
Search Strategies for Functional Logic Programming

Michael Hanus Björn Peemöller Fabian Reck

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany

{mh|bjp|fre}@informatik.uni-kiel.de

Abstract: In this paper we discuss our practical experiences with the use of different
search strategies in functional logic programs. In particular, we show that complete
strategies, like breadth-first search or iterative deepening search, are a viable alterna-
tive to incomplete strategies, like depth-first search, that have been favored in the past
for logic programming languages.

1 Introduction

Functional logic languages combine the most important features of functional and logic

programming in a single language (see [AH10, Han07] for recent surveys). In partic-

ular, they provide higher-order functions and demand-driven evaluation from functional

programming together with logic programming features like non-deterministic search and

computing with partial information (logic variables). This combination led to new de-

sign patterns [AH02, AH11] and better abstractions for application programming, e.g.,

as shown for programming with databases [BHM08, Fis05], GUI programming [Han00],

web programming [Han01, Han06, HK10], or string parsing [CLF99]. Moreover, it is a

good basis to teach the ideas of functional and logic programming, or declarative program-

ming in general, with a single computation model and programming language [Han97].

The operational principles of functional logic languages have also been used for other

computation tasks, like inverse computations [AGK06], partial evaluation [AFV98], or

generation of test cases [FK07, RNL08].

An important feature of logic programming languages is non-deterministic search. In Pro-

log, which is still the standard language for logic programming, non-deterministic search is

implemented via backtracking, which corresponds to a depth-first search traversal through

the SLD proof tree [Llo87]. Due to this feature of Prolog, the idea of logic programming is

often reduced to the combination of unification and backtracking, as shown by approaches

to add logic programming features to existing functional languages (e.g., [CL00, Hin01]).

This limited “backtracking” view of logic programming is also harmful to beginners, e.g.,

when newbies define their family relationships using a Prolog rule like

sibling(X,Y) :- sibling(Y,X).

In such cases, one has to explain from the beginning the pitfalls of backtracking which

harms the understanding of declarative programming. From a declarative point of view,

61

a logic program defines a set of rules and a logic programming system tries to find a

solution to a query w.r.t. this set of rules. In order to abstract from operational details,

the search strategy has to be complete. Due to these considerations, the functional logic

language Curry [He06] does not fix a particular search strategy so that different Curry

implementations can support different (or also several) search strategies. Moreover, Curry

implementations also support encapsulated search where non-deterministic computations

are represented in a data structure so that different search strategies can be implemented

as tree traversals [BHH04, HS98, Lux99].

In this paper, we present our practical results with different search strategies implemented

in a new Curry system called KiCS2 [BHPR11]. KiCS2 compiles Curry programs into

Haskell programs where non-deterministic values and computations are represented as

tree structures so that flexible search strategies can be supported. Although the incomplete

depth-first search strategy is the most efficient one (provided that it is able to find a result

value), we show that complete strategies, like breadth-first search or iterative deepening

search, are a reasonable alternative that does not force the programmer to consider the

applied search strategy in his program.

In the next section, we briefly recall some principles of functional logic programming and

the programming language Curry that are necessary to understand the remaining part of the

paper. The encapsulation of search and the implementation of different search strategies

are discussed in Section 3. These strategies are evaluated with a number of benchmarks in

Section 4 before we conclude in Section 5.

2 Functional Logic Programming and Curry

Integrated functional logic programming languages combine features from functional pro-

gramming and logic programming. Recent surveys are available in [AH10, Han07]. Curry

[He06] is a functional logic language which extends lazy functional programming as to be

found in Haskell [PJ03] and additionally supports logic programming features. Another

functional logic language based on similar principles is T OY [LFSH99]. However, T OY
does not offer flexible search strategies by a concept of encapsulating search (although it

provides a concept of nested computation spaces in order to deal with failures in func-

tional logic programming [LFSH04, SH06]). Therefore, we use Curry throughout this

paper, although the concepts presented here could be also integrated in other functional

logic languages.

A Curry program consists of the definition of data types and operations on these types.

