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Recent Developments in Example-based Texture Synthesis

for Graphics Rendering

Carsten Rudolph1

Abstract: Textures are essential to allow real-time rendering of computer graphics. While they are
easy to use and widely supported by current graphic frameworks, their creation still involves a large
amount of manual work. Within the recent years algorithms have been developed that help artists
automating common tasks in texture creation. Those tasks can involve texture creation, manipu-
lation and ®tting them to certain constraints like tiling, size and spatial uniformity. Example-based
Texture Synthesis describes the creation of arbitrarily large textures from a typically smaller and lim-
ited exemplar whilst maintaining certain user-de®ned constraints. In [We09] the authors presented a
tutorial-fashioned introduction towards Texture Synthesis combined with a state of the art overview
on current algorithms. The goal of this paper is to give a basic introduction, an overview over the
recent developments in the area and a comparison of current state-of-the-art algorithms, determining
up- and downsides of each of the presented approaches.

Keywords: Computer Graphics, Rendering, Textures, Texture Synthesis, Example-based Texture

Synthesis

1 Introduction

In the recent years the available performance and amount of memory on graphics cards

has grown considerably, leading to a more realistic look of current graphics applications

such as video games, movies or simulations [NV15]. Thus the demand for high quality

and resolution textures has grown equally. This typically increases the required work to

create great looking textures.

Texture Synthesis aims to automate reoccurring tasks involved in texture creation and give

artists a tool to create textures ®tting their requirements. Example-based Texture Synthesis

is a form of Texture Synthesis where a usually low-resolution exemplar is used to create

a completely new texture that should resemble the exemplars global appearance while

increasing its original resolution. Also certain constraints can be applied to the exemplar

to create textures that can preserve spatial uniformity or make the texture tileable. There

are also other constraints but those two are typically common when creating textures for

computer graphics.

In 2009 Wei et al. [We09] wrote a good introduction into various applications of Tex-

ture Synthesis in form of a tutorial for readers who are new to the ®eld. Following that

approach, this paper wants to:
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• Give the reader a short introduction into the topic by describing common algorithms

(sections 2 and 3).

• Compare different approaches and try to name applications where one algorithm can

be preferred over another one (section 3).

• Give an overview over the recent developments within the ®eld of Texture Synthesis

(section 4).

This paper only describes different non-parametric synthesis methods, which include pixel-

and patch-based approaches and Texture Optimization. Those are typically used for static,

non-volumetric textures, which are most common in the ®eld of real-time rendering. For a

detailed insight into other applications, like synthesis of animated or solid textures or real-

time Texture Synthesis, the reader is advised to start with the work of Wei et al. [We09].

2 Texture Synthesis

Textures are 2- or 3-dimensional sets of values, used to model geometric features that

would be to expensive to calculate them each on their own. They can contain different sur-

face information that get interpreted during the rendering process. Typical texture-encoded

surface data are normals, depth and color information, but they are not limited to those ex-

amples.

Due to the in®nite variety of surfaces in the real world, each texture is different. The main

question for analytically dealing with textures is to ®nd an appropriate representation for

the content of the texture. Section 2.1 tries to implement a general-purpose de®nition of

the appearance of single characteristics within a single texture.

However, different algorithms might choose different descriptions of textures. Section 2.2

shows the basic principles of different common algorithms and their approaches.

2.1 Texture Classes

The distribution of single characteristics of a certain texture highly in¯uences its global and

local visual appearance. In order to compare and test algorithms it is important to classify

their input. The authors of [Ka15] have chosen to use the following notion to classify their

textures:

• structured a set of differently scaled, but regularly shaped features (Figure 1a).

• regular a set of features which are roughly of same size and shape (Figure 1b).

• cellular a set of features with varying size and shape, but clearly delimited towards

their neighbors (Figure 1c).
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• semi-structured/stochastic a random background with randomly spread features of

roughly same size and shape (Figure 1e).

• large-/small-scaled features a random background with some features that are are

not regularly spread over the surface and do not necessarily have the same size nor

shape (Figure 1d).

(a) structured (b) regular (c) cellular (d) features (e) stochastic

Fig. 1: Examples of texture classes. The textures are classi®ed in the order they appear. [Ka15]

Classifying textures is a good way to make assertions about how good an algorithm works.

To be general-purpose an algorithm should produce good quality outputs for a variety of

exemplars from each of those classes.

2.2 Algorithm Classes

Texture Synthesis has a broad ®eld of application, with each one having certain require-

ments for algorithms. In the ®eld of non-parametric Texture Synthesis there are three major

principles to classify algorithms [We09]:

• Pixel-based algorithms synthesize their output in a pixel-wise manner. This means,

they interpret input textures as a set of pixels and synthesize the result pixel-by-pixel.

