
An Abstract Machine for Concurrent Haskell with Futures

David Sabel

Computer Science Institute

Goethe-University Frankfurt am Main

sabel@ki.informatik.uni-frankfurt.de

Abstract: We show how Sestoft’s abstract machine for lazy evaluation of purely
functional programs can be extended to evaluate expressions of the calculus CHF –
a process calculus that models Concurrent Haskell extended by imperative and im-
plicit futures. The abstract machine is modularly constructed by first adding monadic
IO-actions to the machine and then in a second step we add concurrency. Our main
result is that the abstract machine coincides with the original operational semantics of
CHF, w.r.t. may- and should-convergence.

1 Introduction

The process calculus CHF [SSS11a] is a model of the core language of Concurrent

Haskell [PGF96, Pey01, PS09] but extended by implicit, concurrent futures which allow a

declarative style of concurrent programming.

CHF is monomorphically typed and its syntax comprises (unlike the π-calculus [Mil99,

SW01]) shared memory in form of Haskell’s MVars, threads (i.e. futures) and heap bind-

ings. Threads evaluate expressions which on the one hand may be monadic operations

to create and access the MVars and to spawn new threads, and on the other hand are

usual pure functional expressions extending the lambda calculus by data constructors,

case-expressions, recursive let-expressions, as well as Haskell’s seq-operator.

In [SSS11a] the operational semantics of CHF is defined by a small-step reduction as

rewriting on processes. Program equivalence of processes and also expressions is given

by a contextual equivalence: two programs are equal iff their observable behavior is indis-

tinguishable even if the programs are used as a subprogram of any other program (i.e. if

the programs are plugged into any arbitrary context). Besides observing whether a pro-

gram may terminate (called may-convergence) contextual equivalence also tests whether

a program never loses the ability to terminate (called should-convergence, or sometimes

must-convergence, see e.g. [CHS05, NSSSS07, RV07, SSS08]). The classic notion of

must-convergence additionally requires that all possible evaluations terminate. An advan-

tage of using should-convergence is that it is invariant w.r.t. restricting the evaluator to fair

scheduling (see e.g [SSS11a]), that contextual equivalence is closed w.r.t. a whole class of

convergence predicates (see [SSS10]), and that inductive reasoning is possible.

In [SSS11a] contextual equivalence in CHF is deeply investigated and a lot of equiva-

29

lences are proved, and recently [SSS11b] shows that CHF is a conservative extension

of its purely functional sublanguage, i.e. all equations that hold in the pure call-by-need

lambda calculus also hold in the process calculus CHF . The obtained results show that

the given operational semantics works well for (mathematically formal) reasoning. On the

other hand the operational semantics is not easy to implement as an interpreter for CHF ,

since e.g. reduction contexts in [SSS11a] have a complex definition and reduction uses

structural congruence of processes implicitly.

Hence, the motivation of this paper is to investigate an alternative operational semantics for

CHF which can easily be implemented as an interpreter, i.e. we will develop an abstract

machine to evaluate expressions and processes of CHF . As a starting point, we will use

the abstract machine mark 1 introduced by Sestoft [Ses97] for call-by-need evaluation of

pure functional programs (which implements the natural semantics given by [Lau93]).

Sestoft’s machine mark 1 is a variant of the Krivine-machine which additionally imple-

ments sharing during evaluation (see [DF07]). The main components are a heap to model

shared bindings, an expression which is evaluated, and a stack to efficiently store the cur-

rent evaluation context. There are only few transition rules which perform the unwinding

to find the next redex, perform reduction, or access and update shared bindings.

Variants of Sestoft’s machine are well-used for several call-by-need lambda calculi to de-

fine the operational semantics, or to give an alternative description of the semantics, re-

spectively. Some examples are [MSC99] for a call-by-need lambda calculus with erratic

choice, [Mor98, Sab08] for call-by-need lambda calculi with McCarthy’s amb-operator,

[BFKT00] for specifying the semantics of Parallel Haskell, and [AHH+05] for the seman-

tics of functional-logic languages.

To construct an abstract machine for CHF we extend (a slightly modified variant of) Ses-

toft’s machine (called M1) in two steps. The first extension (called IOM1) is to add the

ability to perform monadic I/O-operations, i.e. we add storage (i.e. MVars), a further stack,

and machine transitions to execute monadic actions to the machine M1 . In a second step

we extend the machine IOM1 by concurrency, i.e. we allow several threads and add transi-

tions to spawn new threads. The concurrent machine is called CIOM1 . A nice property of

our construction is modularity, i.e. every extended machine reuses the already introduced

transitions of the machine before. Thus CIOM1 is easy to implement, and indeed within

a few hours we programmed a prototype of the machine in Haskell.

Albeit providing such a machine is an interesting result for itself, we also show that our ma-

chine is a correct implementation of the operational semantics of CHF : In Theorem 4.11

we show that may- and should-convergence defined by the rewriting semantics in [SSS11a]

coincides with may- and should-convergence on the machine for every expression the ma-

chine starts with.

The structure of the paper is as follows: In Section 2 we briefly recall the calculus CHF
together with some results on program equivalences in CHF which are required in later

proofs. In Section 3 we introduce the abstract machine CIOM1 for CHF , where we

develop the machine in three steps. In Section 4 we show that machine CIOM1 correctly

implements the operational semantics of CHF . We conclude in Section 5. Not all proofs

are included in the paper, but can be found in the technical report [Sab12].

30

2 The Process Calculus CHF

We recall the calculus CHF which models Concurrent Haskell extended by concurrent

futures [SSS11a]. In Fig. 1(a) the syntax of processes Proc and expressions Exp is shown,

where we assume that x, xi, y, yi are variables of some countably infinite set of variables.

Parallel composition P1 |P2 composes processes, and name restriction νx.P restricts the

scope of variable x to process P . A concurrent thread x⇐ e evaluates the expression e
and then binds the result to the variable x. We also call variable x the future x. In a process

there is usually one distinguished thread – the main thread – which is labeled with “main”

(as notation we use x
main
⇐== e). Bindings x = e represent global shared expressions.

MVars are synchronizing variables, where xm e represents a filled MVar with content e,

and xm− represents an empty MVar. In both cases we call x the name of the MVar. For

a process P we say a variable x is an introduced variable if x is a future, a name of an

MVar, or a left hand side of a binding. A process is well-formed, if there exists at most one

main thread x
main
⇐== e and the introduced variables are pairwise distinct.

