subordinate authorities to volatile data like the address (see [BKMN08]). Note that
in the non-digital case local authorities today can easily change the address by placing
an (authenticated) sticker on the identity card. In the digital case, any signature over
the holder’s data would prevent such modifications (unless the issuing authority would
bequeath the signing key, which is of course not recommended).

Enter sanitizable signatures. The notion of sanitizable signatures has been introduced
by Ateniese et al. [ACdMT05]. Similar notions have been considered concurrently by
Steinfeld et al. [SBZ01] and Miyazaki et al. [MSI+03]. The idea behind sanitizable signa-
tures is that the signer delegates the signing rights of parts of the message to a designated
party, the sanitizer. The sanitizer, given a message and a signature of the signer, can then
modify the predetermined parts of the message and still produce a valid signature for the
new message. A verifier of this new signatures is then assured that (a) the fixed message
parts have been authenticated by the signer, and (b) that only the designated sanitizer can
make admissible modifications.

Sanitizable signature are thus an expedient solution to the scenarios above. For the digital
identity card, for example, the issuing authority can delegate the rights to modify the
address data to a local authority, but leave other data like the name or the date of birth
immutable. Citizens would then be assured that the data has only been generated by (local
or superior) authorities.1

Sanitizable signatures come with five security properties, described informally in
[ACdMT05] and rigorously in [BFF+09]:

UNFORGEABILITY. Resembles the common unforgeability notion for regular signatures:
besides the signer and the sanitizers no one should be able to produce signatures for
new messages.

IMMUTABILITY. Confines the power of a malicious sanitizer, i.e., the sanitizer should not
be able to change other parts of the message than the intended ones.

PRIVACY. Sanitization steps should remove any information about the original data of the
sanitized parts. This is for instance important for the medical surveillance example,
and usually holds in an information-theoretic sense.

1Note that this solves the modification problem but does not address the deniability issues discussed before.
Still, for applications where the receiver is considered to be trustworthy, say, the police, deniability may be a
minor issue. In addition, since our solution below is for example rather generic, it can potentially be combined
with privacy-enhancing solutions in order to overcome the deniability problem.

118



ACCOUNTABILITY. In case of a dispute about the origin each party can contribute to settle
the dispute. A malicious signer or sanitizer cannot frame the other party.

TRANSPARENCY. One cannot distinguish between signatures created by the signer or the
sanitizer.

The aforementioned work of Brzuska et al. [BFF+09] defined these properties with game-
based definitions and gave a construction based on the protocol in [ACdMT05], provably
meeting these five requirements. The signature length, however, is quite large and the com-
putational overhead grows with the number of admissible modifications. The construction
also relies on specific number-theoretic assumptions.

Our results. We show that dropping the transparency requirement —thus allowing to
distinguish genuine signatures of the signer from signatures produced by the sanitizer—
yields significantly more efficient solutions: We present a construction allowing short sig-
natures, signature generation time comparable to regular signatures and based on arbitrary
(but secure) signature schemes.

Basically, the signer in our construction signs the fixed message parts mFIX and the de-
scription of the admissible modifications ADM together with the sanitizer’s public key
pksan to get a signature σFIX. In addition, the signer generates another signature σFULL

for the entire message (including modifiable parts). Then the full signature is given by
σ = (σFIX, σFULL, ADM, pksan).

To sanitize the message and replace (some of) the modifiable message parts the sanitizer
changes the message m to m
 accordingly and then creates the new signature σ
 by signing
m
 with its signing key and replacing σFULL by the derived signature σ


FULL. The entire
signature for the sanitized message is given by σ
 = (σFIX, σ


FULL, ADM, pksan).

We show that the construction above achieves unforgeability, immutability, accountabil-
ity and privacy. It is clearly not transparent as one can easily distinguish under whose
public key the second signature component verifies. As for the identity card example,
transparency is usually neither provided by the solutions for “non-digital” identity cards,
because the sticker is clearly visible given the card. Still, transparency may be a desirable
security goal in some settings, say, if a recent change of the address entails discrimination.
An example might be a landlord who is only willing to rent out to tenants which have not
moved recently.

