An Architecture Framework for Porting Applications
to FPGAs

Fabian Nowak, Michael Bromberger and Wolfgang Karl
Karlsruhe Institute of Technology
Chair for Computer Architecture and Parallel Processing
76128 Karlsruhe, Germany
Email: <lastname> @kit.edu

Abstract—High-level language converters help creating FPGA -
based accelerators and allow to rapidly come up with a working
prototype. But the generated state machines do often not perform
as optimal as hand-designed control units, and they require
much area. Also, the created deep pipelines are not very efficient
for small amounts of data. Our approach is an architecture
framework of hand-coded building blocks (BBs). A micropro-
grammable control unit allows programming the BBs to perform
computations in a data-flow style. We accelerate applications fur-
ther by executing independent tasks in parallel on different BBs.
Our microprogram implementation for the Conjugate-Gradient
method on our data-driven, microprogrammable, task-parallel
architecture framework on the Convey HC-1 is competitive with
a 24-thread Intel Westmere system. It is 1.2x faster using only
one out of four available FPGAs, thereby proving its potential
for accelerating numerical applications. Moreover, we show that
hardware developers can change the BBs and thereby reduce
iteration count of a numerical algorithm like the Conjugate-
Gradient method to less than 0.5x due to more precise operations
inside the BBs, speeding up execution time 2.47x.

I. INTRODUCTION

Once being too small in terms of area and too slow in terms
of clock rate, FPGAs are now sufficiently large and fast to
accelerate complex algorithms. They are employed in several
different target domains, ranging from digital signal processing
to scientific computations. In the latter domain, processing
floating-point data is of paramount importance.

Porting algorithms to FPGAs and implementing them
requires great efforts. The developer has to cope with im-
plicit parallelism, synchronization issues, clock rates, and data
paths. As a result, tools for converting sequential high-level
language code to hardware descriptions came up [6], trying
to ease hardware development and to make FPGA hardware
programmable for high-level application programmers. Each
of these converters makes assumptions about data exchange,
synchronization, hardware capabilities and interfaces. Much
work is required to successfully interface with the surrounding
hardware. Taking this into account, the generated designs
are not portable from one FPGA environment to the other.
To exchange data between interfaces and the generated or
instantiated arithmetic-logical circuits, state machines are gen-
erated by the converters, which consume much space due to
many required states when controlling pipelining and targeting
data-driven execution. Although development is facilitated, the
time-consuming hardware synthesis is still required, and the
development cycle still consists of describing the algorithm,
simulating, emulating, synthesizing and finally testing the

61

Ports Architecture
Writes
Micro- UP Memory DMA Units
program = 4 t t
v 2
: >
Micro- Buffer Set
programm. [
Software Control Hardware
Developer i . ..Developer
Per Uses Uit Building Blocks % [Modifies P
BBs in A (BBs) and
data-driven adds
way Data-driven Architecture Framework| BBs
Figure 1. Data-driven architecture framework for FPGAs and responsibilities

of hardware and software developers.

resulting hardware design. Overall, the existing methodologies
for creating hardware designs are quite cumbersome.

Our approach to this problem is microprogramming the
control of medium-grained, preconfigured, existing building
blocks (BBs), and calling the microprogram from software
side on the host. We propose an architecture framework as
depicted in Fig. (1] that consists of a microprogram memory,
control unit, functional and data-transferring blocks, and of
a decoupling buffer set to enable both data-driven and task-
parallel execution. Once an FPGA is configured with our
framework, an application developer needs to come up with
microprogram implementations of the to-be-ported algorithm,
but can ignore hardware constraints such as streaming, caching,
data-parallel and task-parallel execution, resource usage, and
clock rates. As changes to the microprogram can be tested
within seconds, the developer is able to debug at software level
and is freed from waiting several hours for the synthesis.

When using reconfigurable accelerators, data transfer poses
a limiting factor. However, with our data-driven architecture
framework, this is no longer the case as data are stored inter-
nally and reused for further computations. Targeting numerical
programs, the framework allows accelerating the Conjugate-
Gradient method [10], for example, because it is no longer
memory-bound. To port further algorithms to the architecture
framework, application developers only need to provide a
different microprogram for the same building blocks. As a
hardware developer, it is possible to change implementations
of the BBs, e.g. for increased accuracy to reduce iteration
count without changing the microprogram, though synthesis
is required then.