Since the syntax of Curry is close to Haskell, variables and function names usually start

with lowercase letters and the names of type and data constructors start with an uppercase

letter. The application of f to e is denoted by juxtaposition (“f e”). In addition, Curry

allows free (logic) variables in conditions and right-hand sides of defining rules. Note

that in a functional logic language operations might yield more than one result on the

same input due to the logic programming features. For instance, Curry contains a choice

operation defined by:

62

x ? _ = x

_ ? y = y

The choice operation can be used to define other non-deterministic operations like

coin = 0 ? 1

Thus, the expression “coin” has two values: 0 and 1. If expressions have more than

one value, one wants to select intended values according to some constraints, typically in

conditions of program rules. A rule has the form

f t1 . . . tn | c = e

where the (optional) condition c is a constraint, i.e., an expression of the built-in type

Success. For instance, the trivial constraint success is a value of type Success that

denotes the always satisfiable constraint. Thus, we say that a constraint c is satisfied if

it can be evaluated to success. An equational constraint e1 =:= e2 is satisfiable if both

sides e1 and e2 are reducible to unifiable values.

As a simple example, consider the following Curry program which defines a polymorphic

data type for lists and operations to compute the concatenation of lists and the last element

of a list:1

data List a = [] | a : List a -- [a] denotes "List a"

-- "++" is a right-associative infix operator

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] → a

last xs | (ys ++ [z]) =:= xs = z

where ys, z free

Logic programming is supported by admitting function calls with free variables (e.g.,

(ys++[z]) in the rule defining last) and constraints in the condition of a defining rule.

In contrast to Prolog, free variables need to be declared explicitly to make their scopes

clear (e.g., “where ys,z free” in the example). A conditional rule is applicable if its

condition is satisfiable. Thus, the rule defining last states in its condition that z is the last

element of a given list xs if there exists a list ys such that the concatenation of ys and the

one-element list [z] is equal to the given list xs.

Curry also offers standard features of functional languages, like modules or monadic I/O

which is identical to Haskell’s I/O concept [Wad97]. Thus, “IO α” denotes the type of an

I/O action that returns values of type α.

The operational semantics of Curry is based on an optimal evaluation strategy [AEH00]

which is a conservative extension of lazy functional programming and (concurrent) logic

programming. A big-step and a small-step operational semantics of Curry can be found

1Note that lists are a built-in data type with a more convenient syntax, e.g., one can write [x,y,z] instead

of x:y:z:[] and [a] instead of the list type “List a”.

63

in [AHH+05]. Curry’s semantics is sound in the sense of logic programming, i.e., each

computed result is correct and for each correct result there is a more general computed one

[AEH00]. In order to achieve completeness, one has to take all possible non-deterministic

derivation paths into account. In contrast to Prolog, which fixes a (potentially incomplete)

depth-first search strategy to find solutions, Curry does not fix a particular search strategy.

Actually, descriptions of the model-theoretic [GMHGLFRA99] or operational [AHH+05]

semantics of functional logic languages do not take a search strategy into account. Thus,

different Curry implementations can support various search strategies. For instance, the

Curry implementation PAKCS [HAB+10], which compiles Curry programs into Prolog

programs, supports only a depth-first search strategy. MCC [Lux99] compiles Curry pro-

grams into C programs and uses also a depth-first search strategy to find the solutions of a

given top-level goal. In addition, MCC offers the encapsulation of search (see below) so

that other search strategies, like a complete breadth-first search strategy, can be used inside

a Curry program. The Curry implementation KiCS [BH07, BH09], which compiles Curry

programs into Haskell programs, offers depth-first and breadth-first search strategies for

top-level goals as well as the encapsulation of search with user-definable strategies. In

this paper we consider the Curry implementation KiCS2 [BHPR11], which is based on

similar ideas than KiCS but uses a different compilation model avoiding side effects to en-

able better optimizations for target programs. KiCS2 also offers different search strategies

for top-level goals and the encapsulation of search with user-definable strategies, which is

described next.