Our solution comes with several advantages over previous approaches, besides its gener-
ality and efficiency improvements. First, since we analyze the solution in terms of the
security notions of [BFF+09] for sanitizable signatures, the solution really guarantees the
desired goals, and these formally stated goals can be scrutinized. Also, our solution al-
lows handy hierarchical extensions. That is, the sanitizer is allowed to change parts of a
message, and can authorize a subordinate authority to modify some of these parts. To this
end, the sanitizer issues certificates for public keys of local authorities such that they can
make further modifications by replacing the second signature component and appending
their public key together with the certificate to the signature.

119



2 Outline of the Construction

Our construction works as follows: Both the signer and the sanitizer each hold a key pair
(sksig, pksig) and (sksan, pksan), respectively, of a secure signature scheme. The signature
schemes used by the signer and the sanitizer can be distinct but we use the same scheme
for sake of simplicity. To sign a message m and allowing modifications by the sanitizer
with public key pksan, the signer first picks a description ADM of the admissible message
parts which are changeable by the sanitizer, and those parts mFIX which are fixed. Then the
signer computes the signature by signing the fixed part and the entire message (prepended
with a bit to indicate the difference):

σ = (σFIX, σFULL) = (Sign(sksig, (0,mFIX, ADM, pksan)), Sign(sksig, (1,m, pksan, pksig))).

We assume that ADM (and possibly pksan, if not linked to the signature somewhere else)
become part of the signature. As an example, ADM might be of the form (t, 6, 110000),
indicating that a message consists of 6 blocks, each of bit length t and the sanitizer is
allowed to change the first two blocks.

The sanitizer can now modify the message, yielding message m
, and replace the signature
part σFULL with a self-generated signature under pksan (but leaving σFIX untouched):

σ
 = (σFIX, σ

FULL) = (σFIX, Sign(sksan, (1,m
, pksan, pksig))).

To verify a signature σ resp. σ
 for a message m with respect to pksig the verifier first
recovers the fixed part mFIX by inspecting ADM. Then the verifier checks the validity
of the signature part σFIX with respect to (0,mFIX, ADM, pksan), and then verifies that the
second part of the signature either verifies under the signer’s or the sanitizer’s public key.
If both properties hold then the verifier accepts.

Let us briefly revisit the security notions for sanitizable signatures [ACdMT05, BFF+09]
and discuss if the scheme above achieves these notions. A formal approach follows in the
next section.

UNFORGEABILITY. We need to argue that no one except for the signer and the designated
sanitizer can create valid signatures for new messages. The unforgeability of the un-
derlying signature scheme guarantees that one cannot forge signatures for the fixed
part, including pksan, and thus any forgery for the second part must necessarily be
either for the sanitizer’s public key or the signer’s public key. But then the unforge-
ability of the sanitizer’s and signer’s signatures guarantee security for our sanitizable
scheme. Note that prepending the bit 0 and 1 to the messages in the two signatures
prevents “mix-and-match” attacks in which the adversary abuses the first signature
component for the second part.

IMMUTABILITY. Guarantees that a malicious sanitizer cannot change inadmissible blocks.
This follows from the unforgeability of the signer’s scheme, protecting the fixed part
of the message.

PRIVACY. Message parts which are replaced cannot be recovered, because the sanitizer
removes those parts and signs the derived message from scratch. The information
about the original data is hidden information-theoretically.

120



ACCOUNTABILITY. Neither party can claim that a message-signature pair originates from
the other party, unless this party has really signed the corresponding message before.
This again follows from the unforgeability of the underlying signature scheme. Note
that, in practice, this may require some certification of the owner of the sanitizer’s
public key pksan, or else the signer could create fake public keys on behalf of the
sanitizer.

TRANSPARENCY. Does not hold. One can easily distinguish signatures generated by the
signer from those produced by the sanitizer by inspecting the second signature part.

An interesting feature of the solution above is that the sanitizer itself can now act as a cer-
tificate authority and delegate rights further. To allow a subordinate sanitizer the sanitizer
now acts as the signer and generates σFULL as (σsan

FIX, σsan
FULL) by dividing the message further

into a part msan
FIX which the subordinate sanitizer should not be allowed to change, and into

a variable part. The lack of transparency then again allows to decide upon the origin.