Approaches for helping in FPGA designs are discussed
in Section Next, Section explains our concept. To

prove portability, we implemented the architecture on two
different FPGA systems (Section [I[V). We present previous
evaluation results [10] of the framework in Section To
take previous work one step further, we evaluate ease of high-
level programming and optimization, and possibility for low-
level hardware adaptations. Through adaptations such as more
precise internal operations inside the BBs, the convergence
criterion of numerical algorithm is reached faster. This reduces
iteration count to less than 0.5x. Section closes the article
and gives a short outlook.

II. RELATED WORK

For scientific computing, efficient floating-point operation
is of great importance. Over the last ten years, FPGAs have be-
come capable of performing floating-point calculations, which
has been researched extensively with regard to area, clock rate,
precision, pipelining [9]. Very helpful is the automated creation
of floating-point cores [2]. With such hardware capabilities
and software tools, FPGAs can provide benefit for scientific
computing [3]].

One major issue with FPGAs is to develop the design,
then simulate it, synthesize and test it. Therefore, High-Level
Languages (HLLs) evolved, and with fixed-point and floating-
point cores for all kinds of operations, it became possible
to translate arithmetic codes to hardware descriptions that
instantiate available cores for arithmetic operations. Among
such translators, ROCC Compiler [6] is probably known best.
Besides the C-based translators, there are efforts to accelerate
poorly performing Matlab code, coming up with a complete
toolbox and design flow for FPGA acceleration [8]].

Basis for many translators is the SUIF compiler [17] that
creates an abstract syntax tree upon which the translators
further produce state machines and wiring of the instantiated
cores or generated arithmetic-logical circuitries. In tackling the
large area consumption of state machines in FPGA designs
with more than 30 states, microprogramming proved helpful
and has found its way into FPGA research [1].

In the MORA architecture [16], no explicit control is
necessary because the arithmetic instructions in the program
code are translated to parameterized processing elements that
are connected with one another according to the data graph
of the code, and the elements execute in a data-driven fash-
ion. But MORA lacks from being freely (re-)configurable to
another application, again requiring high synthesis time for
new application accelerators. Same applies to Altera’s OpenCL
path where the to-be-accelerated kernel function is translated
to a data-parallel, deeply pipelined hardware description in
Verilog [14].

Although the use of high-level languages and converters
such as MORA, OpenCL and ROCCC facilitates the use
of FPGAs by not requiring error-prone developing of hard-
ware descriptions and no time-consuming Modelsim-based
simulations, the general methodology remains the same. At
first, an algorithm must be ported to the language itself.
Secondly, especially with OpenCL, a suitable mapping must
be found, i.e., optimal dimension and grid size. This task
requires more than only basic understanding of the hardware.
Third, the algorithm description must be simulated in its
high-level-language version and then in its translated version,

62

i.e. emulating the hardware. Fourth, hardware synthesis and
place&route will take several minutes or even hours. Only
then can the ported algorithm and its mapping be tested in
real hardware, potentially detecting performance bottlenecks
or even implementation errors. Unless data is written back to
external memory after each single operation, tracking an error
is rather difficult and requires the use of expert tools such
as Chipscope. Every change to the high-level code requires
another time-consuming hardware synthesis run instead of
reusing previously translated and synthesized subcomponents
such as a vector adder. This process must be repeated again and
again until the performance goal is met and execution delivers
correct results. Normally, this takes a couple of days. Program-
mers of scientific applications however need an efficient and
easy-to-program means for exploiting FPGA-based accelera-
tors in diverse floating-point-intense applications. SHARC [[7]
tries to close this gap by parameterizing the instantiated cores
for further iterations, e.g. for processing different color values.
The connection of the cores can be changed at runtime by
instantiating and parameterizing additional switch modules.
These parameters are extracted from Matlab code and cannot
be programmed by the user in a convenient fashion.