We assume a finite set of data constructors c which is partitioned into sets, such that each

set represents a type T . The constructors of a type T are ordered as cT,1, . . . , cT,|T |, where

|T | is the number of constructors belonging to type T . We omit the index T, i in cT,i if it

is clear from the context. Each constructor cT,i has a fixed arity ar(cT,i) ≥ 0. We assume

that there is a unit type () with a single constant () as constructor.

Besides the lambda calculus, expressions Exp (see Fig. 1(a)) comprise (fully-saturated)

constructor applications (c e1 . . . ear(c)), case-expressions, seq-expressions for sequen-

tial evaluation, letrec-expressions to express recursive shared bindings and monadic

expressions MExp (described below). For case-expressions there is a caseT -construct

for every type T which must have a case-alternative for every constructor of type

T . We sometimes abbreviate the case-alternatives as alts. Variables in case-patterns

(c x1 . . . xar(c)) and bound variables in letrec-expressions must be pairwise distinct.

The monadic expression return e represents the monadic action which returns expression

e, the binary operator >>= combines monadic actions, the expression future e creates a

concurrent thread evaluating the action e, the operation newMVar e creates an MVar filled

with e, takeMVar x returns the content of MVar x, and putMVar x e fills MVar x with e.

takeMVar x blocks on an empty MVar, and putMVar x e blocks on a filled MVar.

Example 2.1. Futures allow a declarative programming style, since they allow implicit

synchronization. Assume that act1, act2 perform computations resulting in numbers, and

that we want to sum up both results when they are available, then we can use the action:

future act1 >>=λres1.future act2 >>=λres2.return (res1 + res2)

Executing this action starts two concurrent futures for performing the actions act1 and

act2. The corresponding futures res1 and res2 are like pointers that will eventually point

to the corresponding results. The futures are implicit, since there is no need to explicitly

force the results of res1, res2 before computing the sum.

Variables get bound by abstractions, letrec-expressions, case-alternatives, and by the

31

P, Pi ∈ Proc ::= P1 |P2 | νx.P |x⇐ e |x = e |xm e |xm−

e, ei ∈ Exp ::= x |m |λx.e | (e1 e2) | c e1 . . . ear(c) | seq e1 e2

| letrec x1 = e1, . . . , xn = en in e
| caseT e of altT,1 . . . altT,|T | where altT,i = (cT,i x1 . . . xar(cT,i) → ei)

m ∈ MExp ::= return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

τ, τi ∈ Typ ::= IO τ | (T τ1 . . . τn) | MVar τ | τ1 → τ2
(a) Syntax of Processes, Expressions, Monadic Expressions and Types

D ∈ PC ::= [·] |D|P |P |D | νx.D M ∈ MC ::= [·] |M>>= e

E ∈ EC ::= [·] | (E e) | (case E of alts) | (seq E e)

F ∈ FC ::= E | (takeMVar E) | (putMVar E e)
L ∈ LC ::= x⇐M[F] |x⇐M[F[xn]]|xn = En[xn−1]|. . .|x2 = E2[x1]|x1 = E1

where E2, . . . En are not the empty context.

L̂ ∈ L̂C ::= x⇐M[F] |x⇐M[F[xn]]|xn = En[xn−1]|. . .|x2 = E2[x1]|x1 = E1

where E1, E2, . . . En are not the empty context.
(b) Process-, Monadic-, Evaluation-, and Forcing-Contexts

Monadic Computations:

(lunit) y⇐M[return e1 >>= e2]
CHF

−−→ y⇐M[e2 e1]

(tmvar) y⇐M[takeMVar x]|xm e
CHF

−−→ y⇐M[return e]|xm−

(pmvar) y⇐M[putMVar x e]|xm−
CHF

−−→ y⇐M[return ()]|xm e

(nmvar) y⇐M[newMVar e]
CHF

−−→ νx.(y⇐M[return x]|xm e)

(fork) y⇐M[future e]
CHF

−−→ νz.(y⇐M[return z]| z ⇐ e)
where z is fresh and the created thread is not the main thread

(unIO) y⇐ return e
CHF

−−→ y = e if the thread is not the main-thread

Functional Evaluation:

(cp) L̂[x]|x = v
CHF

−−→ L̂[v]|x = v if v is an abstraction or a variable

(cpcx) L̂[x]|x = c e1 . . . en if c is a constructor, or a monadic operator
CHF

−−→ νy1, . . . yn.(L̂[c y1 . . . yn]|x = c y1 . . . yn | y1 = e1 |. . .| yn = en)
(mkbinds) L[letrec x1 = e1, . . . , xn = en in e]

CHF

−−→ νx1, . . . , xn.(L[e]|x1 = e1 |. . .|xn = en)

(lbeta) L[((λx.e1) e2)]
CHF

−−→ νx.(L[e1]|x = e2)
(case) L[caseT (c e1 . . . en) of . . . (c y1 . . . yn → e) . . .]

CHF

−−→ νy1, . . . , yn.(L[e]| y1 = e1 |. . .| yn = en])

(seq) L[(seq v e)]
CHF

−−→ L[e] if v is a functional value

Closure: If P1 ≡ D[P ′
1], P2 ≡ D[P ′

2], and P ′
1

CHF

−−→ P ′
2 then P1

CHF

−−→ P2
(c) Standard Reduction Rules

Figure 1: The Calculus CHF

32

restriction νx.P . This induces a notion of free and bound variables. With FV (P)
(FV (e), resp) we denote the free variables of process P (expression e, resp.) and with

=α we denote α-equivalence. We assume that the distinct variable convention holds,

i.e. all free variables are distinct from bound variables, all bound variables are pairwise

distinct, and reductions implicitly perform α-renaming to obey this convention. For pro-

cesses structural congruence ≡ is defined as the least congruence satisfying the equa-

tions P1 |P2 ≡ P2 |P1; νx1.νx2.P ≡ νx2.νx1.P ; (P1 |P2)|P3 ≡ P1 | (P2 |P3);
P1 ≡ P2, if P1 =α P2; and (νx.P1)|P2 ≡ νx.(P1 |P2), if x 7∈ FV (P2).

For typing of processes and expressions CHF uses a monomorphic type system where data

constructors and monadic operators are treated like “overloaded” polymorphic constants.

The syntax of types Typ is shown in Fig. 1(a). IO τ means a monadic action with result type

τ , MVar τ means an MVar-reference with content type τ , and τ1 → τ2 is a function type.