3 Technical Details of the Construction

We first present the formal structure of sanitizable signatures and then introduce our con-
struction according to this structure. We next discuss the security notions in detail and
finally show that our construction is secure according to these notions.

3.1 Sanitizable Signatures

The following definitions are taken from [BFF+09]. With our solution in mind, we sim-
plify the presentation whenever possible. For example, our solution does not require an
explicit Proof algorithm to identify the origin (signer or sanitizer), so we drop it from the
formal descriptions.

Recall that our construction is based on a regular signature scheme S = (SKGen, SSign,
SVf) which consists of three efficient algorithms where SKGen on input 1n, the security
parameter in unary, returns a key pair (sk0, pk0); algorithm SSign on input sk0 and a mes-
sage m ∈ {0, 1}∗ returns a signature σ; and algorithm SVf for input pk0,m, σ returns a de-
cision bit d for accept (d = 1) or reject (d = 0). We assume completeness in the sense that
any signature generated via SSign is also accepted by SVf. Unforgeability under adaptive
chosen message attacks of regular signature schemes says that for any efficient algorithm
A the probability that A with input pk0 and access to a signing oracle SSign(sk0, ·) for
(sk0, pk0) ← SKGen(1n) outputs a pair (m∗, σ∗) such that SVf(pk0,m

∗, σ∗) = 1 and
m∗ has never been submitted to the signing oracle, is negligible.

A sanitizable signature scheme SanSig is now a tuple of efficient algorithms (KGensig,
KGensan, Sign, Sanit, Verify, Judge) such that:

KEY GENERATION. The key generation algorithms for the signer and sanitizer, respec-

121



tively, allows both parties to generate key pairs (for security parameter n, given as
input):

(pksig, sksig) ← KGensig(1n), (pksan, sksan) ← KGensan(1n)

SIGNING. The signing algorithm of the signer takes the signer’s secret key sksig, a message
m ∈ {0, 1}∗ the public key pksan of the designated sanitizer and a description ADM
(used to identify the fixed part mFIX of m). It outputs a signature (or ⊥, indicating
an error):

σ ← Sign(m, sksig, pksan, ADM).

We assume that ADM, pksan are recoverable from any signature σ )=⊥.

SANITIZING. The sanitizer’s algorithm Sanit takes a message m ∈ {0, 1}∗, a signature
σ, the public key pksig of the signer and the secret key sksan of the sanitizer. It first
modifies the message m according to the modification instruction MOD and then
computes a new signature σ
 for the modified message m
. It outputs m
 and σ
 (or
possibly ⊥ in case of an error).

(m
, σ
) ← Sanit(m, MOD, σ, pksig, sksan)

VERIFICATION. The Verify algorithm checks the validity of a signature σ for a message m
with respect to the public keys pksig and pksan and outputs a bit d ∈ {true,false}:

d ← Verify(m,σ, pksig, pksan)

JUDGE. The algorithm Judge takes as input a message m and a valid signature σ, the pub-
lic keys of the parties, and outputs a decision d ∈ {Sig,San} indicating whether
the message-signature pair has been created by the signer or the sanitizer:

d ← Judge(m,σ, pksig, pksan)

As usual we demand minimalistic functional properties of sanitizable signature schemes
such that the verifier always accepts signatures generated by the honest signer or sanitizer,
and that the judge decides correctly if the data has been formed correctly.

3.2 Construction

In order to describe our scheme formally we assume that ADM and MOD are (descrip-
tions of) efficient deterministic algorithms such that MOD maps any message m to the
modified message m
 = MOD(m), and ADM(MOD) ∈ {0, 1} indicates if the modifica-
tion is admissible and matches ADM, i.e., ADM(MOD) = 1. For example, for messages
m = m[1] . . .m[k] divided into blocks m[i] of equal bit length t, ADM might contain t
and the indices of the modifiable blocks, and MOD essentially consists of pairs (j,m
[j])
defining the new value for the j-th block.