As a further problem, data exchange with FPGA-external
memories and internal data storage frequently pose a huge
problem when employing accelerators. The high-level tools can
only help to a limited amount in optimizing data transfer. Thus,
the programmer has to care for efficient communication and
data reuse, which is a non-trivial task that requires profound
understanding of the underlying system. The average domain
specialist application programmer should be freed from such
optimization tasks. Aside, the resulting optimized hardware
implementations are no longer portable from a performance
point of view.

Much benefit is gained from FPGAs when implementing
special implementations that operate at bit level or cannot be
executed efficiently in general-purpose processors, such as a
highly accurate dot product implementation [12].

The Xilinx Vivado suite [4], [18]] allows to easily connect
different Intellectual Properties (IP) cores to an embedded
processor like ARM using the AMBA bus interface. It is
possible to integrate IPs from Xilinx, third parties or custom
IPs. An IP can be defined at different abstraction levels
like C source code, RTL description in Verilog or VHDL
or as netlist. The focus of Vivado is to realize Systems on
Chips (SoCs) using different IP cores. Their approach suffers
from the interconnection bottleneck when several data-hungry,
memory-intense IP cores have to communicate over the shared
bus with memory. Instead, our focus is to allow easy and
efficient programming of accelerators that are included in high
performance computing (HPC) systems.

Using a rather small control unit compared to a soft core
inside an FPGA, we can integrate more building blocks (BBs)
on an FPGA. These BBs communicate efficiently and directly
by using a central buffer set so that no bus-sharing or complex
bus protocol is required. Therefore, we propose to combine
micro-programming, data-driven programming and execution,
and preexisting cores, i.e, BBs. Thereby, programmers can
exploit potential data-level parallelism inside the BBs, task-
level parallelism by executing several BBs concurrently, and
foremost pipeline parallelism where available, which helps

minimize data exchange with memory. In case special instruc-
tions shall be integrated, we favor the aproach suggested by
Strozdka [15]] of tightly collaborating mathematicians, i.e, do-
main specialists, and computer scientists, i.e, hardware experts,
as is also depicted in Fig. [I}

III. MICROPROGRAMMABLE, DATA-DRIVEN
ARCHITECTURE

We design the architecture as illustrated in Fig. [1| with
portability, easy programmability and adaptivity in mind. Data
are exchanged with external memory via DMA units and
internally via a central buffer set to leverage data-driven
execution. Execution is controlled via microprograms instead
of fixed state machines that trigger the BBs, such as DMA or
vector adder.

The microprograms are provided by users, e.g., domain
specialists. In contrast, the BBs are implemented by hardware
specialist. We achieve concurrency by data-driven execution
of the BBs. Independent blocks can proceed completely con-
currently, and dependent blocks can proceed in a pipelined
fashion if output and input rates allow. The building blocks, in
return, can exploit data-level parallelism. Internal operations
in the BBs are pipelined, if possible. Different BBs can form
a pipeline using the central buffer set. So, one BB (source)
generates data that will be processed by another BB (drain)
in later steps. Synchronization between BBs is achieved by
the buffer set and therefore no extra mechanism is needed
inside the control unit. The pipeline including different BBs
is formed by the microprogramm. Hence, application domain
specialists can employ the architecture according to their needs
by only writing the microprogram without caring for the details
of data transfer, data reuse or hardware synthesis and bitstream
generation. This is also key to achieving portability of the
architecture and of the developed microprograms.

In the microprogram assembly language, BBs are denoted
by representative mnemonics, if possible, for example vadd
to add a pair of vectors streamed via two input buffers. All
instructions take registers or immediate values as arguments,
and the 32 registers can be written to explicitly via regw. The
central micro-programmable control unit depicted in Fig. [2]
passes instructions to BBs or to the sequencer modifying
the instruction pointer, or to the ALU for operations on the
register set. No instruction pipelining is used inside the control
unit because most microinstructions are asynchronous BB
instructions that will occupy the BB for a long time. So,
only litte performance gain can be achieved using instruction
pipelining in our case. This aspect also saves resources on the
FPGAs and therefore more BBs and buffers are instantiated.

