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Encoding monotonic multiset preferences using CI-nets1

Martin Diller2, Anthony Hunter3

Abstract: CP-nets and their variants constitute one of the main AI approaches for specifying and
reasoning about preferences. CI-nets, in particular, are a CP-inspired formalism for representing
ordinal preferences over sets of goods, which are typically monotonic. Considering also that goods
often come in multisets rather than sets, a natural question is whether CI-nets can be used more or
less directly to encode preferences over multisets. We here provide some initial ideas about this by
first presenting a straight-forward generalisation of CI-nets to multisets with bounded multiplicities,
which we show can be e�ciently reduced to CI-nets. Second, we sketch a proposal for a further
generalisation which allows for encoding preferences over multisets with unbounded multiplicities,
yet characterise reasoning in this framework in terms of the first. We finally show a potential use of
our generalisation of CI-nets for personalization in a recent system for evidence aggregation.
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1 Introduction

CI-nets [BEL09] are part of several languages for specifying and reasoning about preferences
that are inspired by CP-nets [Bo04]. These languages have in common that assertions
regarding preferences are interpreted via the “ceteris-paribus” (“all remaining things being
equal”) semantics. I.e. “A is preferred to B” is interpreted as shorthand for “A is preferred
to B, ceteris paribus”. This allows the formulation of an “operational semantics” in terms of
“worsening flips” for verifying statements regarding preferences computationally. CI-nets
distinguishing feature is that they are tailored to ordinal preferences over sets of goods.
These are also typically monotonic, i.e. more goods are usually preferred to less goods.

Also taking in account the fact that more often than not goods come in multisets rather
than sets, a natural question is whether CI-nets can be easily generalised to specify and
reason about preferences over multisets as well as sets of goods. We here present ideas
on how to generalise CI-nets to deal with what we identify as the two main di�erences of
preferences over multisets and preferences over sets of goods. The first of the di�erences is
obviously that, while preferences over sets involve comparing di�erent combinations of a
fixed number of elements (namely one of each item), when considering multiset preferences
also the multiplicity of the items needs to be taken in account. So, for example, while in
the set scenario preferring apples over oranges always is interpreted as “irrespective of the
number of apples and oranges”, in the multiset scenario it is possible to say, for instance,
that one prefers having an apple over an orange if one doesn’t already have any apples, but
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one prefers having an orange over some number (say, up up to three) apples if one already
has some (e.g. two or more) apples.

A slightly more subtle issue is that, while when talking about preferences over sets there is a
natural limit to the number of items one is considering (namely, one of each), in the case of
preferences over multisets it is often the case that it is artificial to impose any a-priori upper
bound on the multiplicity of the items. For example, when one says that one prefers having
an apple and an orange over say even up to three pears, this also means that one prefers
having two apples and two oranges over three pears, three apples and one orange over three
pears, etc. If one is using the preferences as a guide as to what choice to take regarding some
outcome, e.g. choosing between di�erent baskets of fruits, then the upper bound of apples,
oranges, and pears is given by the “evaluation context” (in this case, the upper bound of
the fruits in the baskets that are available), but is not part of the preference relation per se.
I.e., the same preference relation should be of use when considering a di�erent “evaluation
context”, e.g. a di�erent set of fruit baskets.

Concretely, in this work we first present a simple generalisation of CI-nets to multisets with
fixed multiplicities (Section 3.1). We call the resulting framework CmI-nets (“m” stands for
“multiset”). We show that reasoning on CmI-nets can be e�ciently reduced to reasoning
on CI-nets (Section 3.2). We then sketch a proposal for a further generalisation, C@0 I-
nets (Section 4.1), which allows for encoding preferences over multisets with unbounded
multiplicities (hence, the @O in C@0 I-nets), yet characterise reasoning in this framework in
terms of reasoning about CmI-nets (Section 4.2). The result is that at least a restricted form
of reasoning on C@0 I-nets, which we call “confined reasoning”, can ultimately be e�ciently
reduced to reasoning on CI-nets. Hence, computational procedures and systems for CI-nets
[SBH16] can also be used or easily adapted to the multiset scenario.

To further motivate our generalization of CI-nets we give an example of its use in the
context of a recent system for the aggregation of evidence from clinical trials [HW12]. We
show how C@0 I-nets can be applied to order the evidence, which is then subject to further
critical analysis by the system, based on personalized criteria (Section 5)3.

2 Background: CI-nets.

We begin by introducing CI-nets following [BEL09]. Let O be a finite set of objects,
items or goods. A CI-net on O consists in a set of CI-statements: expressions of the form
S+, S� : S1 B S2 with S+, S�, S1, S2 pairwise disjoint subsets of O, S1 , ;, S2 , ;. The
intended meaning is: “if I have all the items in S+ and none of those in S�, I prefer obtaining
all items in S1 to obtaining all those in S2, ceteris paribus”. S+ and S� are the positive and
negative precondition respectively; if they are both empty we write S1 B S2. The formal
semantics of CI-nets on O are given in terms of monotonic preference relations over 2O.
A (strict) preference relation is a strict partial order > over 2O; it is monotonic if Sa � Sb
entails Sa > Sb (Sa “dominates” Sb) for any Sa, Sb 2 2O. The preference relation > satisfies
S+, S� : S1 B S2 if for every S0 ✓ (O \ (S+ [ S� [ S1 [ S2)), (S0 [ S+ [ S1) > (S0 [ S+ [ S2).
3 A longer version of this work is available on arXiv.org [DH16].
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A preference relation over 2O satisfies a CI-net N if it satisfies each CI-statement in N
and is monotonic. A CI-net N is satisfiable if there is a preference relation satisfying N .
Our main interest is in the induced preference relation, denoted >N . If N is satisfiable, this
is the smallest preference relation satisfying N .