122



We also let FIXADM be an efficient deterministic algorithm which is uniquely determined
by ADM and which maps m to the immutable message part mFIX = FIXADM(m), e.g., for
block-divided messages mFIX is the concatenation of all blocks not appearing in ADM. To
exclude trivial examples we demand that admissible modifications leave the fixed part of a
message unchanged, i.e., FIXADM(m) = FIXADM(MOD(m)) for all m ∈ {0, 1}∗, MOD with
ADM(MOD) = 1. In addition, we also need that the fixed part must be maximal given
ADM, i.e., FIXADM(m
) )= FIXADM(m) for m
 /∈ {MOD(m) | MOD with ADM(MOD) = 1}
(else FIXADM mapping to the empty string would for example be a valid instantiation).

Construction 3.1 (Sanitizable Signature Scheme) Let S = (SKGen, SSign, SVf) be a
regular signature scheme. Define the sanitizable signature scheme SanSig = (KGensig,
KGensan, Sign, Sanit, Verify, Judge) as follows:

KEY GENERATION. Algorithm KGensig generates on input 1n a key pair (pksig, sksig)
← SKGen(1n) of the underlying signature scheme, and algorithm KGensan for
input 1n analogously returns a pair (pksan, sksan) ← SKGen(1n).

SIGNING. Algorithm Sign on input m ∈ {0, 1}∗, sksig, pksan, ADM sets mFIX = FIXADM(m)
for the algorithm FIXADM determined by ADM, and computes

σFIX = SSign(sksig, (0,mFIX, ADM, pksan)), σFULL = SSign(sksig, (1,m, pksan, pksig))

using the underlying signing algorithm. It returns σ = (σFIX, σFULL, ADM).

SANITIZING. Algorithm Sanit on input a message m, information MOD, a signature σ =
(σFIX, σFULL, ADM), keys pksig and sksan first recovers mFIX = FIXADM(m). It then
checks that MOD is admissible according to ADM and that σFIX is a valid signature
for message (0,mFIX, ADM, pksan) under key pksig (for pksan included in sksan). If
not, it stops outputting ⊥. Else, it derives the modified message m
 = MOD(m) and
computes

σ

FULL = SSign(sksan, (1,m
, pksan, pksig))

and outputs m
 together with σ
 = (σFIX, σ

FULL, ADM).

VERIFICATION. Algorithm Verify on input a message m ∈ {0, 1}∗, a signature σ =
(σFIX, σFULL, ADM) and public keys pksig and pksan first recovers mFIX = FIXADM(m).
It then checks that SVf(pksig, (0,mFIX, ADM, pksan), σFIX) = 1 accepts σFIX as a valid
signature and that either SVf(pksig, (1,m, pksan, pksig), σFULL) or SVf(pksan, (1,m,
pksan, pksig), σFULL) verifies as true, too. If so, it outputs 1, declaring the entire
signature as valid. Otherwise it returns 0, indicating an invalid signature.

JUDGE. The judge on input m,σ, pksig, pksan parses σ as (σFIX, σFULL, ADM) and outputs
Sig if SVf(pksig, (1,m, ADM, pksan), σFULL) validates as true, else if
SVf(pksan, (1,m, pksan, pksig) = 1 then it returns San. Note that one of these two
verification must work, as Judge is only run on valid pairs (m,σ).

Completeness of signatures generated by the signer and sanitizer follows easily from the
completeness of the underlying signature scheme and the fact that FIXADM leaves the fixed

123



message parts unchanged for modified messages. There is a negligible probability that
a signature of the signer or the sanitizer also verifies under the other party’s other key,
yielding possibly a wrong answer from the judge. We ignore this issue here for simplicity,
because one can easily circumvent this problem by having each party also prepend a bit to
the signature, indicating the origin (0 for signer and 1 for sanitizer). The judge can then
also check that this bit matches its decision.

3.3 Security of Sanitizable Signatures

Here we recall the security notions for sanitizable signatures given by Brzuska et al.
[BFF+09] (except for transparency which we do not define formally since our scheme
does not achieve it). We note that Brzuska et al. [BFF+09] show that signer and sani-
tizer accountability together imply unforgeability, and that transparency implies privacy.
Hence, in principle it suffices to show immutability, accountability and transparency. How-
ever, since we drop the latter requirement we need to show privacy from scratch. In this
version we omit the formal descriptions of the security properties for space reasons.

Unforgeability. Unforgeability demands that no outsider should be able to forge signa-
tures under the keys of the honest signer and sanitizer, i.e., no adversary should be able to
compute a tupel (m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan) = true without having
the secret keys sksig, sksan. This must hold even if one can see additional signatures for
other input data, including the message-signature pairs and the public keys. This allows to
capture for example scenarios where several sanitizers are assigned to the same signer.