3 Search Strategies

As mentioned above, Curry does not enforce a particular search strategy. A Curry im-

plementation can provide various search strategies to find solutions or values for a given

constraint or expression. The most advanced system in this respect is KiCS2 [BHPR11],

which supports the evaluation of top-level expressions with depth-first search, breadth-

first search, iterative deepening search, or parallel search strategies. Curry supports this

flexibility since all operations with side effects are collected in monadic I/O operations

[Wad97]. As a consequence of this computation model, all non-deterministic computa-

tions between I/O operations must be encapsulated since one can not apply two alternative

I/O operations to an existing “world” and non-deterministically proceed with two alterna-

tive worlds (“one can not duplicate the world”). Therefore, Curry offers the encapsulation

of search by representing non-deterministic computations in a data structure so that the

computation of different solutions (one solution or all solutions) can conceptually be im-

plemented as traversals on this data structure.

An early approach [HS98, Lux99] to encapsulating search in Curry is based on a primitive

search operator

try :: (a → Success) → [a → Success]

that takes a constraint abstraction, e.g., (\x->x=:=coin), as input, evaluates it until the

first non-deterministic step occurs, and returns the result: the empty list in case of fail-

64

ure, a list with a single element in case of success, or a list with at least two elements

representing a non-deterministic choice. For instance, try(\x->x=:=coin) evaluates

to [\x->x=:=0,\x->x=:=1]. Based on this primitive, one can define various search

strategies to explore the search space and return its solutions. [Lux99] shows an imple-

mentation of this primitive.

Although typical search operators of Prolog, like findall, once, or negation-as-failure,

can be implemented using try, it became also clear that the combination of encapsulated

search and demand-driven evaluation and sharing causes further complications [BHH04].

For instance, in an expression like

let y = coin in try (\x → x =:= y)

it is not obvious whether the non-determinism caused by the evaluation of coin (intro-

duced outside but demanded inside the search operator) should be encapsulated or not.

Hence, the result of this expression might depend on the evaluation order. For instance,

if coin is evaluated before the try expression, it results in two computations where y

is bound to 0 in one computation and to 1 in the other computation. Hence, try does

not encapsulate the non-determinism of coin (this is the semantics of try implemented

in [Lux99]). However, if coin is evaluated inside the capsule of try (because it is not

demanded before), then the non-determinism of coin is encapsulated. These and more

peculiarities are discussed in [BHH04]. Furthermore, the order of the solutions might

depend on the textual order of program rules or the evaluation time (e.g., in parallel im-

plementations). Hence, it is difficult to define a search operator as a pure function.

Due to these considerations, [BHH04] contains a proposal for another primitive search

operator:

getSearchTree :: a → IO (SearchTree a)

It takes an expression and delivers a search tree representing the search space when evalu-

ating the input:

data SearchTree a = Value a

| Fail

| Or (SearchTree a) (SearchTree a)

(Value v) and Fail represent a single value or a failure (i.e., no value), respectively,

and (Or t1 t2) represents a choice (i.e., a non-deterministic value) between two search

trees t1 and t2. Since getSearchTree is an I/O action, its result (in particular, the order

of subtrees) depends on the current environment, e.g., time of evaluation. To avoid the

complications w.r.t. shared variables, getSearchTree implements a strong encapsulation

view, i.e., conceptually, the argument of getSearchTree is cloned before the evaluation

starts in order to cut any sharing with the environment. Furthermore, the structure of the

search tree is computed lazily so that an expression with infinitely many values does not

cause the nontermination of the search operator if one is interested in only one solution.

This primitive has been implemented for the first time in KiCS [BH07, BH09] and it is

also provided in KiCS2 [BHPR11] considered in this paper. With this primitive, the pro-

grammer can define its own search strategy as SearchTree traversals in order to collect

65

all non-deterministic values into a list structure. For instance, a depth-first search strategy

can be easily defined as follows:

allValuesDFS :: SearchTree a → [a]

allValuesDFS Fail = []

allValuesDFS (Value x) = [x]

allValuesDFS (Or x y) = allValuesDFS x ++ allValuesDFS y

Note that the lazy evaluation of traversal operations like allValuesDFS has the advantage

that the search strategy is decoupled from the control. For instance, we can define the

following operation to print a single value of a non-deterministic expression:

printFirstValueDFS x =

getSearchTree x >>= print . head . allValuesDFS

Thus, (printFirstValueDFS exp) can print some value even if the non-deterministic

expression exp has infinitely many values. This is in contrast to Prolog’s constructs for

controlling search where different operators are necessary to compute one or all solutions.