An alternative operational semantics of CI-nets is given in terms of sequences of worsening
flips. Let N be a CI-net on O, and Sa, Sb ✓ O. Then Sa ; Sb is a worsening flip
w.r.t N if either (i) Sa � Sb (� flip) or (ii) there is an S+, S� : S1 B S2 2 N and
S0 ✓ (O \ (S+ [ S� [ S1 [ S2)) s.t. Sa = (S0 [ S+ [ S1) and Sb = (S0 [ S+ [ S2) (CI flip).
See [BEL09] for a more operational version of the latter condition. We denote there being
a sequence of worsening flips from Sa to Sb w.r.t. N as Sa ,!N Sb and say that a CI flip
is w.r.t. the CI-statement that “justifies” it ; a sequence of flips is then w.r.t. the set of
CI-statements that justify the flips in the sequence. Now, if N is satisfiable, Sa >N Sb i�
Sa ,!N Sb . Also, N is satisfiable i� there is no Sa s.t. Sa ,!N Sa.

CI-nets on O can express all monotonic preference relations on 2O. The flipside is that
satisfiability and dominance of CI-nets is PSPACE-complete. Nevertheless, for instance
any CI-net with an “acyclic preference graph” (can be checked in PTIME) is satisfiable.

3 Encoding preferences on multisets with fixed multiplicites

3.1 CmI-nets

We identify a multiset M on a set of objects O via its multiplicity function mM ; mM (o) is
the number of occurrences of o 2 O in M . We will often represent such an M in the form
{(o,mM (o)) | o 2 O,mM (o) � 1}. We also use standard notation for sets to be interpreted
for multisets. The following is a straightforward generalisation of CI-statements tailored to
encoding finite multiset preferences, i.e. the multiplicities of the items are fixed.

Definition 1 (CmI-statements). Let M be a finite multiset on a set of objects O. A CmI
statement on M is an expression of the form M+,M� : M1 B M2 where M+ ✓ M,
M� ✓ (M \ M+), M1,M2 ✓ (M \ (M+ [ M�)), M1 , ;, M2 , ;, and (M1 \ M2) = ;.

CmI-nets consist in a set of CmI-statements. The semantics of CmI-nets on M are
defined in terms of preference relations over 2M , with > over 2M satisfying a CmI-
statement M+,M� : M1 B M2 if for every M 0 ✓ (M \ (M+ [ M� [ M1 [ M2)), we have
(M 0 [ M+ [ M1) > (M 0 [ M+ [ M2) (the conditions on Definition 1 assure that M 0 is
well defined). The notions of a preference relation satisfying a CmI-net, a CmI-net being
satisfiable, as well as the induced preference relation for a CmI-net N ( >N), are also
defined analogously as for CI-nets. It is easy to see that CmI-nets are indeed a generalisation
of CI-nets and that a CmI-net on M can express all monotonic preference relations on 2M .

Example 1. Let N be the CmI-net on M = {(a, 6), (b, 6), (c, 6)} consisting of the following
three (numbered, separated by “;”) CmI-statements: (1) {(a, 1)} B {(b, 6), (c, 6), (d, 6)};
(2) {(a, 1)}, ; : {(b, 1)} B {(c, 3), (d, 3)}; (3) {(a, 3)}, {(b, 4)} : {(c, 3)} B {(d, 3)}. In
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Example 3 we reduce N to a CI-net; we can deduce that N is satisfiable from the fact that
the latter has an acyclic dependency graph. The CmI-statement 3 expresses that if one has
three of a but doesn’t have four of b (i.e. one has up to two of b), then one prefers having
three more of c than three more of d.

Let Ma,Mb ✓ M, then Ma ; Mb is a worsening flip w.r.t. a CmI-net N on M if either
(i) Ma � Mb (� flip) or (ii) there is a CmI-statement M+,M� : M1 B M2 2 N and an
M 0 ✓ (M \ (M+ [ M� [ M1 [ M2)) s.t. Ma = (M 0 [ M+ [ M1) and Mb = (M 0 [ M+ [ M2)
(CI flip). The latter condition can be verified as follows: if M = (M \ (M+[M� [M1[M2)),
then (i) (M \ (M� [ M2)) ◆ Ma ◆ (M1 [ M+), (ii) (M \ (M� [ M1)) ◆ Mb ◆ (M2 [ M+),
and (iii) (M \ Ma) = (M \ Mb).We again denote there existing a sequence of worsening
flips from Ma to Mb w.r.t. N as Ma ,!N Mb . The following proposition can be proven as
Theorems 7 and 8 in [Bo04] (but also follows from the results in Section 3.2).

Proposition 1. Let N be a satisfiable CmI-net on M; Ma,Mb ✓ M. Then Ma >N Mb if
and only if Ma ,!N Mb . Also, N is satisfiable i� there is no Ma ✓ M s.t. Ma ,!N Ma.