For a constructor c we let types(c) be set of its monomorphic types. For simplicity we

assume that every variable x has a fixed (built-in) type given by a global typing function Γ,

i.e. Γ(x) is the type of variable x. For space reasons we omit the typing rules of [SSS11a],

but we use the notation Γ 2 P :: wt (Γ 2 e :: τ , resp.) meaning that (well-formed) process

P can be well-typed (expression e can be well-typed with type τ , resp.) using the global

typing function Γ. Special typing restrictions are that x⇐ e is well-typed, if Γ 2 e :: IO τ ,

and Γ(x) = τ , and that the first argument of seq must not be an IO- or MVar-type, since

otherwise the monad laws would not hold in CHF (and even not in Haskell, see [SSS11a]).

Operational Semantics and Program Equivalence The operational semantics of CHF
(see [SSS11a]) is given by a small-step reduction which implements a call-by-need strat-

egy. The definition requires several classes of contexts, which are shown in Fig. 1(b). For

processes there are process contexts PC. For expressions, monadic contexts MC are used

to find the first monadic action in a sequence of actions. For the evaluation of pure expres-

sions, usual (call-by-name) expression evaluation contexts EC are used, and to enforce

the evaluation of the (first) argument of the monadic operators takeMVar and putMVar,

the class of forcing contexts FC is used. Since we follow a call-by-need strategy, we

sometimes need to search a redex along a chain of bindings, which is expressed by the

LC-contexts and as a special case by the L̂C-contexts.

Definition 2.2 (Call-by-Need Standard Reduction). A functional value is an abstraction

or a constructor application, a value is a functional value or a monadic expression of

MExp. The call-by-need standard reduction
CHF

−−→ is defined by the rules and the closure in

Fig. 1(c). We assume that only well-formed processes are reducible. We also assume that

successful processes (see below, Definition 2.3) are irreducible.

The rules for functional evaluation include a sharing variant of β-reduction (rule (lbeta)),

a rule for copying shared bindings into a needed position: For abstractions rule (cp) is

used and for constructor applications rule (cpcx) shares the arguments before copying the

constructor. The rules (case) and (seq) evaluate case- and seq-expressions, and the rule

(mkbinds) moves letrec-bindings into the global set of shared bindings. For monadic

computations the rule (lunit) applies the first monad law to proceed a sequence of monadic

actions. The rules (nmvar), (tmvar), and (pmvar) handle the creation of and the access to

33

MVars where (tmvar) can only be performed on a filled MVar, and (pmvar) requires an

empty MVar. The rule (fork) spawns a new concurrent thread, where the calling thread

receives the name of the future as result. If a concurrent thread finishes its computation,

then the result is shared as a global binding and the thread is removed (rule (unIO)).

For a reduction → (and also transitions and transformations) we denote with
+
−→,

∗
−→ the

transitive and the reflexive-transitive closure of →, respectively. The notation
k
−→ means a

sequence of k →-steps and
0∨1
−−→ mean one or no reduction. We also sometimes attach a

specific label to the arrow if we mean a specific reduction, and also write (CHF , a) for a

CHF -standard reduction of kind a.

Contextual equivalence equates two processes P1, P2 if their observable behavior is in-

distinguishable if P1 and P2 are plugged into any process context. Thereby the usual

observation is whether the evaluation of the process successfully terminates (called may-

convergence). However, this observation is not sufficient in a concurrent setting, and

thus we will observe may-convergence and a variant of must-convergence (called should-

convergence, see also [RV07, SSS08, SSS11a]):

Definition 2.3. A process P is successful iff it is well-formed and contains a main thread

of the form x
main
⇐== return e. A process P may-converges (written as P↓), iff it is well-

formed and reduces to a successful process, i.e. ∃P ′ : P
CHF,∗
−−−→ P ′ ∧ P ′ is successful. If

P↓ does not hold, then P must-diverges written as P⇑. A process P should-converges

(written as P⇓), iff it is well-formed and remains may-convergent under reduction, i.e.

∀P ′ : P
CHF,∗
−−−→ P ′ =⇒ P ′↓. If P is not should-convergent, then we say P may-diverges,

written as P↑. For an expression e :: IO τ we write eχ for any χ ∈ {↓,⇓, ↑,⇑} iff Pχ

where P := x
main
⇐== e and x 7∈ FV (e).

Note that P↑ iff there is a finite reduction sequence P
CHF,∗
−−−→ P ′ such that P ′⇑.

Definition 2.4. Contextual approximation ≤CHF and contextual equivalence ∼CHF on

processes are defined as ≤CHF := ≤↓ ∩ ≤⇓ and ∼CHF := ≤CHF ∩ ≥CHF where

P1 ≤↓ P2 iff ∀D ∈ PC : D[P1]↓ =⇒ D[P2]↓
P1 ≤⇓ P2 iff ∀D ∈ PC : D[P1]⇓ =⇒ D[P2]⇓

Transformations and Reduction Lengths in CHF We recall some results of [SSS11a]

on the correctness of several program transformations for CHF . Moreover, for some

specific cases we prove that the reduction length of a standard reduction is not increased

by a transformation. These results will be necessary later when we show that the abstract

machine is a correct evaluator for CHF .

A program transformation γ is a binary relation on processes. It is correct iff γ ⊆ ∼CHF .

In Fig. 2 some program transformations are defined, where C is a process context with an

expression hole. The general copying rule (gcp) allows to copy a binding into an arbitrary

position, the transformation (cpx) is the special case where the copied expression is a

variable, and the transformation (cpcxxL) is the special case of (gcp) where the copied

34

(gcp) C[x]|x = e → C[e]|x = e

(cpx) C[x]|x = y → C[y]|x = y, where y is a variable

(cpcxxL) L̂[x]|x = c y1 . . . yn → L̂[c y1 . . . yn]|x = c y1 . . . yn,

where c is a constructor or a monadic operator, L̂ ∈ L̂C, and all yi are variables

(gc) νx1, . . . , xn.(P | Comp(x1)| . . . | Comp(xn)) → P
if for all i ∈ {1, . . . , n}: Comp(xi) is a binding xi = ei, an MVar xi m ei,

or an empty MVar xi m−, and xi 7∈ FV (P).

Figure 2: The Transformations (gcp), (cpx), (cpcxxL), and (gc)

expression is a constructor application or a monadic operator where all arguments are

variables and the target must be inside an L̂C-context. The rule (gc) performs garbage

collection and thus allows to remove unused parts of the process.