As indicated in Fig. E], BBs have two interfaces, one for
instructions from the control unit, and the other for interaction
with the buffer set. Assume the BB is a vector adder that
consumes two input vectors from the buffer set and writes
one result vector. Then the instruction is to add or subtract the
vectors, and the parameter is the length of the vectors. Figure 4]
gives the corresponding example microprogram for adding two
vectors.

Figure [5] shows in detail the data flow between source and
drain blocks via the central buffer set. Any unit is normally
both source and drain, e.g, the vector adder consumes as a

63

External Instruction
to Building Blocks
Internal

Instruction

Micro -
Instruction

»add«, »mov«

uP
Memory

Register

- Set
Pointer

New Micro
“Instruction

Buffer Data

Figure 2. Micro-programmable control unit.

[up CU |—l>|Buffer Setl

T
New IParametersInp!Jts output
Instruction Al B
v v

Instruction Data

Interface Interface
Building Block (BB)

Instruction and data interface for BBs.

Figure 3.

drain unit from the two source DMA units, and it is the
source unit for the third DMA drain unit. The MUXes are
assigned their configurations by buf_assign. A source
block can write to any destination buffers due to the full
crossbar interconnect. These are bound to exactly one drain
block that consumes its data. The buffers are then filled by
reading via DMA (dmar) or by a data-producing BB, and
the outputs are consumed by writing to external memory
via DMA (dmaw) or by another BB. In the end, a pipeline
reading data from external memory, concurrently processing
it within several BBs and already writing back some results
can be established. Computation and communication in a data
flow style support this achievement so that no more data
dependencies need to be resolved manually. As shown in the
program code in Figure 4] the domain specialist, non-hardware
expert programmer only has to interconnect the blocks in the
most natural data flow way. This can easily be accomplished
via graphical user interfaces [13].

To generate machine-readable instructions from the assem-
bly instructions, the toolchain sketched in Fig. [6] parses them
and outputs binary code. It can also produce a coefficient file
for static initialization of the microprogram memory at synthe-

regw R10, 20
buf_assign dmal,
buf_assign dma2z,
dmalr Oxaddl, R10
dma2r Oxadd2, R10
buf_assign vaddl,
vaddl R10

dma3w Oxadd3, R10
J 0

bufl
buf?2

buf3

Figure 4. Microprogram for adding two vectors.

Building

Blocks ISource 3| l

ISource 1| ISource 2|

MUX

MUX

MUX

assign output
buffers to
sources

Buffer
Set I

| |
Buffer 1 I I Buffer 2 I I Buffer 3 I
T T i
| Drain 3 I l

l Building

Blocks | Drain 2 I

| Dralin 1 I

Figure 5.

Buffer set and interface between building blocks.
Assembler
plaintext program

CEE D

MP2coe

Create
char_array

uint64_t array

Coefficient file:
char_array

Figure 6. Toolchain parsing the assembly instructions, converting to binary
code and generating memory configurations.

sis time. Otherwise, a driver mechanism needs to transfer the
compiled microprogram. Depending on the system environ-
ment, this driver can even be embedded into the application.

IV. FRAMEWORK IMPLEMENTATION AND SYSTEM
INTEGRATION

To demonstrate portability, we implemented the architec-
ture on different heterogeneous systems. The first implemen-
tation served as a prototype study and targeted the UoH
HTX-Board that connects an FPGA via the HyperTransport
Expansion (HTX) Socket to an AMD Opteron-based host
system. Due to bad routing results on the chosen system with
a Xilinx Virtex-4 FX100 FPGA, we do neither present detailed
place&route results nor detailed evaluation results. Using two
BBs, one for reading data and one for writing data, we can only
process 500 MB data per second. The theoretically available
bandwidth is 1600 MB/s per direction. On the one hand, there
is overhead due to the protocol, and on the other hand, the
host system does only allow 4MB contiguous DMA memory
regions. Therefore, we can not fully exploit the bandwidth
of the system. Hence, (pipeline-)parallel processing on the
FPGA must compensate the low bandwidth usage by raising
the computation-to-communication ratio. But integrating more
BBs is out of scope for this system setup due to the tight
timing results, unless running at a much lower frequency not
optimally fitting the HyperTransport system.