Immutability. This property demands informally that a malicious sanitizer cannot
change inadmissible blocks. In the attack model below the malicious sanitizer A inter-
acts with the signer to receive signatures σi for messages mi, descriptions ADMi and keys
pksan,i of its choice, before eventually outputting a valid pair (m∗, σ∗) and pk∗san such that
message m∗ is not a “legitimate” transformation of one of the mi’s under the same key
pk∗san = pksan,i. The latter is formalized by requiring that for each query pk∗san )= pksan,i

or m∗ /∈ {MOD(m) | MOD with ADMi(MOD) = 1} for the value ADMi in σi, i.e., that m∗

and mi differ in at least one inadmissible block. Again, giving the adversary the possibility
to ask the signer about other sanitizer keys pksan,i covers the case that the signer interacts
with several sanitizers at the same time.

Accountability. Accountability says that the origin of a (sanitized) signature should be
undeniable. There are two types of accountability: Sanitizer accountability says that, if a
message has not been signed by the signer, then even a malicious sanitizer should not be
able to make the judge accuse the signer. Signer accountability says that, if a message and
its signature have not been sanitized, then even a malicious signer should not be able to
make the judge accuse the sanitizer.

124



In the sanitizer-accountability game let ASanit be an efficient adversary playing the role
of the malicious sanitizer. Adversary ASanit has access to a Sign oracle. Her task is to
output a valid message-signature pair m∗, σ∗ together with a key pk∗san (with (pk∗san,m

∗)
being different from messages previously signed by the Sign oracle) such that the judge
still outputs “Sig”, i.e., that the signature has been created by the signer.

In the signer-accountability game a malicious signer ASign gets a public sanitizing key
pksan as input. She is allowed to query a sanitizing oracle about tuples (mi, MODi, σi, pksig,i

)
receiving answers (m


i, σ


i). Adversary ASign finally outputs a tuple (pk∗sig,m

∗, σ∗) and
is considered to succeed if Judge accuses the sanitizer for the new key-message pair
pk∗sig,m

∗ with a valid signature σ∗.

Privacy. Privacy roughly means that it should be infeasible to recover information about
the sanitized parts of the message. As information leakage through the modified message
itself can never be prevented, we only refer to information which is available through the
sanitized signature.

Our approach is based on an indistinguishability notion2 where an adversary can choose
pairs (m0, MOD0), (m1, MOD1) of messages and modifications together with a description
ADM and has access to a “left-or-right” box. This oracle either returns a sanitized signature
for the left tuple (b = 0) or for the right tuple (b = 1). The task of the attacker is to
predict the random bit b significantly better than by guessing. Here we need the additional
constraint that for each call to the left-or-right box the resulting modified messages are
identical for both tuples and the modifications both match ADM, else the task would be
trivial. We write (m0, MOD0, ADM) ≡ (m1, MOD1, ADM) for this.

3.4 Security of Our Construction

Theorem 3.2 The sanitizable signature scheme in Construction 3.1 provides unforgeabil-
ity, immutability, privacy and accountability.

Proof. We only need to show immutability, accountability and privacy, as the signer- and
sanitizer-accountability together imply unforgeability [BFF+09].

Immutability. Assume towards contradiction that our construction is not immutable. We
show that this contradicts the unforgeability of the underlying signer’s signature scheme,
i.e., we show that an adversary who successfully breaks immutability can be used to forge
signatures under the signer’s public key.

Let A be an efficient successful adversary against immutability. Adversary A impersonates
the sanitizer and has access to a signing oracle Sign(·, sksig, ·, ·). We show that if A is able
to find (m∗, σ∗, pk∗san) such that Verify(m∗, σ∗, pksig, pk∗san) = true and for all queries to

2Brzuska et al. [BFF+09] also discuss a simulation-based approach which is equivalent to the indistinguisha-
bility notion.

125



the signing oracle we have pk∗san )= pksan,i or m∗ /∈ {MOD(mi) | ADM(MOD) = 1}, then
the forgery immediately gives rise to a forgery against the underlying signature scheme.