Theorem 2.5 ([SSS11a]). The reductions (CHF , lunit), (CHF , nmvar), (CHF , fork),
and (CHF , unIO) are correct transformations. The transformations (cp), (cpcx), (lbeta),

(case), (seq), (mkbinds) are correct as transformation in any context (i.e. the reduction

rules in Fig. 1(c) where the context L is replaced by an arbitrary process context C with

an expression hole) such that the scoping is not violated by the transformation. The trans-

formations (gcp), (cpx), (cpcxxL), and (gc) are also correct.

We introduce a special notion for reduction lengths:

Definition 2.6. If P0
CHF

−−→ P1
CHF

−−→ . . .
CHF

−−→ Pn where Pn is successful (Pn⇑, resp.) and

m ≤ n is the number of all reductions except for (cp)-reductions that copy a variable, then

we write P0↓
[m,n]Pn (P0↑

[m,n]Pn, resp.). We omit the process Pn if it is not of interest.

In [Sab12] we show that the following properties on reduction lengths hold:

Proposition 2.7. Let P1 and P2 be processes such that P1
a
−→ P2 where a ∈

{(CHF , cp), (gc), (cpx)}. Then P1↓
[m,n] =⇒ P2↓

[m′,n′] and P1↑
[m,n] =⇒ P2↑

[m′,n′]

where in both cases m′ ≤ m and n′ ≤ n. If P1
cpcxxL
−−−−→ P2, then P1↓

[m,n] =⇒

P2↓
[m′,n′] and P1↑

[m,n] =⇒ P2↑
[m′,n′] where in both cases m′ ≤ m.

3 Constructing an Abstract Machine for CHF

The goal of this section is to introduce an abstract machine for CHF . The construction of

the machine is performed in three steps: first the machine M1 for evaluating pure func-

tional expressions is introduced, then the machine is extended to handle monadic actions

(called IOM1) and finally concurrency is added resulting in the machine CIOM1 .

An Abstract Machine for Evaluating Pure Expressions The abstract machine M1
evaluates pure functional programs. It is analogous to Sestoft’s machine mark 1 [Ses97]

35

but extended to operate also on case- and seq-expressions and to “functionally evaluate”

monadic expressions, i.e. they are treated like ordinary constructor applications and not as

actions. All of our abstract machines will only evaluate simplified expressions (analogous

to normalized expressions in [Lau93, Ses97]):

Definition 3.1. Simplified expressions ExpS and simplified monadic expressions MExpS

are built by the following grammar, where x, xi are variables:

e, ei ∈ ExpS ::= x |me |λx.e | (e x) | c x1 . . . xar(c) | seq e x
| letrec x1 = e1 . . . xn = en in e
| caseT e of altT,1 . . . altT,|T | where altT,i = (cT,i x1 . . . xar(cT,i) → ei)

me ∈ MExpS ::= return x |x1 >>= x2 | future x
| takeMVar x | newMVar x | putMVar x1 x2

Simplified process ProcS are defined like processes Proc where all expressions are simpli-

fied expressions and additionally all MVars have only variables as content.

We first define the state of M1 :

Definition 3.2. A state of machine M1 is a tuple (H, e,S) where: H is a heap, i.e. a

mapping of (finitely many) variables to expressions. To make the mapping explicit, we use

the notation {x1 3→ e1, . . . , xn 3→ en}. We write H1 ·∪H2 for the disjoint union of the

heaps H1 and H2. The second component, e, is a simplified expression. It is the currently

evaluated expression. S is a stack, where allowed entries are #app(x), #seq(x), #case(alts),
and #heap(x). We use list notation for stacks, i.e. [] is the empty stack, and a : S is the stack

with top entry a and tail S.

For a well-typed simplified expression e, the initial state of machine M1 is (∅, e, []). A

state of M1 is a final state if it is of the form (H, v, []) where v is an abstraction, a con-

structor application, or a monadic expression. In Fig. 3(a) the transition relation
M1

−→ of

machine M1 is defined. The rules (pushApp), (pushSeq), and (pushAlts) perform unwinding to

find the next redex. The corresponding contexts are stored on the stack. The rules (takeApp),

(takeSeq), and (branch) perform beta-, seq-, and case-reduction. The rules (enter) and (update)

are used to look up and restore (after a successful evaluation) bindings of the heap. The

rule (mkBinds) moves local letrec-bindings into the (global) heap.

Compared to Sestoft’s mark 1 we did some slight modifications (aside from handling

seq and case): We did not include a rule (blackhole) for the case, that the redex is a

variable which is not bound in the heap (e.g. this case may happen after trying to evaluate

a recursive binding of the form x 3→ seq x x). In our machine M1 there is simply no tran-

sition and the machine gets stuck. Another difference is in the (update) transition: While

M1 allows to perform an update if the expression is a variable, Sestoft’s mark 1 does not

allow this transition. One reason for our modification is that later in the machine with

IO-transitions (IOM1) we also must perform those updates, if the variables are names

of MVars, e.g. for the process y⇐ takeMVar x|x = z | z m v the name of the MVar z
must be copied resulting in y⇐ takeMVar z |x = z | z m v. Finally, we do not explic-

itly perform α-renaming in our rules, but we assume that the distinct variable convention

is always fulfilled and that necessary α-renamings are performed implicitly.

36

(pushApp) (H, (e x),S)
M1

−→ (H, e, #app(x) : S)

(pushSeq) (H, (seq e x),S)
M1

−→ (H, e, #seq(x) : S)

(pushAlts) (H, (caseT e of alts),S)
M1

−→ (H, e, #case(alts) : S)

(takeApp) (H, λx.e, #app(y) : S)
M1

−→ (H, e[y/x],S)

(takeSeq) (H, v, #seq(y) : S)
M1

−→ (H, y,S), if v is an abstraction or a constructor app.