It is well known that depth-first search lacks completeness, i.e., it might not be able to

compute all existing values. For instance, consider the following operation that non-

deterministically returns all increasing numbers from a given number n:

f n = f (n+1) ? n

Although 0 is a value of (f 0), the evaluation of (printFirstValueDFS (f 0)) does

not terminate (provided that the primitive getSearchTree explores the non-determinism

of “?” in left-to-right order). This problem can be avoided with complete search strate-

gies, like breadth-first search strategy, which can be defined on SearchTree structures as

follows:

allValuesBFS :: SearchTree a → [a]

allValuesBFS t = collect [t]

collect [] = []

collect (t:ts) = values (t:ts) ++ collect (children (t:ts))

values [] = []

values (Fail : ts) = values ts

values (Value x : ts) = x : values ts

values (Or _ _ : ts) = values ts

children [] = []

children (Fail : ts) = children ts

children (Value _ : ts) = children ts

children (Or x y : ts) = x : y : children ts

The operation values extracts the values in each level of the tree and the operation

children extracts all direct successors of a level in order to recursively collect their

values.

Using allValuesBFS, we can print a value of the expression (f 0) by

66

getSearchTree (f 0) >>= print . head . allValuesBFS

In order to abstract from the details of the evaluation order, it would be preferable to

use complete search strategies. However, complete strategies are often neglected due to

performance reasons. For example, the breadth-first search strategy stores all child nodes

of a tree level in a list to be explored later, which, as the search space potentially doubles

on each level, may lead to an exponentially growing memory usage.

Another complete search strategy with a superior memory behavior is iterative-deepening

search. Basically, it is a depth-first search strategy with a depth-bound which is incre-

mented in each iteration. Thus, we compute in each iteration a list of values together with

some information whether we have aborted (due to the depth-bound) the computation of

further possible values. For this purpose, we define list structures that can also end with

an Abort:

data AbortList a = Nil | Cons a (AbortList a) | Abort

and define the concatenation on such lists:

concA :: AbortList a → AbortList a → AbortList a

concA Abort Abort = Abort

concA Abort Nil = Abort

concA Abort (Cons x xs) = Cons x (concA Abort xs)

concA Nil ys = ys

concA (Cons x xs) ys = Cons x (concA xs ys)

Now we define an operation to collect values in a search tree within some level bounds (to

avoid the repeated collection of values found in each iteration):

collectInBounds :: Int → Int → SearchTree a → AbortList a

collectInBounds oldbound newbound st = collectLevel newbound st

where

collectLevel _ Fail = Nil

collectLevel d (Value x) = if d <= newbound - oldbound

then Cons x Nil

else Nil

collectLevel d (Or x y) =

if d > 0

then concA (collectLevel (d-1) x) (collectLevel (d-1) y)

else Abort

Now, the entire search strategy consists of repeated calls to collectInBounds as long

as the result list is aborted. In order to experiment with different parameters, the initial

depth bound and the method to increase the depth bound in each iteration are passed as

parameters to the main operation:

allValuesIDS :: Int → (Int → Int) → SearchTree a → [a]

allValuesIDS initdepth incrdepth st =

iterIDS initdepth (collectInBounds 0 initdepth st)

where

iterIDS _ Nil = []

67

iterIDS n (Cons x xs) = x : iterIDS n xs

iterIDS n Abort =

let newdepth = incrdepth n

in iterIDS newdepth (collectInBounds n newdepth st)

The key advantage of depth-first search in comparison to breadth-first search is its memory

behavior: whereas breadth-first search has to store all nodes in a level of the search tree in

parallel, depth-first search only needs to store the nodes in the branch from the root to the

current node under investigation. Since iterative deepening uses depth-first search in each

iteration, it should have a memory behavior similarly to depth-first search and, in case of

wide search trees, better than breadth-first search. The price for this behavior is the recom-

putation of the initial goal in each iteration. However, since we defined iterative deepening

on a search tree, recomputation is not required. Instead, the already evaluated part of the

search tree is kept in memory, sacrificing the better memory behaviour. Therefore, we also

implemented the iterative deepening strategy for top-level goals without an explicit search

tree but with a recomputation of the initial goal in each iteration (see Section 4).