Example 2. Consider again the CmI-net N from Example 1. The following is a sequence
of flips from which {(a, 3), (b, 3)} >N {(a, 3), (b, 2), (d, 5)} can be derived: {(a, 3), (b, 3)}
; (CI, 2) {(a, 3), (b, 2), (c, 3), (d, 3)} ; (CI, 3) {(a, 3), (b, 2), (d, 6)} ; (�) {(a, 3), (b, 2),
(d, 5)}. The labels beside the symbols for flips (;) indicate the type of flip and, for CI flips,
the CmI-statement justifying the flip.

3.2 Reduction of CmI-nets to CI-nets

We present a reduction of CmI-nets to CI-nets in Appendix A. Given a multiset M on O
and a CmI-net NM on M we there define a CI-net NS

M

on a set SM and a mapping of every
M 0 ✓ M to an fM 0 ✓ SM s.t. propositions 2 and 3 (also proved in the appendix) hold.

Proposition 2. Let NM be satisfiable and Ma,Mb ✓ M . Then Ma <N
M

Mb i� gMa <N
S

MgMb .

Proposition 3. NM is satisfiable i� NS
M

is satisfiable.

Example 3. The following is the CI-net corresponding to the CmI-net from Example 1: (4)
{a6} B {b1, . . . , b6, c1, . . . , c6, d1, . . . , d6}; (5) {a1}, ; : {b6} B {c1, c2, c3, d1, d2, d3}; (6)
{a1, a2, a3}, {b3, b4, b5, b6} : {c4, c5, c6} B {d1, d2, d3}; (7)

�
{ai} B {ai+1} | 1  i  5

 
;

(8)
�
{bi} B {bi+1} | 1  i  5

 
; (9)

�
{ci} B {ci+1} | 1  i  5

 
; (10)

�
{di} B {di+1} |

1  i  5
 
. Here SM = {a1, . . . , a6, b1, . . . , b6, c1, . . . , c6}. The sequence of flips correspond-

ing to that of Example 2 is: {a1, a2, a3, b1, b2, b3} . . . (CI, 8) {a1, a2, a3, b1, b2, b6}; (CI, 5)
{a1, a2, a3, b1, b2, c1, c2, c3, d1, d2, d3} . . . (CI, 9 � 10) {a1, a2, a3, b1, b2, c4, c5, c6, d4, d5, d6}
; (CI, 6) {a1, a2, a3, b1, b2, d1, d2, d3, d4, d5, d6} ; (�) {a1, a2, a3, b1, b2, d1, d2, d3, d4, d5}.
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4 Encoding preferences on multisets with arbitrary multiplicities

4.1 C@0 I-nets: definition & extensional semantics

Although CmI-nets are a straightforward generalisation of CI-nets they are somewhat
artificial for modelling purposes. This is reflected in the complicated constraints on CmI-
statements (Definition 1) and is a consequence of the restriction to fixed multiplicites (see
the discussion in the introduction). C@0 I-nets overcome this limitation and provide a more
natural representation.

Let again O be a set of objects and MO denote all finite multisets on O. C@0 I-nets consist
of a set of C@0 I-statements which have a “precondition” and a “comparison expression”.
A precondition on oi (1  i  n) is of the form o1R1a1, . . . , onRnan where oi 2 O,
Ri 2 {�, ,=}, the ai are integers � 0. A multiset M 0 2 MO satisfies the precondition,
M 0 |= o1R1a1, . . . , onRnan, i� mM0(oi)Riai for every 1  i  n. A precondition P+ is
satisfiable if there is some M 0 2 MO s.t. M 0 |= P+; if P+ is empty it is satisfied by any
multiset. Comparison expressions on the other hand involve update patterns of the form
o1 ++a1, . . . , on ++an with each oi 2 O appearing at most once, the ai � 1. Again, such an
update pattern is defined on the objects oi (1  i  n). The update of a multiset M 0 2 MO

w.r.t. an update pattern is M 0[o1 + +a1, . . . , on + +an] := M 00 where mM00(o) = mM0(o) for
o 2 O but o , oi for every 1  i  n, and mM00(oi) = mM0(oi) + ai for 1  i  n.

Definition 2 (C@0 I-statement). A C@0 I-statement on O is an expression P+ : P1 B P2
where P+ is a precondition on a O0 ✓ O and P1, P2 are update patterns defined on non-empty,
disjoint subsets of O. The C@0 I-statement is satisfiable if the precondition P+ is.

We often write {o1, . . . , on}Ta for o1Ta, . . . , onTa, T 2 {�, ,=,++}. Informally P+ :
P1 B P2 with P+ = {o+i R+i a+i }1in+ , P1 = {o1

j + +a1
j }1 jn1 , P2 = {o2

k + +a2
k}1kn2

means: “if I have R+i ai of oi (1  i  n+), I prefer having a1
j more of o1

j (1  j  n1), than
having a2

k more of o2
k (1  k  n2), ceteris paribus”.

Definition 3 (Semantics of C@0 I-statements). A preference relation > over MO satisfies
a C@0 I statement P+ : P1 B P2 if for every M 0 2 MO s.t. M 0 |= P+, we have M 0[P1] >
M 0[P2].

Alternatively, abusing notation we define P+ := {M 0 2 MO | M 0 |= P+} and for an update
pattern P = {oi + +ai}1in, MP := {(oi, ai) | 1  i  n}. Then > satisfies P+ : P1 B P2
if for every M 0 2 P+, we have (M 0 [ MP1 ) > (M 0 [ MP2 ). Note that if P+ is unsatisfiable,
then the C@0 I-statement P+ : P1 B P2 is satisfied by any preference relation. The notions of
a preference relation satisfying a C@0 I-net , a C@0 I-net being satisfiable and the preference
relation induced by a satisfiable C@0 I-net N (>N) are, again, defined as for CI-nets.