To obtain performance-oriented results, we implemented
the concept on the Convey HC-1 depicted in Fig. [/} We target
supporting developers of numerical programs. Hence, we need
several vector blocks that should execute in an overlapped
fashion. Foremost, vectors need to be added and scaled (cmp.
axpy operation). Secondly, dot products are required that can
also be used for implementing matrix multiplications. Many
solvers rely on stencils. Thus, we implemented a data-driven

64

Host icati i
weon| lessl [ae H 4 Appllcatllon Engines |
5138 HUb | g Memory Controllers |
Coprocessor

Figure 7. Convey HC-1 comprising 4 user-programmable FPGAs on a
coprocessor board attached to CPU socket.

vector|[Dot |fg.. ol =l k2, Mc o
Scaling|[Product] 0Odd
6
Memory Pointer pp+CU > F|Oating-!’oint chlgr D3|V)|(A MC O
WP Memory ? Comparison | | Division e Even
J; 34- RBSGS Vector
Micro Instruction Buffer set |&sl LreCONditioner [Add S II\E/I\?ei
; uffer Se .
64-Bit Data 7 Building Blocks

Figure 8. Implementation of the architecture framework on the Convey HC-1.

stencil unit. Upon this basis, a pipelined solver for Red-Black
schemes was elaborated [10]]. Moreover, a scalar division unit
and comparison unit are required to calculate reciprocal values
or divisors and to check when the algorithm has converged,
respectively. Apart from these arithmetical blocks, data must
be read from and written to external memory. Hence, a number
of DMA units support several concurrent memory accesses in
both read and write direction. As data is reused frequently
due to the central buffer set, external memory access does no
longer pose the main problem with reconfigurable computing.

The implemented framework, the arithmetical blocks and
DMA units were implemented by hardware specialists. It is
depicted in Fig. [§] together with the Convey AE interface,
memory control logic, sequencer and buffer set. To use it,
domain specialists only need to provide microprograms for
controlling data flow, which might also be eased by providing
a graphical user interface to connect the building blocks in
data flow style.

Upon start of usage, the host application passes the memory
references for the new, user-supplied microprogram, input
data and output locations via the general register set (1.).
Then (2.), the coprocessor is invoked, triggering the default
microprogram to fetch the new microprogram from memory
(3.). Having obtained the microprogram via a DMA unit and
the buffer set (4.), the instructions of the new microprogram
are decoded, the required registers are read (5.) and passed
together with the opcode to the corresponding BB (6.). The
blocks execute (7.) in a concurrent and data-driven fashion
depending on the availability of data in the buffer sets.

V. EVALUATION

We developed the data-driven, microprogrammable archi-
tecture for reconfigurable computing with special focus on
developers of numerical applications. As case study for our
evaluations, we employ the Conjugate-Gradient (CG) method,
which is an iterative solver for linear equation systems. We
solve the Poisson problem, so that we can employ a 2D stencil
operation with problem-related coefficients instead of a matrix
A and also a stencil-based preconditioner.

30 T T T T T T T T T T T T T T T T T
—+— 2 Threads (2-core Xeon 5138, -00)
25 24 Threads (2-socket Hex-Core Xeon 5670, -O2) |
----%--- Full Variant (projected)
2| Blocked Variant (1 AE)
20 KK b
o * |
g 151 K : T
=3 x |
17} k
10 DDDDDDD_
P 5] \'D a8
5F * R T
x% e \ 4 4 4 |
0 | i1 T T T T N T N S T 1
X b o
O D Q0D VIO
& D EP DD &SP SOOI
Dimension
Figure 9. Speedup of CG method on architecture framework on Xilinx

Virtex-5 LX330 and on Intel Xeon X5670 against Convey HC-1’s Intel Xeon
5138.