(branch) (H, (c x1 . . . xn), #case(. . . (c y1 . . . yn → e) . . .) : S)
M1

−→ (H, e[xi/yi]
n
i=1,S)

(enter) (H ·∪{y 3→ e}, y,S)
M1

−→ (H, e, #heap(y) : S)

(update) (H, v, #heap(y) : S)
M1

−→ (H ·∪{y 3→ v}, v,S)
if v is an abstraction, a constructor app., a monadic operator, or a variable with v 7= y

(mkBinds) (H, letrec x1 = e1, . . . , xn = en in e,S)
M1

−→ (H ·∪
⋃n

i=1{xi 3→ ei}, e,S)

(a) Transition Relation
M1−→ of Machine M1

(M1) (H,M, e,S, I)
IOM1

−−→ (H′,M′, e′,S ′, I ′)

if (H, e,S)
M1

−→ (H′, e′,S ′) on machine M1

(newMVar) (H,M, newMVar x, [], I)
IOM1

−−→ (H,M·∪{y mx}, return y, [], I)
where y is a fresh variable

(takeMVar) (H,M·∪{xm y}, x, [], #take : I)
IOM1

−−→ (H,M·∪{xm−}, return y, [], I)

(putMVar) (H,M·∪{xm−}, x, [], #put(y) : I)
IOM1

−−→ (H,M·∪{xm y}, return (), [], I)

(pushTake) (H,M, takeMVar x, [], I)
IOM1

−−→ (H,M, x, [], #take : I)

(pushPut) (H,M, putMVar x y, [], I)
IOM1

−−→ (H,M, x, [], #put(y) : I)

(pushBind) (H,M, x >>= y, [], I)
IOM1

−−→ (H,M, x, [], # >>= (y) : I)

(lunit) (H,M, return x, [], # >>= (y) : I)
IOM1

−−→ (H,M, (y x), [], I)

(b) Transition Relation
IOM1−−→ of Machine IOM1

(unIO) (H,M, T ·∪{(x, (return y), [], [])})
CIOM1

−−−→ (H ·∪{x 3→ y},M, T)
if thread named x is not the main-thread

(fork) (H,M, T ·∪{(x, (future y), [], I)})
CIOM1

−−−→ (H,M, T ·∪{(x, (return z), [], I), (z, y, [], [])})
where z is a fresh variable

(IOM1) (H,M, T ·∪{(x, e,S, I)})
CIOM1

−−−→ (H′,M′, T ·∪{(x, e′,S ′, I ′)})

if (H,M, e,S, I)
IOM1

−−→ (H′,M′, e′,S ′, I ′) on machine IOM1 .

The rule is only used if (fork) or (unIO) is not applicable for the thread named x.

(c) Transition Relation
CIOM1−−−→ of Machine CIOM1

Figure 3: Transition Relations of the Machines M1 , IOM1 , and CIOM1

37

Example 3.3. We demonstrate the evaluation of machine M1 :

(∅, letrec x1 = (λy.y) w, x2 = takeMVar x1, x3 = x2 in (λz.z) x3, [])
M1,mkBinds
−−−−−−−→ ({x1 3→ (λy.y) w, x2 3→ takeMVar x1, x3 3→ x2}, (λz.z) x3, [])

M1,pushApp
−−−−−−−→ ({x1 3→ (λy.y) w, x2 3→ takeMVar x1, x3 3→ x2}, λz.z, [#app(x3)])

M1,takeApp
−−−−−−→ ({x1 3→ (λy.y) w, x2 3→ takeMVar x1, x3 3→ x2}, x3, [])

M1,enter
−−−−→ ({x1 3→ (λy.y) w, x2 3→ takeMVar x1}, x2, [#heap(x3)])

M1,update
−−−−−→ ({x1 3→ (λy.y) w, x2 3→ takeMVar x1, x3 3→ x2}, x2, [])

M1,enter
−−−−→ ({x1 3→ (λy.y) w, x3 3→ x2}, takeMVar x1, [#heap(x2)])

M1,update
−−−−−→ ({x1 3→ (λy.y) w, x3 3→ x2, x2 3→ takeMVar x1}, takeMVar x1, [])

The last state is a final state, since M1 treats monadic operators like values.

Extending M1 by Monadic I/O We will extend the machine M1 , such that MVars

and operations on MVars can be performed. We have to implement the operations of the

monad, i.e. return, >>= and the operations takeMVar, putMVar, newMVar to access and

create MVars. The state of the machine is extended by two components: a set of MVars

which models the memory and a further stack – called IO-stack – which allows a clean

separation between monadic and functional evaluation. An IO-stack is a stack where the

following entries are allowed: The symbol #take to store a takeMVar operation, entries of

the form #put(x) to store a putMVar-operation, where x is the new (to-be-written) content

of the MVar, and # >>= (y) to store a >>= -operation, where y is the right argument of >>= .

Definition 3.4. A state of the machine IOM1 is a tuple (H,M, e,S, I) where heap H,

expression e, and stack S are as before (in machine M1). M is a set of MVars with

variables as content: a filled MVar is written as xm y, and an empty MVar is written as

xm−. I is an IO-stack.

We only consider the evaluation of expressions of IO-type. For computing an expression

e :: IO τ the machine IOM1 starts with state (∅, ∅, e, [], []). A state is a final state if both

stacks are empty and the evaluated expression is of the form (return x).

The transition relation
IOM1

−−→ of the machine IOM1 is defined in Figure 3(b). The first rule

lifts all transitions of M1 to machine IOM1 . The remaining rules have in common, that

they require the (usual) stack S to be empty. That is how functional evaluation is separated

from monadic computation: as long as the usual stack is filled, functional evaluation is

performed and if the usual stack is empty, then monadic computations are performed.

The rule (newMVar) creates a new MVar and returns its name. The rule (takeMVar) takes the

content of a filled MVar. There is no rule for the case that the MVar is already empty.

In this case the machine gets stuck. Performing the take-operation requires that the to-be-

evaluated expression is already the name of the MVar. That is why first (pushTake) pushes the

take-operation on the IO-stack and thus forces the argument to be evaluated first. The rules

(putMVar) and (pushPut) are the corresponding rules for performing a putMVar-operation:

First (pushPut) enforces the first argument to be evaluated (to get the name of the MVar),

38

then either (putMVar) is performed to fill the MVar (if it is empty) or the machine gets stuck,

if the MVar is already filled. For implementing the monadic sequencing operator >>= , the

action on the left hand side is performed first. Hence the (pushBind)-operation stores the

second argument on the IO-stack. When the execution of the first action ends successfully

with (return x), then rule (lunit) evaluates the >>= -operator.

A single thread y⇐M[F[e]] of CHF corresponds to a machine state of IOM1 as follows:

the IO-stack holds the corresponding M-context of the expression and also the takeMVar-

or putMVar-operation on the top-level of the F-context. The call-by-name evaluation con-

text E inside the F-context is stored on the usual stack.

