
Modeling and Safety-Certification of Model-based

Development Processes

Oscar Slotosch1 and Mohammad Abu-Alqumsan 2

Abstract: In this paper, we describe a two-step approach to show evidence for compliance with
safety standards within certification efforts for model-based development projects that share some
commonalities (i.e. using the same metamodel). The approach is based on modeling model-based
development processes in combination with the requirements imposed on them by safety
standards. Besides the typical benefits of model-based approaches (modularity, rigor,
formalization and simulation), we use the combined hierarchic processes-requirements model in
order to automatically generate formalized descriptions of processes, standard compliance report
and verification check-lists. The process description can be used to introduce new team members
to the deployed development processes. As a concrete example of the proposed approach, we
present representative parts of the Validas model-based tool qualification process that has been
fully modeled and certified based on the automatically generated documents by TÜV SÜD.

Keywords: Model-based Development, Process Model, Safety Standards, Tool Qualification

1 Introduction

Thanks to the easiness in which domain-specific models can be developed for dedicated
purposes, model-based development is increasingly used in more areas of applications.
Yet, there are remaining areas of applications where models do not enjoy the
expected/desired level of acceptance, even when promising examples and pilot cases
exist. This may suggest that many developers resist switching to model-based
development, possibly because they do not want or are not able to do so. It is common in
practice to encounter the following arguments against introducing model-based
development: “there is no detailed process description of the model-based approach”, “it
is not clear how to do this with my tool X”, “the compliance of the model-based
development process to safety standards is unclear”, or “the modeling tools cannot be
used in safety critical projects, since they are not qualified (or certified)”. Obviously,
these statements/arguments are not against the model-based approach per se, but rather
are manifestations of why developers may resist introducing/switching to model-based
development.

Furthermore, quality aspects of software like consistency, reproducibility and
repeatability and roll-out planning cannot be ensured without the availability of a precise
process description. Consider for instance a situation where a company’s management

1 Validas AG, Arnulfstr. 27, 80335 München, slotosch@validas.de
2 Validas AG, Arnulfstr. 27, 80335 München, abu-alqumsan@validas.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 261

https://creativecommons.org/licenses/by-sa/4.0/

has decided to use UML (and a specific tool) for the specification of software algorithms
in a pilot project. Assume as well that the team is willing to do so, but some team
members use state transition diagrams, others sequence diagrams and some others use
activity diagrams. Furthermore, some even have developed a very sophisticated
combination of component diagrams, class diagrams and C++ code that requires new
stereotypes and small changes in the tool. Even if the pilot project may become a
success, it is obviously impossible to roll it out to the whole company without making a
more detailed description of the modeling process available. A qualification of the used
tool might additionally be required according to relevant safety standards.

In the present work, we aim at bridging the gap of lacking such descriptions of modeling
processes with a novel approach. The same approach is additionally used for the
purposes of facilitating certification efforts, by straightforwardly linking relevant process
activities to the corresponding requirements imposed by relevant safety standards.

Hereby, the crucial point to meet these two goals (i.e. providing formal description and
examining compliance) is to decide upon and to use the right abstraction level when
describing processes and tool usage. While it suffices, from a safety point of view, to
satisfy a requirement by tracing it to the respective activity/-ies and its/their produced
documentation/s, this is yet insufficient, and often not even necessary, for effective and
efficient introduction and usage of models/tools. For the latter case, descriptions have to
be provided in more details, but not to the point where concrete objects/examples are
being described. Otherwise, repeatability and reproducibility in similar projects would be
harmed. We recognize that the metamodel is a well suited abstraction level for both the
reasoning on compliance to safety standards and the description of model-based
development processes. Since processes consist of actions and input/output artifacts we
decided to model the metamodel itself as an artifact that is processed (i.e. created,
updated/extended) from within process activities. This renders the proposed approach
most suitable when the metamodel is used in several concrete development projects of
similar nature.

Without harming the generality of the proposed approach, the present paper focuses on
the application of the proposed method for model-based tool qualification processes
deployed at Validas AG. In particular, we show how the approach is used to show the
compliance of our processes to relevant safety standards.

The remainder of this paper is structured as follows. In Section 2 we introduce our
general approach for modeling model-based development. Section 3 roughly introduces
model-based tool qualification and the metamodel we use to this end. In Section 4, we
introduce how the proposed approach is actually done for modeling the MetaModel in
tool qualification projects. Section 5 provides more details on the whole structuring of
processes and requirements relevant to tool qualification projects. Section 6 provides
some details regarding a practical example from the industry: The certification of
Validas tool qualification processes by TÜV SÜD. Section 7 concludes with a
summary.