A. Accelerating the Conjugate-Gradient Method

To fully port the CG method, we would need 13 vector
blocks and 9 DMA units. Among the 13 blocks are 3 vector
adders, 3 vector-scaling blocks, 2 dividers, 2 dot products, 1
floating-point comparison, 1 stencil unit, and 1 red-black sym-
metric Gauss-Seidel preconditioner consisting of two differ-
ently preconfigured stencil units. Instantiating all these blocks
requires a vast amount of BRAMs and DSP units and produces
a congested design with densely packed control logic so that
150 MHz timing is not feasible. Hence, we split the main loop
of the CG method into 3 distinct parts (“Blocked Variant”) so
that only one instance of each unit is required, together with
only 3 DMA units. The implementation results of the fully
functional design are given in Table [II We obtained speedup
of 10x over sequential execution time on host processor Intel
Xeon 5138 of the the Convey HC-1 as illustrated in Fig.[9][10].
The untimable design is also displayed, labelled “Full Variant”,
based on early measurements and a simple timing model. It
can provide its massive speedup when its small 90 x 90 buffers
suffice for handling the input data. Our blocked design is even
1.2x as fast as a 24-thread version for large dimensions with
optimization turned on (-02).

B. High-Level Optimization

It might be advantageous to change the order in which
the micro instructions are called so that more data would
be transferred earlier, thereby potentially enhancing memory
bandwidth usage. Knowing the best order is also important
for automatically synthesizing the microprograms. Hence, we
evaluated three versions of the microprograms for the CG
blocks. In the first, original version, DMA operations are
slightly optimized toward fetching data while also executing
independent operations. We aggressively optimize the second
version toward starting all DMA operations as early as pos-
sible. And finally, the third version calls DMA operations as
late as possible. From the results given in Table we can
conclude that the order plays only a minor role because a
new instruction is fetched, decoded and executed every few
cycles and the micro-programmable control unit (¢pCU) is not
stalled, but only waits for availability of the BB before passing
the opcode and parameters. For larger data, it seems slightly
advantageous to start DMA operations rather later than sooner,

65

1000000

10000 3 —— Itelrationsl(SP) I x 3
Iterations (ext.) g 4 100000
* Time (SP) * 1
o Time (ext) L 4 10000
%]
1000 3 1000
[b +
. 3100 _
= 1 E
$ % 110 3
5 % - g
=100 B 1 ' L LS E
128 256 512 1024 2048
Dimension

Figure 10. Reducing number of iterations from single-precision (SP) to higher
precision (ext) for the dot product.

thereby overlapping computation with data transfers as early
and much as possible. However, the results do not provide
statistical relevance. With this experiment, we have shown
that no deep understanding of FPGA development and un-
derlying principles is required from application programmers
when using this architecture. Further, optimally exploiting
the architecture reduces to changing the microprograms only,
neither requiring any synthesis nor reconfiguration. Similarly,
software developers only need provide other microprograms
for executing other algorithms on the BBs.

C. Low-level Hardware Adaptation

When executing until the convergence criterion is met, our
FPGA-supported CG method requires many more iterations
than its dimension, and moreover, the amount of iterations
varies, similarly to calculating dot products with OpenMP and
dynamic scheduling. To find the root cause of this behaviour,
we wrote the intermediate results back to coprocessor memory
and checked the values. We could track the cause down to the
dot product implementation, which in order to yield pipelining
stores partial products until they can be fully accumulated,
thus not being deterministic. Ideally, one would integrate an
exact dot product implementation [12], [11]] because with the
data-transfer problem being solved now, the required tight
integration of the special unit is achieved. Though, to save
area on the FPGA, we only extended the instantiated floating-
point cores by 23 and 32 additional mantissa bits, respectively.
Both the multiplication and the internal accumulator do now
suffer less from rounding and the typical windowing problem
now [5]. As Fig. indicates, we can thereby already halve
the number of iterations and reduce application time up to 2.47
times.

VI. CONCLUSIONS AND OUTLOOK

Today, there exist several approaches to port scientific,
floating-point-based applications onto reconfigurable logic. In
this article, we propose a microprogrammable architecture
together with data-driven execution of the building blocks
(BBs) to conveniently and efficiently employ FPGA-based
accelerators in scientific computing. The BBs on the FPGA
work internally data-parallel and thereby optimally exploit
the available bandwidth, especially with regard to the mem-
ory controllers on the Convey HC-1 coprocessor. Task-level

Table 1.

RESOURCE USAGE OF THE SINGLE-INSTANCE CONVEY HC-1 DESIGN ON A XILINX VIRTEX-5 LX330 (“BLOCKED VARIANT”).