Since we only evaluate well-typed expressions, the following lemma holds:

Lemma 3.5. For any machine state of IOM1 which is reachable from a start state for a

well-typed expression e :: IO τ , the IO-stack is of the following form: All entries are of the

form # >>= (x) except for the top-element which also may be #take or #put(x).

Example 3.6. We again consider the expression of Example 3.3 and its execution on ma-

chine IOM1 , where we assume that the set M contains a filled MVar w m c. The first

eight transitions are as on machine M1 , where the MVars and the IO-stack are irrelevant:

(∅, {w m c}, letrec x1 = (λy.y) w, x2 = takeMVar x1, x3 = x2 in (λz.z) x3, [], [])
IOM1,∗
−−−→ ({x1 3→ (λy.y) w, x3 3→ x2, x2 3→ takeMVar x1}, {w m c}, takeMVar x1, [], [])

Now machine IOM1 proceeds as follows:

IOM1,pushTake
−−−−−−−−→ ({x1 3→ (λy.y) w, x3 3→ x2, x2 3→ takeMVar x1}, {w m c}, x1, [], [#take])

IOM1,enter
−−−−−→ ({x3 3→ x2, x2 3→ takeMVar x1}, {w m c}, (λy.y) w, [#heap(x1)], [#take])

IOM1,pushApp
−−−−−−−−→ ({x3 3→ x2, x2 3→ takeMVar x1}, {w m c}, λy.y, [#app(w), #heap(x1)], [#take])

IOM1,takeApp
−−−−−−−→ ({x3 3→ x2, x2 3→ takeMVar x1}, {w m c}, w, [#heap(x1)], [#take])

IOM1,update
−−−−−−→ ({x3 3→ x2, x2 3→ takeMVar x1, x1 3→ w}, {w m c}, w, [], [#take])

IOM1,takeMVar
−−−−−−−−→ ({x3 3→ x2, x2 3→ takeMVar x1, x1 3→ w}, {w m−}, return c, [], [])

Adding Concurrency Constructing the concurrent machine CIOM1 from the sequen-

tial machine IOM1 is easy, since most of the parts of the machine IOM1 can be reused.

Instead of evaluating a single expression, the machine CIOM1 will evaluate several ex-

pressions in several threads. Any such thread consists of a to-be-evaluated expression,

a stack, and an IO-stack. Moreover, since threads represent futures, every thread has a

name (a variable). There is one unique distinguished thread, the main thread. If the main-

thread is successfully evaluated, then the whole machine stops. Further components of

the machine CIOM1 are the heap H and the set of MVars M which are globally shared

over all threads. For the transition relation of the machine CIOM1 a single thread is non-

deterministically selected and the (thread-local) transition is performed for the selected

thread. For this thread-local transition we can reuse the transition relation of the machine

IOM1 . There are two exceptions: If the monadic operation future spawns a new thread,

and if a thread finishes its evaluation such that its result can be shared in the heap.

39

Definition 3.7. A thread (or future, alternatively) of the machine CIOM1 is a 4-tuple

(x, e,S, I) where x is a variable, called the name of the future, e is a simplified expression

which is evaluated by the thread, S is a stack, and I is an IO-stack. A future can be

distinguished as a main-thread, which we sometimes write as (x, e,S, I)main.

A state of machine CIOM1 is a 3-tuple (H,M, T) where H is a heap of shared bindings,

M is a set of MVars, and T is a set of threads.

Definition 3.8. For a simplified expression e :: IO τ the start state Init(e) of machine

CIOM1 is (∅, ∅, T) where T = {(x, e, [], [])main} and x is a fresh variable (x /∈ FV (e)).

A state of the machine CIOM1 is a final state if the main-thread is of the form

(y, return x, [], [])main where y and x may be equal.

Definition 3.9. The transition relation
CIOM1

−−−→ of machine CIOM1 is shown in Fig. 3(c).

For one step a thread is selected which may proceed. This selection is performed nonde-

terministically over all threads. Note that threads which cannot proceed are not selected.

Those threads are about to evaluate a variable which is not bound in the heap, or try to

perform a (takeMVar)- or (putMVar)-transition on an empty or filled MVar. We also assume

that transitions are not applicable to final states.

When a thread successfully finishes its computation, the rule (unIO) removes the thread and

stores the result in the heap by a new binding. Note that other threads which want to access

the value of a future x will not be selected for transition until the result becomes available

as a binding in the heap. The rule (fork) evaluates a future-operation and spawns a new

thread. In all other cases the rule (IOM1) is used which lifts the transition relation
IOM1

−−→ of

IOM1 to the concurrent machine CIOM1 .

Note that for a real implementation one would require some kind of fairness and thus for

instance organize the set of threads as a priority-queue of threads.

Definition 3.10. A state S is valid, if there exists e :: IO τ such that Init(e)
CIOM1,∗
−−−−→ S.

We only consider valid states in the following. It is easy to verify that for any valid state of

CIOM1 all introduced variables (names of MVars, left hand sides of heap bindings, and

names of threads) are pairwise distinct, all #heap(x)-entries in stacks are pairwise distinct,

and all the variables x in such entries do not occur as a left hand side in the heap.

4 Correctness of the Abstract Machine

In this section we will show that the abstract machine CIOM1 is a correct evaluator for

CHF , that is for all expressions e :: IO τ may- and should-convergence of CHF coincide

with may- and should-convergence of the machine CIOM1 where e is simplified before

the evaluation. Indeed we will not only consider expressions and will work with processes

in most of our proofs. As a simplification we assume that in CHF for the evaluation of a

process all ν-binders are dropped and that reduction does not introduce ν-binders. Instead

corresponding α-renamings are performed implicitly to represent the according scopes.

40

We first show that it is correct to take into account simplified expressions and processes,

only. The first translation shares all necessary parts to derive simplified processes, i.e. gen-

eral processes can be transformed into simplified processes by creating new bindings.

Definition 4.1. The function σ :: Proc → ProcS translates processes into simplified

processes. It is defined to be homomorphic over the term structure (e.g. σ(P1 |P2) :=
σ(P1)|σ(P2), etc.) except for the following cases:

σ(e1 e2) := letrec x = σ(e2) in (σ(e1) x)
σ(c e1 . . . en) := letrec x1 = σ(e1), . . . , xn = σ(en) in c x1 . . . xn

if c is a constructor, or a monadic operator

σ(seq e1 e2) := letrec x = σ(e2) in seq σ(e1) x
σ(xm e) := xm y | y = σ(e)

The results in [SSS11a] imply that the translation σ preserves contextual equivalence:

Theorem 4.2. For all processes P ∈ Proc: P ∼CHF σ(P).

