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Abstract: Long living software systems (LLSSs) must provide the flexibility to react
to changes in their operating environment as well as to changes in the user’s require-
ments, even during operation. Self-adaptive software systems (SASSs) face adaptivity
at runtime within predefined bounds. Yet, not all types of necessary variations can be
anticipated and unforeseen changes to software may happen. Thus, systems that are
meant to live in such an open-ended world must provide self-adaptivity (micro adap-
tation), but there is an additional need for adaptability of the system so that it can be
adjusted externally (macro adaptation). This paper gives an overview of the graph-
based runtime adaptation framework (GRAF) and sketches how it targets both types
of adaptation.

1 Introduction

As the lifetime of software tends to get even longer in the future, such long living software
systems (LLSSs) must be adaptable to changing requirements. These requirements may
stem from varying user needs or from changes in the software’s operating environment.
Ideally, an LLSS is capable of reacting to such changes during operation, without showing
any noticeable down-time in service to the system’s users. But, in practice there have to
be adaptive maintenance actions as well.

A self-adaptive software system (SASS) is designed to face foreseen changes in its op-
erating environment. On such a change, an SASS is still capable of fulfilling its set of
requirements. More generally, an SASS is a reflective system that is able to modify its
own behavior in response to changes in its operating environment [OGT+99]. It may also
be called autonomic and/or self-managing system [ST09].

Although SASSs today can already deal with changes in their environment, they are not
well-suited to tackle an open-ended world, which is especially characterized by unforeseen
changes [SEGL10]. To handle these changes, classical approaches for software evolution
have to be applied.

In this paper, we present the graph-based runtime adaptation framework (GRAF) [DAET],
which supports the introduction of variability to software and goes beyond the goals of
achieving runtime adaptivity for a predefined problem space only.

By explicitly making self-adaptation of the SASS at runtime (micro adaptation) as well
as maintenance tasks performed by an external subject (macro adaptation) two comple-
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mentary parts of an integrated process, the introduction of runtime adaptivity to software
can help with incorporating the required flexibility for longevity of software. From that
perspective, we see adaptivity as the main property of software to be adjustable to any
changes in the environment, no matter if adaptation is actually performed online (on its
own or with external help) or offline.

In our CSMR 2011 short paper [ADET11], we propose a flexible, model-centric archi-
tecture for SASSs that supports a process for migrating non-adaptive software towards
self-adaptive software. In a second paper [DAET], we present the details of GRAF and its
abilities in the area of micro adaptation together with a comprehensive case study.

This paper complements the preceding publications by focusing on the use of GRAF for
achieving longevity of software. It is organized as follows. In Section 2, we describe the
GRAF framework, which implements a flexible, model-centric architecture for SASSs,
as proposed in [ADET11]. Then, we introduce the core ideas behind micro and macro
adaptation in Section 3 and give an overview on the implementation work and the case
studies done up to now in Section 4. We briefly cover related work in Section 5. Finally,
we conclude this paper in Section 6 and give an outlook on possible areas of future work.

2 Architecture of GRAF

In the context of migrating existing, non-adaptive software towards an SASS, Amoui et
al. present a model-centric architecture that is designed around an external adaptation
framework in [ADET11].

The graph-based runtime adaptation framework (GRAF) acts as an external controller of
the adaptable software. GRAF is not just an adaptation manager. It encapsulates a runtime
model that is specific to the adaptable software. The framework achieves adaptivity of
the adaptable software’s behavior by querying, transforming and interpreting parts of the
runtime model. The main layers and components are illustrated in Figure 1.

Subsequently, we discuss the structure of the adaptable software and GRAF as well as the
connecting interfaces. The responsibilities and tasks of each framework layer are intro-
duced and we explain how each of them contributes to the whole architecture of an SASS
that can be extended in reaction to unforeseen changes.

2.1 Adaptable Software

In the context of GRAF, we refer to the software to be managed by the framework as
the adaptable software. It is set up in a way so that it can be controlled by GRAF, which
plays the role of the external adaptation management unit. Adaptable software can be built
by migrating an existing, non-adaptable software system towards adaptability [ADET11].
Alternatively, it can be developed from scratch.

The adaptable software is causally connected to the runtime model which is encapsulated
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Figure 1: A SASS that is using GRAF to achieve adaptivity.

and managed by GRAF. This causal connection is established by an intermediate layer, the
adaptation middleware, which communicates with the adaptable software using predefined
interfaces.