262 Oscar Slotosch, Mohammad Abu-Alqumsan

2 Modeling Model-Based Development Processes for Compliance

and Formal Description

In order to achieve compliance and to provide formal description of model-based
development processes, we propose to jointly formalize safety standard requirements
and model-based development processes. To this end, we use the process modeling and
requirements management framework AutoFOCUS33. This open-source software tool
allows modeling of requirements and processes in a hierarchic manner. It additionally
supports backward and forward tractability to requirements. Further, the tool provides a
strongly-typed environment with support for enumeration and structure data types and
additionally provides the possibility to define functions based on user-defined data types.

The tool also supports simulation (module test) of modeled processes with the help of
the so called “DTD Evaluator”, which is a functional interpreter able to process user
defined functions on user defined data types.

Altogether, these features render the tool ideal for our purposes (some benefits of these
features will become clearer in later sections). Standard compliance examination of the
model-based development process is developed and achieved with a set of utilities and
extensions that allow for automatic generation of documentation and work products. We
refer to these extensions as TOPWATER extensions as the name of the project in which
they were developed.

In particular, the following documents can be automatically generated through the
TOPWATER extensions:

1. The Formal Process Description: is integrated eventually as an appendix within a
manually written process description

2. The Compliance Report: showing the satisfaction of the model to all relevant
requirements and their traces.

3. The verification and validation (V&V) Plan: V&V have to be performed
according to this plan in each project that claims compliance to the standards.

Obviously, evidence for compliance of a concrete project to safety standards is achieved
in two steps. Firstly, the general Compliance Report shows the general compliance of the
methodology to the safety standard. Secondly, the V&V Report (produced by following
the V&V Plan) shows the compliance of the concretization of the general methodology
within a concrete project. As such, the compliance Report and the V&V Plan are the
same for all projects that share the same model and modeling process and the V&V

Report is unique for each project.

The overall safety compliance approach is depicted in Fig. 1.

3 AutoFOCUS3 is an open-source software and can be freely downloaded from https://af3.fortiss.org/download

Modeling and Safety-CertiĄcation of Model-based Development Processes 263

Fig. 1: Validas TOPWATER Compliance Method

3 Model-based Tool Qualification

Tool qualification is imposed by safety standards to ensure that tools can be used with
confidence when developing safety-critical items/elements, see [In11], [In10], [RT11].
The main approach adopted by Validas AG for tool qualification is to test the tool in the
same exact environment of the tool user (i.e. qualification by validation). This can be
achieved using the so-called tool qualification kits (or QKits in short), which
additionally can generate the work products (e.g. tool qualification report, tool safety
manual) required by safety standards.

The idea of model-based tool qualification is to build a model for the tool qualification
(i.e. containing features, known bugs, tests, etc.), that allows performing the available
tests and analyzing their results to generate the required documentation and work
products.

The tool chain analyzer [Va17] is a tool that supports the modeling of toolchains and
qualification kits. It supports a tool qualification model with all required information for
classification and qualification of tools, see [Wi12], [Sl12].

The metamodel of the TCA (see user manual) consists of the following elements (for the
sake of clarity in the present paper, we use a simplified representation and omit the
containment hierarchy):

• TOOLCHAIN: root element containing all other elements

264 Oscar Slotosch, Mohammad Abu-Alqumsan

• TOOL: represents a tool in the model

• VERSION: represents a version of the tool

• FEATURE: represents a feature of the tool

• ERROR: represents a potential error of a tool feature

• KNOWNBUG: represents a known mal function of the tool

• CHECK: user action to detect potential errors or real bugs

• RESTRICTION: user action to avoid potential errors or real bugs

Every element in the metamodel has attributes like NAME, DESCRIPTION; some also
have other attributes (e.g. COMMENT, IMPACT, etc.) that have to be specified in
concrete tool classification and qualification projects. Fig. 2 shows a typical
representation of the metamodel.

Fig. 2: Example Metamodel of Toolchains/Tools

The tool qualification requirements imposed by the relevant safety standards [In11],
[In10] and [RT11] are similar in their nature. They mainly require a three phase
approach:

• Classification of the tools

• Qualification of critical tools

Modeling and Safety-CertiĄcation of Model-based Development Processes 265

• Safe usage of the tools according to safety manuals, which are based on results from
the previous two phases (i.e. classification and qualification of tools)

4 Modeling the MetaModel used in Model-based QKit

Development Processes

At the core of our approach is the modeling of model-based development processes and
at the core of such modeling is the specification of the MetaModel being used.

The basis for specifying the MetaModel in AutoFOCUS3 is a simple enumeration data
type called “ModelSpecification” with the enumerator names {NotSet, Specified,
NotRequired}, corresponding to the three possible states every model element can have.
The states of all model elements are initially set to NotSet, and once they are specified,
their states change to Specified. Sometimes it might be undesirable or even not possible
to specify an actual value for a model element. In these cases, the respective model
elements are set to be in the NotRequired state. To clarify the last point, consider for
instance the link TOOL_VERSION_TO of a KNOWN_BUG element, which defines the
version in which the known bug was fixed. This attribute can be therefore Specified (in
case the known bug is already fixed in a specific version) or NotRequired (in case the
known-bug remains an open bug). The attribute TOOL_VERSION_FROM, which
defines the version in which the bug is introduced, has to be specified in either case.