Example 4. The following C@0 I-net N 0 re-states the CmI-net from Example 1, but now
for arbitrary multisets over {a, b, c, d}: (11) a + +1 B {b, c, d} + +6; (12) a � 1 : b+ +1 B
{c, d} + +3; (13) a � 3, b  2 : c + +3 B d + +3. We will later be able to show that N 0 is
also satisfiable. Moreover, also {(a, 3), (b3)} >N0 {(a, 3), (b, 2), (d, 5)}.
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The proof of Proposition 5 in [BEL09] which states that CI-nets on O are able to express all
monotonic preferences over 2O can be easily adapted to show that all monotonic preferences
over MO can be captured via C@0 I-nets on O, but does not exclude the need for an infinite
number of C@0 I-statements. We leave it as an open question whether there is any useful
alternative characterisation of the preference relations that can be captured e�ciently (hence,
also finitely) by C@0 I (and, for that matter, CI) nets.

4.2 Operational semantics & confined reasoning for C@0 I-nets

We turn to giving an operational semantics for C@0 I-nets in terms of “worsening flips”.

Definition 4 (Worsening flips for C@0 I-nets). Let N be a C@0 I-net on O and Ma,Mb 2 MO.
Then Ma ; Mb is called a worsening flip w.r.t. N if either (i) Ma � Mb (� flip), or (ii) there
is a C@0 I statement P+ : P1 B P2 2 N and an M 0 2 MO s.t. M 0 |= P+, Ma = M 0[P1], and
Mb = M 0[P2] (CI flip). Alternatively, Ma = M 0 [ MP1 , Mb = M 0 [ MP2 for an M 0 2 P+
or operationally: (i) MP1 ✓ Ma, (ii) MP2 ✓ Mb , (iii) (Ma \ MP1 ) = (Mb \ MP2 ), and (iv) if
M 0 = (Ma \ MP1 ) = (Mb \ MP2 ), then M 0 2 P+ (i.e. M 0 |= P+).

Again, Ma ,!N Mb denotes there exists a sequence of worsening flips from Ma to Mb w.r.t.
the C@0 I-net N . Proposition 4 can also be proven analogously to Theorems 7,8 in [Bo04].

Proposition 4. Let N be a satisfiable C@0 I-net defined on O, Ma,Mb 2 MO. Then
Ma >N Mb i� Ma ,!N Mb. Also, N is satisfiable i� there is no Ma 2 MO s.t.
Ma ,!N Ma.

Note that there is a sequence of flips for {(a, 3), (b3)} >N0 {(a, 3), (b, 2), (d, 5)} where N 0 is
the C@0 I-net from Example 4 that mirrors the sequence of flips in Example 3 and makes use
of the C@0 I-statements 12 and 13. Proposition 5, Corollary 1 and 2 give a straightforward
characterisation of reasoning about C@0 I-nets in terms of “confined reasoning” as defined
via ,!N,M (for an M 2 MO) in Definition 5.

Definition 5 (Confinement of sequences of worsening flips). Let M 2 MO. A sequence
of worsening flips Ma = M1 . . .Mn = Mb w.r.t. a C@0 I-net N on O is confined to M if
each flip Mi ; Mi+1 (for 1  i < n) in the sequence is s.t. Mi,Mi+1 ✓ M . Ma ,!N,M Mb

denotes there being a sequence of worsening flips from Ma to Mb confined to M . Finally,
N is c-consistent w.r.t M if there is no Ma ✓ M s.t. Ma ,!N,M Ma.

Proposition 5. LetN be a C@0 I-net on O. Ma ,!N Mb i� Ma ,!N,M Mb for an M 2 MO.

Corollary 1. If N is satisfiable, then Ma >N Mb i� Ma ,!N,M Mb for an M 2 MO.

Corollary 2. N is satisfiable i� N is c-consistent w.r.t every M 2 MO.

Now usually one will only be interested in determining whether Ma >N Mb for some
(Ma,Mb) 2 U where U ✓ MO ⇥ MO is what we called an evaluation context in the
introduction (in particular, |U | = 1). Hence one would also like to know some (small)
M 2 MO s.t. ,!N,M captures ,!N for U, i.e. Ma ,!N Mb i� Ma ,!N,M Mb for every
(Ma,Mb) 2 U.
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Example 5. Consider again the C@0 I-net N 0 from Example 4. This C@0 I-net also has the
analogue to an acyclic dependency graph for CI-nets. This means that given an initial
multiset Ma, lets say Ma = {(a, 3), (b, 3)}, one can compute an upper bound on the number
of instances of each object one will be able to add to the objects in Ma via worsening
flips. Let #o denote this number for each o 2 O. Then #a = 3, #b = 3 + (#a ⇤ 6) = 21,
#c = (#a ⇤6)+ (#b⇤3) = 81, #d = (#a ⇤6)+ (#b⇤3)+ (#c ⇤3) = 324, and therefore ,!N,M ,
with M = {(a, 3), (b, 21), (c, 81), (d, 324)}, captures ,!N for U = {(Ma,M 0) | M 0 2 MO}.