Each algorithm step synthesizes a new pixel within the output.

• Patch-based algorithms increase the unit of interpretation to whole patches instead

of pixels. Those are typically larger features that are copied into the output tex-

ture where they may be manipulated later on. The main difference between those

algorithms is how they ®ll up the remaining space in a way that all features are

well-distributed without any gaps, repetitions or artifacts.

• Texture Optimization is a technique proposed from [Kw05a] which aims to com-

bine both previously mentioned approaches by synthesizing the texture per-pixel.

Unlike pure pixel-based approaches it considers all of the pixels and interprets the

mismatches between input-/output pixels as an energy function. This function can be

minimized in order to achieve an output that looks similar to the input. The energy

function and it’s solver determines the quality of the output.

The ®rst two principles mainly differ in the size of the unit of interpretation. Whilst pixel-

based algorithms interpret textures as plain pixel-sets without any sense of what the tex-

ture actually represents, patch-based algorithms try to analyze the texture ®rst to ®nd out
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logically connected areas (so called patches), thus increasing the complexity of such algo-

rithms. The differences are explained in detail within the sections 3.1 and 3.2.

There are other principles for other applications, like solid or liquid Texture Synthesis

([Kw07], [Yu09]), and there are also approaches using existing principles in real-time

applications ([Le08], [WL02]).

3 Previous Work

Many state-of-the-art Texture Synthesis algorithms rely on the ability to choose a synthesis

unit (pixel or patch) from the exemplar that get’s copied into the synthesis result during a

synthesis step. A convenient method to do this are Marov Random Fields (MRF). Efros et

al. [Ef99] were one of the ®rst who utilized this mathematical tool for Texture Synthesis.

Their algorithm is described in detail in section 3.1.

In patch-based approaches the synthesis process is typically split into two phases: An

analysis phase that extracts characteristics of the sample image and the actual synthesis

phase that combines those characteristics to create a new image. During the synthesis

phase the algorithms are using local properties of the sample patches and global functions

like uniqueness constraints to spread patches equally and prevent obvious artifacts like

heavy repetition. As an example authors of Kaspar et al. [Ka15] are utilizing the analysis

phase to create so called ”guidance channels”, which describe homogeneous areas of the

sample and their relation towards their environment. In synthesis stage those channels are

used along functions like a global uniqueness constraint to distribute patches evenly. Their

method is described in detail in section 4.2.

3.1 Pixel-based Approaches

As mentioned before the algorithm described in [Ef99] was one of the ®rst to use Markov

Random Fields to describe the spatial neighborhood of pixels. The approach is simple

and elegant and thus a good starting point for readers who are not familiar with other

algorithms.

The basic idea of the algorithm is to initialize the synthesis result with a random ®eld from

the exemplar that gets copied to the output. All pixels neighboring the seed are synthesized

in a greedy manner, selecting the next pixels to synthesize in a inside-out fashion. The

neighborhood of the current pixel to synthesize is described by an Markov Random Field,

which can be seen as a window around the pixel. The size of the MRF is the only user-

de®ned parameter the algorithm takes and should resemble the size of the largest patch

inside the exemplar to prevent sampling artifacts.

The neighborhood gets compared to the neighborhood of all pixels from the exemplar,

resulting in a set of similar candidates for the synthesis. If multiple candidates are found, a

random one will be chosen and copied to the output, resulting in a new neighborhood for
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the next pixel. The algorithm continues with a pixel that has a neighborhood with as many

already synthesized pixels as possible. Figure 2 shows a selection of three pixels that are

candidates for copying into the output.

Fig. 2: Candidates for the synthesized pixel feature similar spatial neighborhoods. If multiple candi-

dates exist in the exemplar, a random match is picked.

(a) Glass (b) Wired glass (c) Oregano

Fig. 3: Synthesis results based on the implementation of [Ef99]. The larger images are the input

samples. The results were kept at low resolution for performance reasons.

Sample image Input resolution Output resolution MRF size approx. Time

Glass 512x512 256x256 20 8 days

Wired glass 512x512 256x256 30 10 days

Oregano 1024x1024 256x256 30 18 days

Tab. 1: The performance of the algorithm depends heavily on the resolution of the input and output

image, just as the size chosen for the MRF window. The table shows that the algorithm is not suited

for today’s typical texture resolutions, even if the quality is very high if the MRF size is chosen

cautiously.