The validity of the sanitizable signature σ∗ in the adversary’s forgery attempt contains
a valid signature σ∗

FIX for (0,m∗
FIX, ADM∗, pk∗san) under the signer’s public key, it thus

suffices to show that this tuple has not been input into the signing algorithm. First ob-
serve that since the signatures for the entire message start with a 1-bit, we only need
to consider signatures created for tuples with 0-bits. Hence, if (0,m∗

FIX, ADM∗, pk∗san) =
(0,mFIX,i, ADMi, pksan,i) for a query then ADMi = ADM∗ and FIXADM(m∗) = FIXADM(mi),
thus (by assumption about FIXADM) m∗ must be a valid modification MOD(mi) of mi.
Therefore this forgery attempt cannot satisfy the requirement pk∗san )= pksan,i or m∗ /∈
{MOD(mi) | ADM(MOD) = 1}.

Note that the formal argument requires to build an adversary B against the underlying
signature scheme with oracle access to a signing oracle of that scheme. Then one shows
that B can simulate A’s attack on the sanitizable scheme and, in particular, the signer
oracle in the immutability attack. But this is straightforward for our scheme, given the
signing oracle of the underlying signature scheme.

Sanitizer-accountability. We show that if the sanitizer can make the judge falsely ac-
cuse the signer, then the sanitizer can break the unforgeability of the underlying signer’s
signature scheme. Let ASanit be an efficient and successful attacker. She has access to
a signing oracle Sign(·, sksig, ·, ·) and outputs a fresh, valid triple (pk∗san,m

∗, σ∗), where
(pk∗san,m

∗) )= (pksan,i,mi) for all (pksan,i,mi, ADMi)-queries to the signing oracle.

The triple output by ASanit is such that Judge(m∗, σ∗, pksig, pk∗san) = Sig. This means
that Judge considers σ∗

FULL and notices that σ∗
FULL is a valid signer signature for the mes-

sage (1,m∗, pk∗san, pksig). But since (pk∗san,m
∗) )= (pksan,i,mi) for all i and as all signa-

tures for the fixed part are signatures over messages prepended with a 0-bit, it follows that
(1,m∗, pk∗san, pksig) has not been signed before. The formal argument (building an adver-
sary B against the signature scheme, mounting a black-box simulation of A) follows again
straightforwardly.

Signer Accountability. We show that a successful attacker against signer accountabil-
ity can be used to forge signatures of the sanitizer’s signature scheme. Let ASign be an
efficient successful adversary. She is given access to a sanitizing oracle, respectively, the
sanitizer’s signing oracle Sign(·, sksan, ·, ·) and outputs a fresh, valid triple (pk∗sig,m

∗, σ∗),
where (pk∗sig,m

∗) )= (pksig,i,mi) for all (mi, MODi, σi, pksig,i, sksan)-queries to the sanitiz-
ing oracle.

The triple output by the adversary is such that Judge(m∗, σ∗, pk∗sig, pksan) = San, i.e.,
Judge inspects σ∗

FULL and verifies that σ∗
FULL is a valid sanitizer signature for the mes-

sage (1,m∗, pk∗san, pksig). Since the sanitizer only signs messages beginning with 1 and
(pk∗sig,m

∗) )= (pksig,i,mi) for all queries, it follows that the sanitizer has not input this
message into its signature algorithm before. The forgery thus comprises a forgery for the
basic signature scheme,

126



Privacy. Privacy is guaranteed information-theoretically: Since the left-or-right oracle
only receives message pairs and modifications mapping to the same outcome, and the
sanitizer signs this derived message from scratch, the output distribution is identical for
both values of the bit b in the left-or-right oracle. �

3.5 Variations and Extensions

Our generic construction easily allows variations and extensions like hierarchical sanitiz-
ing. The sanitizer can delegate some of his rights to a subordinate sanitizer as follows.
Let

(σFIX, σFULL) = (Sign(sksig, (0,mFIX, ADM, pksan)), Sign(sksig, (1,m, pksan, pksig)))

be a signer’s signature for the message m. It is clear that the sanitizer can only delegate
rights concerning the admissible blocks of the message. He thus determines a “subset”
ADMsub ⊆ ADM (with the measing that ADM(MOD) = 1 whenever ADMsub(MOD) = 1)
that the subordinate sanitizer is allowed to modify. Let m
 be the sanitizer’s modification
of the message m, and FIXADMsub map m
 to the concatenation m


FIX,sub of the message
parts which are immutable for the subordinate sanitizer. Let pkSubSan be the subordinate
sanitizer’s public key.