Example 6 (CI-nets as C@0 I-nets). A CI-statement c = S+, S� : S1 B S2 in a CI-net N can
be written as the C@0 I-statement ĉ := P+ : C, P+ := P+1 [P+2 [P+3 , P+1 := {s+ = 1 | s+ 2 S+},
P+2 := {s = 0 | s� 2 (S� [ S1 [ S2)}, P+3 := {s  1 | s 2 (O \ (S+ [ S� [ S1 [ S2))}, and
C := {s1++1 | s1 2 S1} B {s2++1 | s2 2 S2}. The CI-flips w.r.t. N and N̂ := {ĉ | c 2 N}
are exactly the same and hence ,!N̂,O captures ,!N̂ for U = (O ⇥ O).

We sketch a translation of confined reasoning about C@0 I-nets to CmI-nets in Appendix B.
The CmI-net from Example 1 is, in fact, the CmI-net that results when applying this
translation for confined reasoning w.r.t. {(A, 6), (B, 6), (C, 6)} and the C@0 I-net in Example 4.
The satisfiability of the C@0 I-net in Example 4 follows from Corollary 2 and the fact that the
translation of confined reasoning w.r.t. this C@0 I-net and any M 2 MO produces a CmI-net
which can be reduced to a CI-net with an acyclic preference graph.

5 Encoding preferences in evidence aggregation

In this Section we show how C@0 I-nets can be applied in the context of the system for
aggregating evidence presented in [HW12] (see [Wi15] for a recent use). In this system
evidence from clinical trials is initially collected in the form of tables of which Table 1 could
be an extract (our example is based on Table 3 in [HW12]). Table 1 summarises possible
results from meta-analyses ( “M A”) for patients who have raised pressure in the eye and are
at risk of glaucoma. The results of the studies ( “Outcome value”) have been normalised
so that the values are desirable, i.e. they indicate the degree to which the treatment which
has fared better in the study presents an improvement (column “Net outcome”; in Table 1
“>”,“<” means the study speaks for PG, BB resp.). Given the evidence in Table 1, the
question is whether PG or BB are better to treat glaucoma.

A first step towards a solution of this problem is determining what sets of evidence items that
can be used to argue in favour of the treatments are of more value in terms of preferences over
“benefits”: outcome indicator - normalised outcome value pairs. More to the point, since
for methodological reasons (mainly, to avoid bias and for purposes of reuse), preferences
need to be determined independently of the available evidence, the preference relation is
in terms of possible sets of benefits, i.e. all possible sets of pairs of (normalised) outcome
indicator-value pairs. Specifying preferences over “benefit sets” allows for a personalised
dimension in the decision process, i.e. of considerations which have to do with, e.g., a
specific patient or the experience of the medical professional. Other more “objective”
elements (like statistical significance - column “Sig” in Table 1) can be incorporated in
further stages of the decision process as outlined in [HW12].
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ID Left Right Outcome Outcome Net Sig Type
indicator value outcome

e01 PG BB change in IOP (SO) -2.32 (m) > no MA
e02 PG BB acceptable IOP (SO) 1.54 (s) > yes MA
e03 PG BB respiratory prob 0.9 (s) > yes MA
e04 PG BB respiratory prob 0.85 (s) > yes MA
e05 PG BB cardio prob 0.82 (s) > no MA
e06 PG BB hyperaemia 0.61 (m) < yes MA
e07 PG BB drowsiness 0.58 (m) < yes MA
e08 PG BB drowsiness 0.71 (m) < yes MA
e09 PG BB drowsiness 0.62 (m) < yes MA

Tab. 1: Normalised results of several meta-
analysis studies comparing prostaglandin ana-
logue (PG) and beta-blockers (BB) for patients
with raised intraocular pressure.

{C, R, R, Sm, Ss}

{C, R, R, Sm} {C, R, R, Ss} {C, R, Sm, Ss} {R, R, Sm, Ss}

{C, R, R} {C, R, Sm} {C, R, Ss} {C, Sm, Ss} {R, R, Sm} {R, R, Ss} {R, Sm, Ss}

{C, R} {C, Sm} {C, Ss} {R, R} {R, Sm} {R, Ss} {Sm, Ss}

{C } {R} {Sm} {Ss}

{D, D, D, H }

{D, D, D } {D, D, H }

{D, D } {D, H }

{D } {H }

22

22

23

24

24

25

26

27

28

28

28 29

29

Fig. 1: Graphical representation of the preference relation
induced by the CmI-net in Example 8. Solid arcs are
obtained by �, dotted arcs also via CI-flips.

In [HW12] the authors only consider the incorporation of preferences between sets of
benefits in their system and for this purpose CI-nets would be a natural choice. Also allowing
preferences over multisets of benefits to be stated becomes relevant when one considers
that -, especially as a result of the use of some abstraction over the outcome indicators and
values,- there may be more than one evidence item expressing the same benefit. Example 7
illustrates the use of C@0 I-nets for encoding preferences over multisets of benefits such
as those appearing in Table 1 but where we introduce a natural abstraction. We consider
both “change in IOP” and “acceptable IOP” (“IOP” = interocular pressure) as part of the
“significant outcomes” which we denote “SO”; we partition the outcome indicators into “s”,
“m”, and “l” standing for a “small”, “medium”, and “large” improvement respectively. The
values in parentheses beside the entries for “Outcome indicator” and “Outcome value” show
a possible result of applying this abstraction to the results in Table 1.