Resource || Slices | LUTs | Registers | DSPs | BRAMS || Max. Freg.

Number || 34520 | 89447 | 86379 | 110 | 166 || 6.643ns
Usage || 66% | 43% | 41% | 51% | 57% || I50.5MHz
Table II. AVERAGE EXECUTION TIMES OVER AT LEAST 5 RUNS AND SPEEDUP FOR DIFFERENT SCHEDULING OF THE DMA OPERATIONS WITH VARIYNG
PROBLEM SIZES.

| 320 | 512 | 640 | 1024 | 2048 | 4096

Time (ms)

Original 517.7 2269.8 4425.9 16558.8 145459.4 1171274.3
DMA early 518.7 2269.3 4425.6 16558.9 145478.9 1171063.9
DMA late 517.9 2270.9 4424.8 16557.3 145457.7 1171091.2
Speedup

DMA early | 0.99805 | 1.00021 | 1.00007 | 0.99999 | 0.99987 | 1.00018
DMA late | 0.99967 | 0.99953 | 1.00025 | 1.00009 | 1.00001 | 1.00016

parallelism is achieved by executing several units concur-
rently, called subsequently from a control unit. It enables
fully leveraging the massively parallel FPGA hardware. A
central buffer set allows streaming data from DMA units
through potentially several BBs, termed pipeline parallelism,
and finally writing back to coprocessor memory so that data
reuse is maximized and transfer from/to memory minimized.
For a given application domain such as solving equations, a
set of BBs needs to be developed once. Domain specialists are
then freed from creating reconfigurable designs because they
only need to develop the microprograms for other algorithms
to be executed on the framework.

The architecture was implemented and tested on two dif-
ferent systems. Evaluation of a microprogram for a precon-
ditioned Conjugate-Gradient method on only a single FPGA
against an OpenMP implementation running with 24 hard-
ware threads already yielded slight speedup of 1.2x [10].
We showed its ability to quickly try optimizing execution
time by changing the microprogram only. No additional time-
consuming synthesis runs were required. Further, we extended
the dot product unit by additional bits for more accurate results
to model the case that special-purpose units are integrated into
the domain-specific BB set. Thereby, we could decrease the
number of required iterations of our test case. The benefit
of embedding special arithmetic units, e.g. for very exact
arithmetics, should be evaluated in future.

We have thereby also developed a novel methodology.
From an application programmer’s perspective, development
starts with connecting function blocks, e.g, in a regular C
program, from a software library that is formulated in a data-
driven way and whose functions can execute concurrently, i.e,
in a task-parallel fashion. This program can already serve as a
highly-performant program version because first investigations
showed that data-driven, task-parallel execution can provide
competitive performance to data-parallel execution due to
enhanced data locality. Having mapped the algorithm onto
function blocks for the software version, the microprogram
must be formulated to connect the building blocks via the
central buffer set for execution in reconfigurable accelerator
hardware. The microprogram only needs to be compiled, then
the algorithm implementation can already be tested in our
architecture framework. With both a software and a hardware
implementation, the programmer can easily and stepwise run
distinct parts of the application on the accelerator hardware.
The data transfer problem when using acclerators is solved by

66

exploiting data flow principles, and therefore the programmer
can efficiently and conveniently benefit from accelerator hard-
ware. We envision that automatic design tools will create such
microprograms instead of generating huge state machines in
low-level hardware languages.

REFERENCES
[1] B. Bomar, “Implementation of microprogrammed control in FPGAs,”
IEEE Trans. on Industrial Electronics, vol. 49, no. 2, pp. 415-422, April
2002.

F. de Dinechin, C. Klein, and B. Pasca, “Generating high-performance
custom floating-point pipelines,” in /9th International Conference on
Field Programmable Logic and Applications. 1EEE, August 2009.

D. DuBois, A. DuBois, T. Boorman, C. Connor, and S. Poole, “An
Implementation of the Conjugate Gradient Algorithm on FPGAs,” in
16th Int. Symp. on Field-Programmable Custom Computing Machines.
IEEE, April 2008, pp. 296-297.