To delegate the rights the sanitizer now signs the messages

(2,m

FIX,sub, ADMsub, pksig, pkSubSan) and (3,m
, pkSubSan, pksig).

to obtain σsan
FIX and σsan

FULL. The signature issued by the sanitizer consists of

(σFIX, ADM, σsan
FIX, σsan

FULL, ADMsub)

and possibly all the public keys. For sanitizing m
 to m

, the subordinate sanitizer algo-
rithm SubSanit leaves (σFIX, ADM, σsan

FIX, ADMsub) unchanged and creates a new signature
σsan

FULL

 = SSign(pkSubSan, (3,m

, pkSubSan, pksig)). As the final signature it outputs

(σFIX, ADM, σsan
FIX, σsan

FULL

, ADMsub).

Further hierarchical levels of sanitizers can be added accordingly.

Concerning flat hierarchies, in some settings it may be desirable to involve several sani-
tizer, say, a setting with personnel in a hospital. The extension of our scheme to such a
setting is straightforward. For each message the authorized sanitizer set is chosen, and
σFIX is a signer’s signature over the message (0,mFIX, ADM, pksan,1, . . . , pksan,k), where
pksan,1, . . . , pksan,k are the authorized sanitizers’ public keys. In addition, let σFULL be
a signer’s or sanitizer’s signature over the message (1,m, pksan,1, . . . , pksan,k, pksig). For
verifying the validity of a signature, one checks that σFIX is a valid signer signature over
(0,mFIX, ADM, pksan,1, . . . , pksan,k) and that σFULL verifies for the message (1,m, pksan,1,
. . . , pksan,k, pksig) under pksig or under one of the authorized sanitizers’ keys pksan,1, . . . ,
pksan,k (this key may be determined as part of the signature).

127



The construction described above produces signatures which are linear in the number of
sanitizers. This shall be avoided in settings involving a huge number of sanitizers. In this
case, instead of signing (0,mFIX, ADM, pksan,1, . . . , pksan,k), one signs (0,mFIX, ADM, pkCA),
where pkCA is the public verification key of a certificate authority, which provides certifi-
cates for each sanitizer key pksan,k. The sanitizer then attaches his pksan,k as well as its
certificate to the signature. Certificates are endowed with an expiration date so that keys
are changed regularly. Therefore, it is necessary that the fixed part mFIX of the message
contains some information about the signing date, which is the case for identity cards.

Acknowledgments

We thank the anonymous reviewers for valuable comments. Marc Fischlin, Anja Lehmann
and Dominique Schröder are supported by the Emmy Noether Program Fi 940/2-1 of the
German Research Foundation (DFG). This work was also supported by CASED
(www.cased.de).

References

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable
Signatures. In ESORICS, volume 3679 of Lecture Notes in Computer Science, pages
159–177. Springer, 2005.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page,
Jakob Schelbert, Dominique Schroeder, and Florian Volk. Security of Sanitizable Sig-
natures Revisited. In Public-Key Cryptography (PKC) 2009, volume 5443 of Lecture
Notes in Computer Science, pages 317–336. Springer-Verlag, 2009.

[BKMN08] Jens Bender, Dennis Kügler, Marian Margraf, and Ingo Naumann. Sicherheitsmecha-
nismen für kontaktlose Chips im deutschen elektronischen Personalausweis. In DuD
— Datenschutz und Datensicherheit, volume 3, pages 164–177. Vieweg, 2008.

[Bun08] Bundesministerium des Innern. Grobkonzept zur Einführung des elektronischen Per-
sonalausweises. (Version 2.0), July 2008.

[MSI+03] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, and H. Yoshiura. Dig-
ital documents sanitizing problem. In Technical Report ISEC2003-20. IEICE, 2003.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content Extraction Signatures. In
ICISC, volume 2288 of Lecture Notes in Computer Science, pages 285–304. Springer,
2001.

128