When applying GRAF in a migration context, original elements are those software ele-
ments (e.g., classes or methods) that are already existing within the software application
to be migrated towards a SASS. In the context of creating adaptable software from scratch,
these elements can be thought of as helper elements, such as classes provided by imported
libraries.

In a migration towards self-adaptive software, adaptable elements are derived from origi-
nal elements by applying refactoring steps and by exposing them via predefined interfaces
to GRAF. They are the building blocks that support a certain degree of variability by either
providing data about changes, or, by offering actions to be used for adjusting the system.

Every adaptable software element needs to provide some of the interfaces for adaptation
provided by GRAF as described in Table 1.

2.2 Graph-Based Runtime Adaptation Framework

The GRAF framework itself consists of three layers, namely the adaptation middleware
layer, which establishes the connection to the adaptable software, the runtime model layer,
which encapsulates and handles the runtime model and the adaptation management layer,
which controls the adaptation actions at runtime either triggered by events stemming from
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Table 1: Interfaces to be provided by any adaptable software for interaction with GRAF.

Interface Description

StateVar exposes variables that hold information about the oper-
ating environment. Changes in their values are prop-
agated to the model manager, which decides if the
value is (i) stored in the runtime model (Reification)
or (ii) discarded.

SyncStateVar exposes variables similar to StateVar, but their rep-
resentation in the runtime model can be also changed
from outside. The new value is then propagated back
to the managed adaptable software.

InterpretationPoint exposes handles to positions in the adaptable software’s
control flow (interpretation points) at which an associ-
ated part of the behavioral model shall be executed (by
interpretation).

AtomicAction exposes methods that can be used as atomic actions in
the behavioral model. They are used by the interpreter
to execute individual actions that are composed inside
of the behavioral model.

the model layer or by external actions. These layers are described in more detail in the
following.

2.2.1 Adaptation Middleware Layer

The adaptation middleware layer is stateless and responsible for all possible ways of com-
munication and interaction between the adaptable software and the runtime model layer.
It provides a set of reusable components that are independent from the adaptable software.

State Variable Adapters. State variable adapters support the propagation of (changed)
values from annotated variables in the adaptable elements to the runtime model by us-
ing the StateVar interface. In addition, the SyncStateVar interface also uses these
adapters when propagating tuned variable values from their runtime model representation
back into the adaptable software.

Model Interpreter. For adaptivity of behavior, GRAF’s model interpreter executes parts
of the behavioral model that compose actions available via the AtomicAction interface.
That way, behavior for a specific point in the adaptable application’s control flow (interpre-
tation point) within adaptable elements is based on a model. Interpretation points are the
starting points of methods that need adaptivity and, hence, are exposed to the interpreter
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by the InterpretationPoint interface.

The model interpreter is specific to a given runtime model schema. We give an excerpt
in Figure 2. Each Action in the behavioral model is associated with an existing, im-
plemented method in the adaptable software. Starting at an InitialNode and walking
along a path in the behavioral model, the interpreter resolves conditions (expressed as
queries on the runtime model) at DecisionNode vertices. Methods of the adaptable
software are invoked via the AtomicAction interface and using Java reflection for each
OpaqueAction. Interpretation terminates when a FinalNode vertex is reached and
the adaptable software continues executing.

2.2.2 Runtime Model Layer

The runtime model layer contains the runtime model that is at the core of the GRAF
approach to achieve adaptivity. In addition, this stateful layer contains utility components
that simplify and encapsulate necessary operations on the graph-based runtime model,
such as evaluating queries or executing transformations.

Runtime Model. The design of GRAF’s architecture is centered around a runtime model.
Essentially, this model needs to (i) offer a view on the adaptable software’s inner state as
well as (ii) describe behavior that can be executed by an interpreter. Hence, the runtime
model serves as a view on the adaptable software and (iii) is controllable and modifiable
by the rule engine.

In GRAF, the runtime model conforms to a customizable schema (meta-model) that is
described as UML class diagrams. GRAF automatically generates Java source code to
create and manipulate models that conform to the schema as described in UML.

An excerpt of the schema that is currently used is illustrated in Figure 2. According to
this schema, every runtime model contains a set of StateVariable vertices to store
exposed data from the adaptable software and Activity vertices to store entry points to
behavior executable by runtime interpretation.

In this schema, behavioral models are kept as variants of UML activity diagrams which
are represented by their abstract syntax graphs. In general, also other types of behavioral
models such as Petri nets, statecharts, etc. could be used.