Besides it’s simplicity, the algorithm has the disadvantage that it can be inef®ciently slow,

depending on the size of the output texture and the size of the MRF. Also the pixel-by-pixel

approach prevents the algorithm from taking great advantage of parallelization, because

the output of one synthesis step directly in¯uences the neighborhood of pixels for available

for the next synthesis steps. The overall performance of the algorithm depends on the

following factors: sample size, MRF size and output size. Each algorithm step synthesizes

a new pixel in the output image, so the number of steps equals the number of pixels inside

the output image. During each step the whole sample image is scanned, so the number of

processed pixels equals approximately the number of input pixels times the numbers of

pixels withing the MRF (even if not all pixels are considered during the MRF analysis).

The overall performance can be described by O(pin ∗ pout ∗ sMRF).
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For visualization purposes we benchmarked a set of sample images from different texture

classes with different resolutions. The results were achieved on an Intel R© CoreTM i7-5820

@ 3.30GHz. Note that the process only was able to utilize one core. Figure 3 shows the

results created from the test run. Table 1 shows the parameters used for the synthesis

process and the time it took to create the results. The output resolution has been chosen

smaller than the input resolution, because the time it takes to create an 512 square pixel

output from an 256 square pixel input does not differ from a 512 square pixel input with

a 256 square pixel output, as shown above. Whilst the synthesis of the images in ®gure

4 (with an sample size of 90 square pixels) only took a few hours to complete, the time

consumption raises much higher when synthesizing textures from or for today’s typical

resolutions of 512 square pixels or above.

(a) Input sample (b) 10px MRF size (c) 30px MRF size

Fig. 4: An sample input is synthesized with two different MRF sizes: The lower the MRF size is, the

greater the randomness gets in terms of patch distribution.

In terms of quality, the local neighborhood approach may result in increased noise or

garbage regions, especially if the MRF size has been chosen to low. Figure 4 shows the

impact of different MRF sizes. In both cases the window was not large enough to capture

global neighborhood information (like the mortar stripes around a whole brick in this ex-

ample). As a rule of thumb the MRF should be large enough to capture the largest structure

inside the texture.

To address the performance issue Wei et al. [WL00] are adopting the previously described

approach and replace the full MRF with a ®xed neighborhood and the inside-out synthesis

fashion with a scaline-based approach. The ®xed neighborhood enables the algorithm to

take advantage of tree-based algorithms, like tree-based vector quantification (TSVQ), as

the authors suggest. Later authors based their research on this method and combined it

with other tree-structures, like kd-trees (Kwatra et al. [Kw05b]) or k-coherence (Tong et

al. [To02]), which is the best in terms of quality and performance according to [We09].

3.2 Patch-based Approaches

Patch-based Texture Synthesis describes a technique that extends pixel-based approaches

by using a different interpretation of synthesis units. Instead of single pixel, whole patches

of different size get copied to the output. Naturally this cannot be done in an optimal

manner, because it is not guaranteed that a patch that exactly ®ts a hole inside the output

can be found in the exemplar. Another challenge of those approaches is to uniformly seed
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patches from the exemplar in the synthesis result to prevent unnatural looking repetitions

or artifacts. Therefor different algorithms exist, that ultimately differ in the way how they

combine patches together to create a naturally-looking result.

Praun et al. [PFH00] described an algorithm that simply overwrites new patches over

existing ones, generating surprisingly good results for stochastic textures, but does not

work conveniently for structured textures. Therefor Lian et al. [Li01] described an algo-

rithm that blends both patches together, which can cause blurry regions, while Efros et al.

[EF01] use dynamic programming techniques to ®nd an optimal path through both patches

and cut them there.

3.3 Texture Optimization

Texture Optimization is an approach, proposed by Kwatra et al. [Kw05b], that combines

the advantages of both, pixel- and patch-based approaches. Their implementation performs

the actual synthesis step in units of pixels, but unlike traditional pixel-based approaches,

Texture Optimization considers all of the pixels and generates an energy function from

the mismatches between their values in the exemplar and the output. The interesting thing

is that this (quadratic) function directly appears to resemble the quality of the output:

optimizing (e.g. minimizing) the function leads to better quality results.

4 Recent Developments

In the past years many scientists researched problems with current Texture Synthesis al-

gorithms, mainly trying to improve their performance and the quality of their results. This

section goes a little bit more into detail on the PatchMatch ([Ba09], [Ba10]) algorithm,

which was a signi®cant milestone for Texture Optimization algorithms. Image Melding

([Da12]) further improved it and Kaspar et al. [Ka15] utilized both methods to present a

Self-Tuning Texture Optimization algorithm.