In general, for every class with name <ClName> with attributes <A1>, to <An> and
links <L1> to <Lm> in the metamodel, there are three structure types modeled within
AutoFOCUS3:

• <ClName>Class:{Attributes:<ClName>Attributes, Links:<ClName>Links}

• <ClName>Attributes:{<A1>:ModelSpecification,…<An>:ModelSpecification}

• <ClName>Links:{<L1>:ModelSpecification,.. <Lm>:ModelSpecification}

The type MetaModel is a structure data type consisting of components for each class:

• MetaModel: {<C1>: <ClName>Class,…}

The types, which are required for modeling the MetaModel from Fig. 2 are modeled in
AutoFOCUS3 as shown in Fig. 3.

266 Oscar Slotosch, Mohammad Abu-Alqumsan

Fig. 3: Modeling the MetaModel Data Type in AutoFOCUS3

Having modelled the MetaModel in AutoFOCUS3, actions that define how it is being
created and updated during the modeling processes are defined straightforwardly using
function definition.

For example, the modeling of known bugs of a tool requires, as its input, a defined
TOOL model with contained FEATURE model. The output would be an updated model,
where KNOWN-BUG elements are added together with links to corresponding TOOLs
and affected FEATUREs. Adding mitigations (CHECKs and RESTRICTIONs) and
linking them to the KNOWN-BUGs further extends the model. Such procedures can be
described using the attributes of the model elements that need to be described in each
step: “TOOL.NAME” and “TOOL.VERSION” or “KNOWN-BUG.ID”. The predicate
that checks whether known bugs can be modelled or not can be formulated in
AutoFOCUS3 as follows:

readyForKBModeling(MetaModel:M) =

 M.Tool.Attributes.Name==Specified() &&

 M.Tool.Attributes.Description==Specified() &&

 M.Tool.Links.To_Features==Specified() &&

 M.Feature.Attributes.Name==Specified() &&

 M.Feature.Attributes.Description==Specified() &&

 M.Feature.Links.To_Tools==Specified() &&

Modeling and Safety-CertiĄcation of Model-based Development Processes 267

 M.Version.Attributes.Name==Specified() &&

 M.Version.Attributes.Description==Specified() &&

 M.Version.Links.To_Tools==Specified()

And the update of the model by specifying known bugs can be done within
AutoFOCUS3 in a functional programming style by defining the following function

updateKBModeling(MetaModel:M) =

return combineModels(M, addKnownBugClass({

 Attributes: combineKnownBugAttributes(

 specifyKnownBugName(),

 specifyKnownBugDescription(),

 specifyKnownBugID()),

 Links: combineKnownBugLinks(

 specifyKnownBugLinkToTool(),

 specifyKnownBugLinkToVersion())}));

The helper function can be implemented easily using the definition

specifyKnownBugName:KnownBugAttributes = {

 Name:Specified,

 Description:UnSet,

 ID:UnSet}

Furthermore, in order to facilitate the generation of the V&V Plan, we mark the V&V
actions using the keyword Criterion.

5 Modeling of Development Processes and Requirements

The process description starts from a high abstraction level describing the process with
the customer interaction, see Fig. 4. When constructing a model-based QKit, the core
activity is to build the corresponding model. This process is further detailed as depicted
in Fig. 5, which also shows the main phases of building the QKit: Structure modeling,
analysis modeling and test modeling.

268 Oscar Slotosch, Mohammad Abu-Alqumsan

Fig. 4: Validas Interaction Process (High-Level) with Tool Providers

Fig. 5: Model Construction Main Process

The interface of the known bug modeling process (carried out in the analysis modeling
phase) is described in Fig. 6. This example emphasizes the adequateness of the strongly-
typed environment of AutoFOCUS3 to our modeling purposes. The type of the input
model is MetaModel as detailed in Fig. 3. The name of the input model is
“ToolFeatureModel”, the name of the output model is “KBModel”.

Fig. 6: Known-Bug modeling Process Interface

As has been already shown with the previous figures, AutoFOCUS3 supports a
hierarchical description of processes (and requirements as will be seen later). The
process of specifying known bugs can then be modelled with more details through a state
transition diagram as depicted in Fig. 7 and Fig. 8 for the first part of the modeling
process.

Modeling and Safety-CertiĄcation of Model-based Development Processes 269

Fig. 7: Specification of Known Bug Modeling Behavior

Fig. 8: Specification of the Transition link “Model KBs” from Fig. 7.