Schema and Constraints. GRAF supports the validation of constraints on the runtime
model. A set of constraints can be derived from the runtime model schema. Examples
are the multiplicities for associations that restrict the allowed edges between vertices in
the runtime model’s internal graph representation. To express further restrictions on the
modeling language, complex constraints can be defined on the runtime model schema by
using a query language.

Additionally, developers of a SASS can write constraints that are specific to the domain of
their adaptable software and belong to the SASS’s runtime model. For instance, it is pos-
sible to express that, for a certain behavioral model (activity), specific actions (methods)
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Figure 2: Excerpt of the runtime model schema.

are not allowed to be called in sequence. At present, constraint checking mechanisms have
been implemented only prototypically and are not yet used in the adaptation loop.

Model Manager. The model manager is responsible for all tasks that are related to ma-
nipulating the runtime model. It keeps the runtime model in sync with the inner state
of the adaptable software, which is exposed via the StateVar and SyncStateVar
interfaces.

In addition, the model manager acts as a controller for all other types of accesses to the
runtime model and hence, it provides a set of utility services for querying and transform-
ing. Furthermore, the model manager is responsible for the evaluation of constraints after
a transformation has been applied. It can even roll back changes to the runtime model and
it informs the rule engine about this failed adaptation attempt.

Model History. The model history supports the storage of temporal snapshots of the
runtime model as additional information (history/prediction). The rule engine can access
this data by querying the history repository via the model manager. That way, the rule
engine can learn from its past actions by using the available history. The application of
data mining techniques such as frequent itemset analysis [AS94] are possible once the
repository contains a representative amount of data. Moreover, the collected data may
provide valuable information for maintaining the SASS. The model history has not been
implemented yet.

2.2.3 Adaptation Management Layer

The adaptation management layer acts as the controller that runs in parallel to the adapt-
able software and uses a set of adaptation rules to make changes to the runtime model
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over time. This stateful layer is composed of a repository with adaptation rules and a rule
engine that uses its own heuristics to plan adaptation.

Rule Engine. In GRAF, the rule engine plays the role of an adaptation manager. It gets
notified by events, for instance, whenever the runtime model changes. Moreover, it can
receive additional information on the current or past state of the adaptable software by
using the model history. After gathering all the required information for planning, the rule
engine uses the set of available adaptation rules to choose a (compound) transformation to
be executed on the runtime model via the model manager.

Adaptation Rules. Adaptation rules are event-condition-action rules that describe atomic
adaptation tasks. The three parts of an adaptation rule are as follows:

1. Event. The event for the application of a rule occurs whenever the runtime model
changes and the rule engine needs to react. The model manager keeps track of these
events.

2. Condition. The condition is expressed by a boolean query on the runtime model
that tests whether an adaptation action may be applied or not.

3. Action. The action is a model transformation and encodes the actual adaptation to
be performed on the runtime model.

Control Panel. The control panel allows administrators to interact with the SASS and
especially with GRAF. They can (i) observe the log of adaptation steps by querying
the runtime model history, (ii) modify adaptation rules and model constraints as well as
(iii) override decisions and heuristics of the rule engine. Furthermore, administrators get
notified whenever an adaptation attempt fails or if the SASS is totally uncontrollable by
the adaptation management layer. The presented version of GRAF does not implement the
control panel.

3 Runtime Adaptivity and Evolution

If any runtime changes to the SASS that are carried out autonomously by itself (micro
adaptation) are not sufficient, some of its components or repositories must be maintained
externally and possibly manually (macro adaptation). Due to the limits of SASSs in
dealing with unforeseen situations as well as the increasing entropy (disorder) that may
be caused by self-adaptation, phases of micro and macro adaptation need to alternate to
achieve longevity. In this section, we exemplarily discuss micro and macro adaptation,
assuming that the SASS has been created using GRAF.
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3.1 Micro Adaptation

Subsequently, we give an overview of the main steps during micro adaptation, disregarding
all the possible alternate flows and exceptions that might occur on purpose here. A detailed
description is given in [Der10].

Assuming application-level adaptation, as discussed in [ST09], these changes lead to
changes of the inner state of the adaptable software (the self ) and thus, can be sensed
in its variables and fields. Changed values from the adaptable software’s inner state are
exposed to state variable adapters via the StateVar interface and finally propagated to
the runtime model. This results in a notification of the rule engine in the adaptation man-
agement layer.