We define may- and should-convergence based on the machine transition of CIOM1 :

Definition 4.3. A valid state S may-converges (S↓CIOM1) iff there exists a final state

S′ such that S
CIOM1,∗
−−−−→ S′; and S should-converges (S⇓CIOM1) iff ∀S′ : S

CIOM1,∗
−−−−→

S′ =⇒ S′↓CIOM1 . An expression e :: IO τ may-converges on CIOM1 (e↓CIOM1) iff

Init(σ(e))↓CIOM1 , and e should-converges on CIOM1 (e⇓CIOM1) iff Init(σ(e))⇓CIOM1 .

We write e⇑CIOM1 iff ¬(e↓CIOM1) and e↑CIOM1 iff ¬(e⇓CIOM1).

Note that if we would restrict evaluation to fair evaluations only, i.e. forbidding (infinite)

reductions sequences where an executable thread is ignored infinitely long, then the in-

duced predicates of may- and should-convergence are unchanged (see also e.g. [Sab08,

SSS11a]). Thus for reasoning it is not necessary to explicitly treat fairness.

We will now define the translation ρ which translates valid machine states of CIOM1 into

processes. Note that the resulting process is not necessarily simplified. In abuse of notation

we allow also non-simplified expressions inside the machine state during the translation.

Definition 4.4. Let (H,M, T) = (
⋃n

i=1{xi 3→ e1},{m1, . . . ,mn′}, {T1, . . . , Tn′′}} be

a valid machine state of CIOM1 where mi are MVars and Ti are threads.

Then ρ(H,M, T) := x1 = e1 | . . . |xn = en |m1 | . . . |mn′ | ρ(T1)| . . . | ρ(Tn′′)
where a single thread Ti is translated as follows:

ρ(y, e, #app(x) : S, I) := ρ(y, e x,S, I)
ρ(y, e, #seq(x) : S, I) := ρ(y, seq e x,S, I)
ρ(y, e, #heap(x) : S, I) := x = e| ρ(y, x,S, I)
ρ(y, e, #case(alts) : S, I) := ρ(y, case e of alts,S, I)
ρ(y, e, [], # >>= (x) : I) := ρ(y, e>>=x, [], I)
ρ(y, e, [], #take : I) := ρ(y, takeMVar e, [], I)
ρ(y, e, [], #put(x) : I) := ρ(y, putMVar e x, [], I)

ρ(y, e, [], []) := y
main
⇐== e, if y is a main-thread, and y⇐ e, otherwise

41

Lemma 4.5. Let S be a valid machine state with S
CIOM1

−−−→ S′. Then either ρ(S) = ρ(S′)

or ρ(S)
CHF

−−→
cpx,∗
−−−→

gc,∗
−−→ ρ(S′).

Proof. This follows by inspecting all cases (see [Sab12]). The (cpx) and (gc) transforma-

tions are necessary to remove variable-to-variable bindings which are introduced in CHF
by (lbeta), (case), and (cpcx) but not by the corresponding transitions (takeApp), (branch), and

(update).

Proposition 4.6. For every valid state S of CIOM1 : S↓CIOM1 =⇒ ρ(S)↓.

Proof. Let Sn↓CIOM1 , i.e. Sn
CIOM1

−−−→ . . .
CIOM1

−−−→ S0 where S0 is a final state. We use induc-

tion on n: If n = 0, then Sn is a final state and ρ(Sn) is successful. For the induction step

assume that ρ(Sn−1)↓. The analysis in Lemma 4.5 shows that either ρ(Sn) = ρ(Sn−1),

ρ(Sn)
CHF

−−→ ρ(Sn−1), or ρ(Sn)
CHF

−−→ P ∼CHF ρ(Sn−1) (since (cpx) and (gc) are correct

program transformations, see Theorem 2.5). For the first two cases obviously ρ(Sn)↓, for

the third case Sn−1↓ and contextual equivalence imply that P↓ and thus also ρ(Sn)↓.

Given a state S and a reduction of the corresponding process, say ρ(S)
CHF

−−→ P , we now

try to find a sequence of corresponding machine transitions for S.

Lemma 4.7. Let S be a valid machine state, and let ρ(S)
CHF

−−→ P . Then there exists a valid

state S′ with S
CIOM1,∗
−−−−→ S′ such that one of the following properties holds: (1) ρ(S′) = P ;

or (2) P
CHF,cp
−−−→ ρ(S′); or (3) in case of a (CHF , cpcx)-reduction P

cpcxxL
−−−−→

cpx,∗
−−−→

gc,∗
−−→

ρ(S′); or (4) P
cpx,∗
−−−→

gc,∗
−−→ ρ(S′).

Proof. We give a brief description, details are in [Sab12]. Several transitions are necessary

to find the corresponding redex using the transitions (pushBind), (pushApp), (pushSeq), (pushAlts),

and (enter). For the first case a machine transition corresponds to standard reduction in

CHF . The second and third case may occur if a (cp) or (cpcx) reduction is performed: then

perhaps the corresponding heap binding in the machine is under evaluation of the wrong

thread and the machine must perform two (update) transitions, where one corresponds to

the (cp) (or (cpcx)) reduction, and the other one is also a (cp) standard reduction or a

(cpcxxL)-transformation. If a constructor was shared by a (CHF , cpcx)-reduction, then

the generated variable-to-variable bindings must be inlined and removed by performing

a sequence of (cpx) and (gc) transformations. Case (4) describes a necessary removal of

variable-to-variable bindings which are introduced by a (lbeta)- or (case)-reduction.

Proposition 4.8. For every valid machine state S of CIOM1 : ρ(S)↓ =⇒ S↓CIOM1 .