T. Feist, “Vivado Design Suite,” Xilinx, White Paper Version
1.1, June 2012. [Online]. Available: http://www.xilinx.com/support/
documentation/white_papers/wp416- Vivado-Design-Suite.pdf

D. Goldberg, “What Every Computer Scientist Should Know About
Floating-Point Arithmetic,” ACM Computing Surveys, vol. 23, no. 1,
pp. 5-48, March 1991.

Z. Guo, W. Najjar, and B. Buyukkurt, “Efficient hardware code genera-
tion for FPGASs,” ACM Trans. on Architecture and Code Optimization,
vol. 5, no. 1, pp. 1-26, 2008.

S. Kestur, D. Dantara, and V. Narayanan, “SHARC: A streaming model
for FPGA accelerators and its application to Saliency,” in Design,
Automation Test in Europe, March 2011, pp. 1-6.

J. S. Kim, L. Deng, P. Mangalagiri, K. Irick, K. Sobti, M. Kandemir,
V. Narayanan, C. Chakrabarti, N. Pitsianis, and X. Sun, “An automated
framework for accelerating numerical algorithms on reconfigurable
platforms using algorithmic/architectural optimization,” IEEE Trans. on
Computers, vol. 58, no. 12, pp. 1654-1667, 2009.

G. Morris, “Floating-Point Computations on Reconfigurable Comput-
ers,” in DoD High Performance Computing Modernization Program
Users Group Conference. 1EEE, 2007, pp. 339-344.

F. Nowak, I. Besenfelder, W. Karl, M. Schmidtobreick, and V. Heuve-
line, “A data-driven approach for executing the cg method on re-
configurable high-performance systems,” in Architecture of Computing
Systems — ARCS 2013, ser. Lecture Notes in Computer Science, vol.
7767. Springer Berlin Heidelberg, 2013, pp. 171-182.

F. Nowak and R. Buchty, “A tightly coupled accelerator infrastructure
for exact arithmetics,” in Architecture of Computing Systems — ARCS
’10, ser. LNCS, vol. 5974. Springer, February 2010, pp. 222-233.

F. Nowak, R. Buchty, D. Kramer, and W. Karl, “Exploiting the htx-
board as a coprocessor for exact arithmetics,” in Proceedings of the First
International Workshop on HyperTransport Research and Applications
(WHTRA2009), February 2009, pp. 20-29.

(2]

(3]

(4]

[5]

(6]

(71

(8]

(91

[10]

(1]

[12]

http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf
http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf

[13]

[14]

[15]

F. Philipp and M. Glesner, “(GECO)2: A graphical tool for the
generation of configuration bitstreams for a smart sensor interface
based on a Coarse-Grained Dynamically Reconfigurable Architecture,”
in 22nd International Conference on Field Programmable Logic and
Applications, ser. FPL 12, 2012, pp. 679-682.

D. Singh, “ImplementingFPGA Design with the OpenCL Standard,”
Altera Corporation, White Paper, November 2013. [Online]. Available:
http://www.altera.com/literature/wp/wp-01173-opencl.pdf

R. Strzodka, “Hardware Efficient PDE Solvers in Quantized Image
Processing,” Dissertation, University Duisburg, 2004.

67

[16]

[17]

[18]

W. Vanderbauwhede, S. Chalamalasetti, S. Purohit, and M. Margala,
“A Few Lines of Code, Thousands of Cores: High-level FPGA Pro-
gramming using Vector Processor Networks,” in Int. Conf. on High
Performance Computing and Simulation. 1EEE, July 2011, pp. 561—
567.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “Suif: an infrastructure for research
on parallelizing and optimizing compilers,” ACM SIGPLAN Notices,
vol. 29, no. 12, pp. 31-37, 1994.

Xilinx, “9 Reasons Why The Vivado Design Suite Accelerates Design
Productivity.” [Online]. Available: www.xilinx.com/publications/prod_
mktg/vivado/Vivado_9_Reasons_Backgrounder.pdf

http://www.altera.com/literature/wp/wp-01173-opencl.pdf
www.xilinx.com/publications/prod_mktg/vivado/Vivado_9_Reasons_Backgrounder.pdf
www.xilinx.com/publications/prod_mktg/vivado/Vivado_9_Reasons_Backgrounder.pdf