Following that, GRAF executes steps similar to the MAPE-loop as described in IBM’s
architectural blueprint for autonomic computing [IBM06]. When a change listener of the
rule engine receives an event from the model manager, the rule engine analyzes the change
and plans a (compound) transformation to be applied on the runtime model via the model
manager. Afterwards, the runtime model is adjusted.

Finally, an actual behavior change of the managed adaptable software has to be achieved.
Two different ways are supported in GRAF: (i) adaptation via state variable values and
(ii) adaptation via interpretation of a behavioral (sub-)model.

In the first case, state variables can be chosen so that changes to them are reflected back
to the adaptable software. For this mechanism to work, the corresponding variable of the
adaptable application must be exposed to GRAF via the SyncStateVar interface. If the
runtime model value of such a state variable is changed by a transformation, the adaptable
software is made aware of the new value whenever the variable is used in the adaptable
software.

In the second case, GRAF supports the modeling of behavior (using UML activity di-
agrams at the moment). During execution of some operation of the adaptable software
which is exposed to GRAF via the InterpretationPoint interface, the model in-
terpreter is invoked and finds the associated behavioral model. If this behavior is default
behavior, there is no need for adaptation and the interpreter returns this information so that
the adaptable element executes the existing default code block in the adaptable software.
Otherwise, the model interpreter executes the associated part of the behavioral model us-
ing the AtomicAction interface, replacing a part of the adaptable software’s default
control flow.

3.2 Macro Adaptation

In cases where the SASS faces new challenges that it cannot tackle adequately, the sys-
tem must be evolved, that is, an external subject (here, the human administrator) must
be able to adjust the system. Due to the flexibility of the proposed architecture, many
of these maintenance tasks can be performed at runtime. Still, there are cases where the
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SASS must be stopped and restarted again when technical reasons require it, e.g., after
modifications to the source code. In this section, we discuss ideas and sketch macro adap-
tation in the context of SASSs built around GRAF. We start top-down, from the adaptation
management layer.

Ways to extend the adaptivity property of the SASS are to (i) add new adaptation rules
to the repository, (ii) modify existing adaption rules in terms of their queries and transfor-
mations or even (iii) remove adaptation rules. Such changes can be made via the external
control panel. Ideally, the rule engine does not have to be adjusted. Changes to its ana-
lyzing and planning algorithms may be needed, though. By separating them into different
modules and keeping them independent from the core, this issue can be solved.

At the runtime model layer, further adjustments are possible. Among the smaller changes,
there are modifications similar to the adaptation rules (add, modify, remove) that can be
performed for application-specific constraints. Likewise, changes to the runtime model
may be desirable, such as refining parts of the behavioral model. More complex changes
are schema-related adjustments. Developers may want to change the language for model-
ing the runtime model and use Petri nets or statecharts instead of UML activity diagrams.
Given such a heavy change, the adaptation rules will be affected as well and the model
interpreter has to be adjusted or even replaced.

As the adaptation middleware is a generic communication layer, it stays stable for most
of the time. Only a change of the runtime model schema (description of syntax) will
result in a re-write of the model interpreter (description of semantics). Changes to state
variable adapters are only needed in cases where the concept of state variables is modeled
differently by the runtime model schema.

There might be necessary changes at the level of the adaptable software as well. In cases
where existing state variables do not provide data about changes sufficiently, new ones
have to be introduced and exposed to GRAF. Again, existing state variables can be deleted
as they may become obsolete over time. Furthermore, the existing atomic actions may not
provide enough expressiveness to model the desired behavior and the pool of available,
exposed actions needs to be refined.

The necessity to start a macro adaption should be detected by the framework itself. This
can be done by special rules that test some quality properties of the model or by analyzing
the history information periodically, for instance.

Finally, traceability between different elements at all layers is important, e.g., as atomic
actions are removed, they may no longer be used in the behavioral model and adaptation
rules shall not create variations of behavior that make use of these missing actions.

4 Implementation and Case Studies

GRAF is implemented around a small set of interfaces and abstract classes in Java and
each of its components can be extended or replaced with minor effort, thus, making it
suitable for constructing long living, self-adaptive Java software systems.

67



Java annotations provide an easy way to add meta-data to existing source code without
altering its functional properties. With the help of aspect oriented programming (AOP)
techniques and a powerful AOP library like JBoss AOP1, these annotations are then used
in pointcut expressions resulting in automatic instrumentation of the byte-code to connect
the adaptable software to GRAF via its middleware.