Example 7. The following is a C@0 I-net on the benefits that appear in Table 1. We use
C, D, H, R for (cardio prob, s), (drowsiness,m), (hyperaemia,m), and (respiratory prob, s)
respectively, while Sm := (SO,m) and Ss := (SO, s). {a1, . . . , an}## denotes the maximum
number of each of a1, . . . , an in any specific evaluation context. The C@0 I net consists in
the statements: (14) Sm + +1 B {C,D, R, Ss}##,H + +1; (15) {C, R} + +1 B D + +1; (16)
C = 0 : H + +1 B D##, {R, Ss} + +1 ; (17) R = 0 : H + +1 B D##, {C, Ss} + +1; (18)
C = 0 : D + +2 B R + +1 ; (19) R = 0 : D + +2 B C + +1; (20) Sm = 0 : Ss + +1 B
{C,D, R} + +1 ; (21) Sm � 1 : {C, R} + +1 B Ss + +1. C@0 I-statement 20, for example,
states that if one does not have any evidence for a modest improvement in the significant
outcomes, then evidence for even a small improvement for any of the significant outcomes
is preferred to evidence showing an improvement in drowsiness as well as cardio and
respiratory problems.

Example 8 gives the encoding of confined reasoning for the C@0 I-net of Example 7 w.r.t.
all benefits occurring in Table 1. Figure 1 shows the preference relation induced by the
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CmI-net in Example 8, but considering only sets of benefits which all result from the same
treatment according to Table 1.
Example 8. The following is the encoding of confined reasoning for the C@0 I-net of
Example 7 w.r.t. the multiset M = {(C, 1), (D, 3), (H, 1), (R, 2), (Sm, 1), (Ss, 1)}. For the
encoding we interpret o## as the max number of occurrences of o in M . (22) {(Sm, 1)} B
{(C, 1), (D, 3), (H, 1), (R, 2), (Ss, 1)}; (23) {(C, 1), (R, 1)} B {(D, 1)}; (24) ;, {(C, 1)} : {
(H, 1)} B {(D, 3), (R, 1), (Ss, 1)}; (25) ;, {(R, 2)} : {(H, 1)} B {(D, 3), (C, 1), (Ss, 1)}; (26)
;, {(C, 1)} : {(D, 2)} B {(R, 1)}; (27) ;, {(R, 2)} : {(D, 2)} B {(C, 1)}; (28) ;, {(Sm
, 1)} : {(Ss, 1)} B {(C, 1), (D, 1), (R, 1)}; (29) {(Sm, 1)}, ; : {(C, 1), (R, 1)} B {(Ss, 1)}.

6 Conclusion & future work

As fas as we are aware this is the first work to present a framework for encoding ordinal
multiset preferences, certainly in the context of CI-nets. Our results allow for sound and
complete procedures for confined reasoning, the issue of finding a multiset that captures the
preference relation w.r.t. a C@0 I-net for an evaluation context remaining largely unexplored.
As is determining subclasses of C@0 I-nets beyond acyclic ones where such a multiset can
be found or satisfiability is guaranteed. Complexity issues remain to be explored. Finally,
techniques for e.g. CP nets “in practice” [Al15] as well as algorithms and systems for
CI-nets [SBH16] can be adapted and optimised for the multiset scenario.
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A Reduction of CmI-nets to CI-nets

Let M be a multiset on O and a NM a CmI-net on M. We here define a CI-net NS
M

on a
set SM and a mapping of every M 0 ✓ M to an fM 0 ✓ SM s.t. propositions 2 and 3 hold.

We start by introducing some notation. Given some o 2 O and i, j s.t. i, j � 1 we define the
forward-generated set of j indexed copies from i of o as [o]Fi, j := {oi, oi+1, . . . , oi+(j�1)} and
the backward-generated set of j indexed copies from i of o as [o]Bi, j := {oi, oi�1, . . . , oi�(j�1)}.
If j = 0, we define [o]Fi, j = [o]Bi, j := ;. Then SM :=

–{[o]F1,m
M

(o) | o 2 O}. We call
[o]F1,m

M

(o) = [o]B
m

M

(o),m
M

(o) for o 2 O the set of indexed copies of o in SM .

For some M 0 ✓ M , ⇤M 0 includes all sets which, for each o 2 O, have the same number of
elements from the set of indexed copies of o in SM as instances of o there are in M 0. Formally,
we define ⇤M 0 to be the set {S ✓ SM | |S \ [o]F1,m

M

(o) | = mM0(o) for every o 2 O}. Clearly,
in particular ⇤M = {SM }. We also (partially) order the sets in SM via the order >[ defined as
the transitive closure of the binary relation {(S1, S2) | (S1 [ S2) \ (S1 \ S2) = {oi, oj} s.t. o 2
O, oi 2 S1, oj 2 S2, and j = i+1}. Crucial for our purposes is that there is a unique maximal
element

–{[o]F1,m
M

0 (o) | o 2 O} w.r.t. >[ within ⇤M 0 for every M 0 ✓ M. We denote this
maximal element as fM 0. Note that in particular eM = SM .