Proof. Let Pn↓
[m,n]P0, i.e. Pn

CHF

−−→ Pn−1
CHF

−−→ . . .
CHF

−−→ P0 where P0 is successful,

and m is the number of all reductions except of (cp)-reductions that copy a variable. We

use induction on the pair (m, n), ordered lexicographically. For n = 0 the claim holds,

since only final machine states are translated into successful processes. For the induction

step assume that the claim holds for all (m′, n′) < (m, n). We apply Lemma 4.7 to the

reduction ρ(Sn) = Pn
CHF

−−→ Pn−1 where Pn−1↓
[m′,n−1] such that either m′ = m (if the

42

reduction is also a (cpx)-transformation), or m′ = m − 1 (in all other cases). This shows

Sn
CIOM1,∗
−−−−→ S′ by the following cases: (i) ρ(S′) = Pn−1: Then Sn↓CIOM1 by the induction

hypothesis. (ii) Pn−1
CHF,cp
−−−→ ρ(S′), or Pn−1

cpx,∗
−−−→

gc,∗
−−→ ρ(S′). Then Proposition 2.7

shows that ρ(S′)↓[m′′,n′′] where (m′′, n′′) < (m, n). Applying the induction hypothesis

to ρ(S′) yields S′↓CIOM1 and thus also Sn↓CIOM1 . (iii) Pn−1
cpcxxL
−−−−→

cpx,∗
−−−→

gc,∗
−−→ ρ(S′).

Then the equation m′ = m − 1 must hold, since the standard reduction is (CHF , cpcx).

Proposition 2.7 shows that ρ(S′)↓[m′′,n′′] where (m′′, n′′) < (m, n) and thus we can apply

the induction hypothesis to ρ(S′) and have S′↓CIOM1 and thus also Sn↓CIOM1 .

Since ¬↓ = ⇑ and ¬↓CIOM1 = ⇑CIOM1 , Propositions 4.6 and 4.8 also imply:

Lemma 4.9. For every valid machine state S of CIOM1 : ρ(S)⇑ ⇐⇒ S⇑CIOM1 .

Proposition 4.10. For every valid machine state S of CIOM1 : ρ(S)⇓ ⇐⇒ S⇓CIOM1 .

Proof. The claim is equivalent to ρ(S)↑ ⇐⇒ S↑CIOM1 . Both directions can be proved

by induction analogously to the proofs for may-convergence in Propositions 4.6 and 4.8

except for the base cases of the inductions which are covered by Lemma 4.9.

Theorem 4.11. For every expression e :: IO τ the equivalences e↓ ⇐⇒ e↓CIOM1 and

e⇓ ⇐⇒ e⇓CIOM1 hold.

Proof. This follows from Propositions 4.6,4.8, and 4.10 and since for any well-typed ex-

pression e :: IO τ we have ρ(Init(σ(e))) = x
main
⇐== σ(e) ∼CHF x

main
⇐== e where the last

equivalence holds by Theorem 4.2.

5 Conclusion

We introduced the concurrent abstract machine CIOM1 for evaluation of CHF -programs

and showed that the machine is a correct evaluator w.r.t. the semantics of the process cal-

culus CHF . Further work is to optimize the machine, e.g. by following the modifications

presented in [Ses97] (avoiding substitutions by using closures, using a nameless represen-

tation by de Bruijn-indices, etc.) and showing correctness of them. Another direction is to

analyze how to map the threads of CIOM1 to a multicore architecture.

Acknowledgments I thank Manfred Schmidt-Schauß for reading this paper and for dis-

cussions on this paper. I also thank the anonymous reviewers for their valuable comments.

References

[AHH+05] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for declar-
ative multi-paradigm languages. J. Symb. Comput., 40:795–829, 2005.

43

[BFKT00] C. A. Baker-Finch, D. J. King, and P. W. Trinder. An operational semantics for parallel
lazy evaluation. In 5th ICFP, pp. 162–173. ACM, 2000.

[CHS05] A. Carayol, D. Hirschkoff, and D. Sangiorgi. On the representation of McCarthy’s amb
in the Pi-calculus. Theoret. Comput. Sci., 330(3):439–473, 2005.

[DF07] R. Douence and P. Fradet. The next 700 Krivine machines. Higher Order Symbol.
Comput., 20:237–255, 2007.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In 20th POPL, pp. 144–154.
ACM, 1993.

[Mil99] R. Milner. Communicating and mobile systems: the π-calculus. CUP, 1999.

[Mor98] A. Moran. Call-by-name, call-by-need, and McCarthy’s Amb. PhD thesis, Dept. of
Comp. Science, Chalmers university, Sweden, 1998.

[MSC99] A. Moran, D. Sands, and M. Carlsson. Erratic Fudgets: A semantic theory for an
embedded coordination language. In Coordination ’99, LNCS 1594, pp. 85–102. 1999.

[NSSSS07] J. Niehren, D. Sabel, M. Schmidt-Schauß, and J. Schwinghammer. Observational se-
mantics for a concurrent lambda calculus with reference cells and futures. Electron.
Notes Theor. Comput. Sci., 173:313–337, 2007.

[Pey01] S. Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. In Engineering theories of software
construction, pp. 47–96. IOS-Press, 2001.

[PGF96] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23th POPL, pp.
295–308. ACM, 1996.

[PS09] S. Peyton Jones and S. Singh. A tutorial on parallel and concurrent programming in
Haskell. In 6th AFP, pp. 267–305. Springer, 2009.

[RV07] A. Rensink and W. Vogler. Fair testing. Inform. and Comput., 205(2):125–198, 2007.

[Sab08] D. Sabel. Semantics of a call-by-need lambda calculus with McCarthy’s amb for pro-
gram equivalence. Dissertation, Goethe-Universität Frankfurt Germany, 2008.

[Sab12] D. Sabel. An abstract machine for Concurrent Haskell with futures. Frank
report 48, Institut für Informatik, Goethe-Universität Frankfurt am Main, 2012.
http://www.ki.informatik.uni-frankfurt.de/papers/frank/.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. J. Funct. Progr., 7(3):231–264, 1997.

[SSS08] D. Sabel and M. Schmidt-Schauß. A call-by-need lambda-calculus with locally bottom-
avoiding choice: context lemma and correctness of transformations. Math. Structures
Comput. Sci., 18(03):501–553, 2008.

[SSS10] M. Schmidt-Schauß and D. Sabel. Closures of may-, should- and must-convergences
for contextual equivalence. Inform. Process. Lett., 110(6):232 – 235, 2010.

[SSS11a] D. Sabel and M. Schmidt-Schauß. A contextual semantics for Concurrent Haskell with
futures. In 13th PPDP, pp. 101–112, ACM, 2011.

[SSS11b] D. Sabel and M. Schmidt-Schauß. On conservativity of Concurrent Haskell. Frank
report 47, Institut für Informatik, Goethe-Universität Frankfurt am Main, 2011.
http://www.ki.informatik.uni-frankfurt.de/papers/frank/.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes. CUP, 2001.

44