As an example of defining verification and validation activities for known bugs, we
define the corresponding Criterion for known bugs modeling as depicted in Fig. 9. Note
that this example shows the relevant V&V activities only partially.

Fig. 9: Criterion Known Bugs

Requirements are typically structured in a hierarchic manner, which can be done in
AutoFOCUS3 straightforwardly. It remains however to link/trace these requirements
with the process modeling. To do so, we recognize that safety standard requirements are
typically imposed on a) Processes and b) Products. For the purposes of certification and
showing compliance, evidence should be provided that a) comply with requirements and
that these processes have been actually followed/deployed for creating b). In our
approach, we model the modeling activities/actions themselves including V&V activities
that can be seen as a checklist for the concrete project. As such, every requirement has at
least two traces in the processes model:

1. One to a process activity that describes it

2. Another to a V&V activity that checks it on the concrete example.

270 Oscar Slotosch, Mohammad Abu-Alqumsan

By splitting the requirements into these two parts, we can demonstrate that our process
satisfies the requirements, provided that for each project the V&V activities are
performed successfully. The concrete projects do not need to bother on the standard
compliance, but have only their concrete checklists to perform.

Fig. 10: Requirements Management and V&V Activities

Fig. 10 shows some examples of how the requirements from the safety standards are
managed. The highlighted trace to the “Criterion: Known Bugs” is a trace to the V&V
activity. The way in which this Criterion is defined is already discussed (and shown in
Fig. 9).

6 Example: Certification of Tool Qualification Processes

Validas has applied (and validated) the proposed approach on the example of tool
qualification as has been detailed in previous sections. Validas claims to build ISO
26262 and IEC 61508 compliant tool qualification kits using a model-based qualification
process. The Validas process for building qualification kits has been modeled within
AutoFOCUS3 and it has been shown to satisfy all 120 requirements from ISO 26262 and
IEC 61508 for tool qualification. 13 additional requirements from Validas (functional
and quality requirements for the model-based QKit) have been satisfied using a process
description consisting of over 1150 element describing the process and the interaction
with the customer. Every Criterion (V&V Check) consists of several questions,
separated by “?”. In total over 250 (simple and concrete) questions in the criteria have to
be answered for each QKit to pass the V&V.

Modeling and Safety-CertiĄcation of Model-based Development Processes 271

According to the Method described in Section 2 the relevant documents have been
generated.

Throughout the certification process regarding Validas process, TÜV requested not only
the compliance with the tool qualification requirements, but also some general
requirements on the management of functional safety. Those requirements could be
easily satisfied by filling out the required Excel checklists and providing the evidences
from the general Validas processes.

The main requirements have been successfully certified based on the generated
documents: Validas Qualification Method (including the generated, formal process
description), compliance report (generated as described) and V&V Plan (generated from
the model as described).

7 Summary

We have presented a general two-step compliance approach that builds upon formalizing
and modeling arbitrary requirements and model processes. In the first step, compliance
to safety standards of the general deployed methodology is shown and compliance report
is generated, whereas in the latter step, compliance of concrete projects that make use of
that general methodology is checked against a V&V plan. Both the compliance report
and the V&V plan are automatically generated from the constructed model. The method
has been applied successfully within our certification efforts of the Validas model-based
qualification kit construction processes with TÜV SÜD, according to ISO 26262 and
IEC 61508.

8 Acknowledgments

This work has been supported in part by the German Federal Ministry of Research and
Education (BMBF) within the project TOPWATER (ZIM) under research grant
ZF41611701BZ5. The authors would like to thank Joachim Schramm for the fruitful and
stimulating discussion within the TOPWATER project and Thomas Escherle for proof
reading and formatting the paper.

9 References

[In10] International Electrotechnical Commission: IEC 61508, Functional safety of
electrical/electronic/programmable electronic safety-related systems, Edition 2.0,
2010.

[RT11] RTCA: DO-330: Software Tool Qualification Considerations 1st Edition, 2011.

272 Oscar Slotosch, Mohammad Abu-Alqumsan

[In11] International Organization for Standardization: ISO 26262 Road Vehicles –Functional
safety–. 1st Edition, 2011.

[Sl12] Slotosch, Oscar: Model-Based Tool Qualification - The Roadmap of Eclipse towards
Tool Qualification – opencert, 2012.

[Wi12] Wildmoser, Martin; Philipps, Jan; Jeschull, Reinhard; Slotosch, Oscar; Zalman,
Rafael: ISO 26262 - Tool Chain Analysis Reduces Tool Qualification Costs. In
SAFECOMP 2012, 2012.

[Va17] Validas AG: Tool Chain Analyzer Tool, can be downloaded from
www.validas.de/TCA.html, 2017.

Modeling and Safety-CertiĄcation of Model-based Development Processes 273