Next we proceed to define for a CmI-statement c 2 NM the corresponding CI statementbc 2 NS
M

. Assume c is of the form M+,M� : M1 B M2. For simplicity we write
the multiplicity functions of M+,M�,M1,M2 as m+,m�,m1,m2 respectively. Then bc :=dM+,dM� : cM1 B cM2 where dM+ :=

–{[o]F1,m+(o) | o 2 O}, dM� :=
–{[o]B

m
M

(o),m�(o) |
o 2 O},cM1 :=

–{[o]B
m

M

(o)�m�(o),m1(o) | o 2 O}, cM2 :=
–{[o]F

m+(o)+1,m2(o) | o 2 O}. We
denote the set of CI statements corresponding to the c 2 NM as cs1. Apart from the
CI-statements in cs1, NS

M

also contains the set of CI-statements cs2 := {oi B oj | o 2
O, 1  i < mM (o), j = i + 1}.
Lemma 1. If Ma ; Mb is a CI-flip w.r.t c 2 NM then there is a SM

a

2 ⇤Ma s.t. SM
a

; gMb

is a CI-flip w.r.t. bc 2 NS
M

. Also, if there are SM
a

2 ⇤Ma, SM
b

2 ⇤Mb s.t. SM
a

; SM
b

is a
CI-flip w.r.t. bc 2 NS

M

, then Ma ; Mb is a CI-flip w.r.t. c 2 NM .

Proof. Let c = M+,M� : M1 B M2. The set of all CI-flips “induced” by bc 2 NS
M

are of the
form (S0 [dM+ [ cM1) ; (S0 [dM+ [ cM2) with dM+, cM1,dM+, cM2 defined as above and S0 ✓–{[o]FX

o

,Y
o

| o 2 O} where Xo = m+(o)+m2(o)+1,Yo = mM (o)�(m+(o)+m�(o)+m1(o)+
m2(o)) for each o 2 O. Then for each M 0 s.t. Ma = M 0 [ M+ [ M1, Mb = M 0 [ M+ [ M2,
and Ma ; Mb is a CI-flip w.r.t. c 2 NM , there is a S0 ✓ –{[o]FX

o

,Y
o

| o 2 O}, Sa 2 ⇤Ma,
Sb 2 ⇤Mb s.t. Sa = S0 [ dM+ [ cM1, Sb = S0 [ dM+ [ cM2 and Sa ; Sb is a CI-flip w.r.t.bc 2 NS

M

. In particular, by construction one can pick S0 =
–{[o]F

X
o

,m
M

0 (o) | o 2 O} and
then Sb = gMb. Also, for Sa = S0 [ dM+ [ cM1, Sb = S0 [ dM+ [ cM2 s.t. Sa ; Sb is a
CI-flip w.r.t. bc 2 NS

M

, Ma ; Mb is a CI-flip w.r.t c 2 NM , where Ma = (M 0 [ M+ [ M1),
Mb = (M 0 [ M+ [ M2) and mM0(o) = |S0 \ [o]F1,m

M

(o) | for each o 2 O.
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Lemma 2. If S, S0 ✓ SM and S >[ S0, then there is a sequence of cs2 flips from S to S0

w.r.t. NS
M

.

Proof. (sketch) This lemma follows from the fact that >[ is equivalent to the transitive
closure (within SM ) of the CI-flips induced by cs2.

Lemma 3. Let Ma,Mb ✓ M . If Ma ,!N
M

Mb , then gMa ,!N
S

M

gMb . Also, let SM
a

*N
S

M

SM
b

for some SM
a

2 ⇤Ma, SM
b

2 ⇤Mb denote that there exists a sequence involving at least
one non-cs2 flip w.r.t NS

M

. We call such a sequence non-trivial. Then, if SM
a

*N
S

M

SM
b

,
Ma ,!N

M

Mb also is the case.

Proof. We start by proving by induction on k � 0, that if there exists a sequence Ma, . . . ,Mb

w.r.t. NM with k CI flips, then there is a sequence gMa, . . . ,gMb w.r.t. NS
M

with k cs1 flips.
The base case (k = 0) follows from the fact that if Ma � Mb then gMa � gMb and hence
there is a sequence gMa, . . . ,gMb consisting only of � flips w.r.t. NS

M

.

For the inductive case assume that there exists a sequence Ma, . . . ,Mb w.r.t NM with
k + 1 � 1 CI flips. Consider the last Mc,Md in the sequence s.t. Mc ; Md is a CI flip. By
inductive hypothesis then there is a sequence of flips gMa, . . . , fMc w.r.t. NS

M

with k cs1
flips. By Lemma 1 there exists a SM

c

2 ⇤Mc s.t. SM
c

; gMd is a CI-flip w.r.t. bc 2 NS
M

.
Hence gMa, . . . , fMc, . . . , SM

c

,gMd, . . . ,gMb is a sequence w.r.t. NS
M

with k+1 cs1 flips. HerefMc = SM
c

or fMc, . . . , SM
c

is a sequence of cs2 flips (that such a sequence exists follows
from Lemma 2). Also gMd =gMb or gMd, . . . ,gMb is a sequence consisting only of � flips.

We now prove by induction on k, that if there exists a non-trivial sequence SM
a

, . . . , SM
b

w.r.t.
NS

M

with k cs1 flips for some SM
a

2 ⇤Ma, and SM
b

2 ⇤Mb, then there exists a sequence
Ma, . . . ,Mb w.r.t. NM with the k CI flips. If k = 0, then the sequence SM

a

, . . . , SM
b

must
have at least one � flip, i.e. SM

a

� SM
b

; therefore also Ma � Mb, and hence there is a
sequence Ma, . . . ,Mb consisting only of � flips w.r.t. NM .