4.1 PatchMatch and Image Melding

Previous algorithms mostly derived the nearest-neighbor search problem from [Ef99]: the

more pixels the input and output image has, the more time it takes to search the whole

input for ®tting synthesis candidates in each synthesis iteration. Ashikhmin [As01] showed

that signi®cant performance gains can be achieved by limiting the search space in the

exemplar to a patch around the source neighbors of the neighboring pixels of the target,

thus exploiting local coherence. Barnes et al. [Ba09] based their PatchMatch-algorithm

on that coherence assumption. Also they prototyped a GPU-based implementation of their

nearest-neighbor search algorithm, generating a even better speedup.

In terms of quality, PatchMatch utilizes user-provided guidance channels to solve the prob-

lem of poor synthesis results where the boundaries of the synthesized target deliver only
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weak or none constrains for natural looking completion results. However, guidance chan-

nels in general are user-provided thus only shifting the search for ®tting patches towards

user suggestions. This prevents a highly or fully automated process and may even increase

the overall workload for the actual artist.

The introduction of guidance channels as a pre-calculated map of characteristics from

the input sample also ®rstly split up the synthesis process into two distinct stages: the

analysis phase and the actual synthesis phase, which is typical for all following Texture

Optimization algorithms, which later aim on (partially) automating this task.

Darabi et al. [Da12] generalized the PatchMach algorithm to be able to apply patch-based

approaches to the whole family of image melding problems, where Example-based Texture

Synthesis represents a special case with one input source. They introduced three major

changes towards patch-based algorithms:

• Extending the degrees of freedom of the search space to handle not only the basic

transformations translation, rotation and scale, but also re¯ection and non-uniform

scale.

• Using the image gradient as an additional property to represent a patch. The gradient

is stored as a guidance channel during analysis phase.

• Changing the interpretation of energy in Texture Optimization thus increasing the

sharpness of the result.

During synthesis phase, which can be seen as a generalized application of hole-fitting

or image completion for PatchMatch and Image Melding implementations, the algorithm

searches for ®tting patches within the guidance channels from the analysis phase. In order

to ®nd ®tting patches it performs a search and votes for the best choice. It does so by

solving a screened Poisson equation (Poisson fusion), instead of using a Fourier-based

solver. This proved to give good quality results while still reducing the complexity.

4.2 Self-Tuning Texture Optimization

Kaspar et al. [Ka15] base their implementation on Image Melding by removing some of

its features which are not common for two-dimensional textures, which are typically rec-

ti®ed and do not exhibit perspective distortions. Therefor they disabled searching among

rotation and scale, improving the performance of the search process. Also they do not use

some analysis ®lters like gain, bias adjustments or gradient channels. To increase texture

sharpness, they are not using the Poisson fusion described in 4.1. Instead they quantize the

nearest-neighbor ®eld to integer locations to improve performance of the search process.

Besides those changes to Image Melding the authors also introduce several improvements

over existing algorithms which they derived from a survey of common problems. Those

problems arise when applying an algorithm to textures of different texture classes:
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• Structured and large featured textures often suffer from missing non-local in-

formation which is explicitly derived from large structures. Repetitions are a typi-

cal symptom of this problem. The algorithm solves the problem by using guidance

channels and introducing a technology to calculate them automatically.

• Regular and stochastic structures may not be evenly spread due to random ini-

tialization of the synthesis result. The authors introduce a new smart initialization

technique that is build from random blocks, rather than pixels, which improves out-

put quality for the mentioned classes, whilst not affecting the quality for textures

without any regularity.

Additionally a spatial uniformity constraint ensures that the output image looks globally

similar to the exemplar by keeping track and constraining the number of occurrences of

certain pixels, while improving performance towards other approaches, like bidirectional

similarity ([Si08]).

5 Further Research

In this paper we’ve presented previous and current developments in the ®eld of non-

parametric Example-based Texture Synthesis. Since computation performance, especially

graphics memory on current GPU’s have signi®cantly been increased, higher resolution

textures can be used to create photo-realistic virtual environments. The demand for such

textures increases with the supply of computation performance, increasing both, the de-

mand for Texture Synthesis algorithms in general to automate common manual texture

editing tasks and the stress for existing algorithms. Current algorithms are delivering good

results for many, but not all textures. The lack of an general-purpose solution prevents

Texture Synthesis from being broadly used within the graphics industry. Also the poor

performance of many of those algorithms does not allow viable interactive editing.

Researchers signi®cantly improved existing algorithm approaches in the last years by care-

fully evaluating their downsides and trying to apply their bene®ts to other algorithms. For

example pure pixel-based algorithms have been replaced by Texture Optimization, which

combines the advantages of patch- and pixel-based approaches. By critically evaluating

current state-of-the-art implementations, chances for a fast and quality algorithm to be

developed within the next years are high.
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