GRAF’s runtime model and its operations are based on graph technology. Models, schemas
as well as queries and transformations are implemented in the technological space of
TGraphs [ERW08]. Using the IBM Rational Software Architect 2(RSA), the runtime
model schema is developed by drawing UML class diagrams. Based on the runtime model
schema, a Java API is generated using JGraLab3. The generated Java classes represent
vertex- and edge-types of runtime models (TGraphs) that conform to the runtime model
schema. The generated API is then used for creating, accessing, and modifying runtime
models. While transformations, the action part of adaptation rules, are currently realized
using the generated Java API, we use the Graph Repository Query Language (GReQL) for
checking constraints and retrieving data from the runtime model TGraph.

We successfully applied GRAF to the open-source VoIP application OpenJSIP 4, where
adaptivity was introduced to achieve less timeouts and a more clear reaction of the system
to the user under high system load [Der10]. Furthermore, we performed a more compre-
hensive case study with the game engine Jake2 5, where the SASS adapts the behavior
of artificial players depending on the human player’s skills [DAET]. An increase in used
memory (model representation, JBoss AOP wrappers) and in execution times (model inter-
pretation) is measurable in both case studies, but this did not affect the user’s experience.

5 Related Work

Schmid et al. motivate in [SEGL10] that as future systems will operate even longer, they
must be capable of coping with changes in their environment or their requirements dur-
ing operation. Although self-adaptive software can handle such challenges within given
bounds, long living software systems need to be extendable and adaptable in an open-
ended world, where changes are unforeseen. Schmid et al. propose the modularization
of models for evolving adaptable systems and discuss an adaptive system with adaptivity
enhancement. This paper strengthened our motivation to present GRAF in the context of
longevity.

The DiVA project [MBJ+09] considers design and runtime phases of adaptation. It is
based on a solid four dimensions modeling approach to SASS [FS09]. At design time, a
base model and its variant architecture models are created. The models include invariants
and constraints that can be used to validate adaptation rules. In comparison to our GRAF
approach, DiVA also focuses on adaptation at the architectural level, whereas we target

1http://www.jboss.org/jbossaop
2http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
3http://www.ohloh.net/p/jgralab
4http://code.google.com/p/openjsip/ (Last access: 14th of January, 2011)
5http://bytonic.de/html/jake2.html (Last access: 14th of January, 2011)
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adaptation at a lower level by incorporating methods and fields as well.

Vogel and Giese [VG10] propose a model-driven approach which provides multiple archi-
tectural runtime models at different abstraction levels. They derive abstract models from
the source models. Subsets of the target models focus on a specific adaptation concern to
simplify autonomic managers. Similar to DiVA, this research also targets adaptivity from
an architectural point of view.

The Rainbow framework [CHG+04] uses an abstract architectural model to monitor the
runtime properties of an executing system. Similar to GRAF, certain components of Rain-
bow are reusable and the framework is able to perform model constraint evaluation. How-
ever, this framework is mainly targeting architecture-level adaptation, where adaptive be-
havior is achieved by composing components and connectors instead of interpreting a
behavioral model.

Similar to some of the presented work, our implementation of GRAF makes use of aspect
oriented programming for binding the adaptable software to the framework. In contrast to
the mentioned research projects, we focus on the interpretation of behavioral models for
achieving adaptability at runtime, while also supporting parameter adaptation.

6 Conclusions and Future Work

In this paper, we presented an approach for achieving runtime adaptivity in software based
on the model-centric adaptation framework GRAF. Following the proposal for a model-
centric SASS in [ADET11], we implemented GRAF to support the migration of existing
software towards a SASS. The construction of an SASS from scratch is supported as well.

This framework is based on a layered architecture that features (i) a middleware layer for
managing the coupling and communication of GRAF with the adaptable software, (ii) a
runtime model layer that reflects the current state of the adaptable software and its behavior
at certain parts that need adaptivity as well as (iii) an adaptation management layer with
a rule engine that is able to adapt the runtime model by using on given adaptation rules. A
first case study is described in [Der10] and a more comprehensive one will be available in
[DAET].

Based on the view of micro and macro adaptation, we plan to experiment with different
scenarios to learn more about sequences of alternation between these two phases. Finally,
we see additional future work in the area of designing an evolution process that combines
(i) the knowledge about traditional maintenance with (ii) the flexibility of runtime adap-
tivity given by self-adaptive software systems. We believe, that integrating these two areas
provides a promising way towards achieving longevity in software.

Acknowledgement. Our thanks go to the anonymous reviewers for their thorough and
inspiring feedback.
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