For the inductive case assume that there exists a sequence SM
a

, . . . , SM
b

w.r.t. NS
M

with k + 1 � 1 cs1 flips for some SM
a

2 ⇤Ma, SM
b

2 ⇤Mb. Consider the last cs1
flip SM

c

; SM
d

in the sequence, with SM
c

2 ⇤Mc, SM
d

2 ⇤Md for Mc,Mb ✓ M. If the
sequence SM

a

, . . . , SM
c

is trivial we have that Ma = Mc . Otherwise, by inductive hypothesis
there is a sequence Ma, . . . ,Mc w.r.t. NM with k CI flips. Moreover, by Lemma 1 also
Mc ; Md is a CI flip w.r.t. NM . Finally, either Md = Mb (i.e. SM

d

, . . . , SM
b

is a trivial
sequence) or SM

d

� SM
b

(i.e. SM
d

, . . . , SM
b

involves �-flips) in which case Md � Mb . In
all cases we have a sequence Ma, . . . ,Mc,Md, . . . ,Mb w.r.t. NM with k + 1 CI flips.

Proposition 2. Let NM be satisfiable and Ma,Mb ✓ M . Then Ma <N
M

Mb i� gMa <N
S

MgMb .

Proof. If Ma <N
M

Mb, then Ma ,!N
M

Mb. Hence, from Lemma 3 it follows thatgMa <N
S

M

gMb . Assume now gMa <N
S

M

gMb and, therefore, gMa ,!N
S

M

gMb . Note that then
in fact gMa *N

S

M

gMb (for any sequence S0 ,!N
S

M

S00 consisting only in cs2 flips it holds
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that Sc, Sd 2 ⇤Mc for some Mc ✓ M and by assumption Ma , Mb .). Hence, from Lemma 3
it follows that Ma ,!N

M

Mb .

Proposition 3. NM is satisfiable i� NS
M

is satisfiable.

Proof. We prove that NM is unsatisfiable i� NS
M

is unsatisfiable. Assume first that NM

is unsatisfiable. This means that there is an Ma ✓ M s.t. Ma ,!N
M

Ma. Hence, from
Lemma 3 it follows that gMa ,!N

S

M

gMa, i.e. NS
M

is unsatisfiable. Assume now that NS
M

is unsatisfiable. Then there is a SM
a

2 ⇤Ma with Ma ✓ M s.t. SM
a

,!N
S

M

SM
a

. In fact
SM

a

*N
S

M

SM
a

since NS
M

without the CI-statements has an acyclic dependency graph
and is, therefore, satisfiable. Hence, from Lemma 3 it follows that Ma ,!N

M

Ma, i.e. NM

is unsatisfiable.

B Translating confined reasoning about C@0 I-nets to reasoning about
CmI-nets

Let N be a C@0 I net on O, M 2 MO. We here sketch a translation of confined reasoning
w.r.t. N and an M 2 MO to reasoning about a CmI-net N 0 on M. Concretely, let
c = P+ : P1 B P2 be a C@0 I statement in N . c is meaningful w.r.t. M if there is an M 0 2 P+,
s.t. (M 0 [ MP1 ) ✓ M , and (M 0 [ MP2 ) ✓ M . For our translation we rewrite each such c 2 N
into a CmI-statement c0 2 N 0 that is equivalent to c for M, i.e. the CI flips w.r.t. c0 are
exactly those in {(M 0 [ MP1 ) ; (M 0 [ MP2 ) | (M 0 [ MP1 ) ✓ M, (M 0 [ MP2 ) ✓ M}. This
means, the CI flips w.r.t. the resulting CmI-net N 0 = {c0 | c 2 N} are exactly those CI flips
Ma ; Mb w.r.t. N s.t. Ma,Mb ✓ M . As a consequence, Ma ,!N,M Mb i� Ma ,!N0 Mb .

So assume c = P+ : P1 B P2 is a C@0 I- statement in N that is meaningful w.r.t. M . Then,
since c is also satisfiable note that the precondition and comparison expressions can be
written in the form P+ = {o+i � a+i }1ip [ {o�j  a�j }1 jq , P1 = {o1

k + +a1
k}1kr ,

P2 = {o2
l + +a2

l }1ls where each o 2 O appears at most once in a sub-expression of
the form o+i � a+i and at most once in a sub-expression of the form o�j  a�j in the
precondition. Let O⇤ := {o+i }1ip [ {o�j }1 jq [ {o1

k}1kr [ {o2
l }1ls. We re-label

the objects in O⇤ ✓ O to {o1, . . . , om} (m = p + q + r + s). We now define for each
1  h  m, Ax

h := ax
i if there is a t 2 {1, . . . , y} s.t. oh = ox

t , Ax
h := 0 otherwise for

x = +, x = 1, x = 2 and y = p, y = r, y = s respectively. Also, A�
h := a�j if there is

a j 2 {1, . . . , q} s.t. oh = o�j , A�
h := mM (oh) otherwise. Finally, for each 1  h  m

we define B�
h := max{I | A+h  I  A�

h and I + A1
h + A2

h  mM (oh)}. Then c0 2 N 0 is
the CmI-statement M+,M� : M1 B M2 where M+ := {(oh, A+h ) | 1  h  m, A+h > 0},
M� := {(oh, Xo

h

) | 1  h  m, Xo
h

> 0)}, Xo
h

:= mM (oh) � B�
h � A1

h � A2
h, M1 :=

{(oh, A1
h) | 1  h  m, A1

h > 0}, M2 := {(oh, A2
h) | 1  h  m, A2

h > 0}.
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