The various operators to encapsulate search can also be used to implement an interactive

top-level search to print all values of an expression as requested by the user. For instance,

the following I/O operation interactively prints all elements of a given list:

printResults :: [a] → IO ()

printResults [] = putStrLn "No more values"

printResults (x:xs) = do print x

putStr "More values? "

inp <- getLine

if inp == "yes" then printResults xs

else done

Hence, an interactive Prolog-like top-level behavior to show the values of an expression

exp in depth-first order can be obtained by

getSearchTree exp >>= printResults . allValuesDFS

In addition, we can print the results in breadth-first order by using allValuesBFS in-

stead of allValuesDFS. Based on these ideas, KiCS2 provides an interactive top-level

search where the user can select various search strategies, e.g., depth-first, breadth-first,

iterative deepening, or an experimental implementation of parallel search. However, the

top-level search in KiCS2 is not implemented via the primitive encapsulation operators

but in a monadic style (see also [BHPR11]) in order to avoid the explicit construction of

the SearchTree structure. Thus, in the next section we both compare the different search

strategies introduced above as well as the top-level search with the encapsulated search,

in order to evaluate the potential overhead caused by abstracting and programming with

search structures.

68

4 Benchmarks

In this section we evaluate the practical behavior of the various search strategies discussed

so far. Since they are only supported by the Curry implementation KiCS2, we use this

system for our evaluation. A general comparison of KiCS2 and other Curry implemen-

tations can be found in [BHPR11]. Since KiCS2 compiles Curry programs into Haskell

programs, we used the Glasgow Haskell Compiler (GHC 7.0.4, option -O2) to compile and

execute the generated target programs. All benchmarks were executed on a 32bit Linux

machine running Ubuntu 11.10 with an Intel Core 2 Duo (2.13 GHz) processor and 4 GiB

RAM. The timings were performed with the time command measuring the execution time

(in seconds) of a compiled executable for each benchmark. Due to the lack of precise

measurements of the space behavior, we measured only the execution times.

Program DFS IDS(+1) IDS(*2) eDFS eBFS eIDS(+1) eIDS(*2)

PermSort 13.12 841.58 32.77 38.48 66.82 72.64 46.79

Last 0.10 660.08 0.26 0.34 0.19 6.59 0.39

Half 0.67 561.45 1.62 1.43 1.22 1.86 1.71

Graph 1.76 52.53 2.40 3.51 4.22 4.26 3.83

HorseMan 2.64 639.64 6.63 3.23 3.29 3.20 3.17

MAC 6.80 544.05 7.84 21.19 18.34 18.59 21.03

Queens 24.74 374.64 33.62 42.71 43.98 44.01 42.65

Figure 1: Benchmarks: computing all values

Figure 1 shows the benchmark results when all values of a given expression are com-

puted with various search strategies. All benchmark programs are non-deterministic pro-

grams. “PermSort” sorts a list containing 15 elements by enumerating all permutations

and selecting the sorted ones, “Last” computes the last element x of a list xs contain-

ing 10,000 elements by solving the equation “ys++[x] =:= xs” (see Section 2), “Half”

computes the half y of a natural number x (in Peano representation) by solving the equa-

tion y+y=:=x, “Graph” computes some path in a graph where the edges are represented by

a non-deterministic “successor” operation, “HorseMan” computes the numbers of horses

and men from given numbers of heads and feet by searching for appropriate numbers in

Peano representation, “MAC” solves the “Missionaries and Cannibals” puzzle (see [AH02,

Sect. 3.1]) for reasonable numbers of missionaries and cannibals to obtain measurable run

times, and “Queens” computes safe placements of queens on a chess board.

The columns in Figure 1 are the various search strategies considered in this paper. “DFS”

denotes the top-level depth-first search strategy which is similar to allValuesDFS but

implements this strategy in a monadic style without the explicit construction of a search

tree. The encapsulated search strategies are prefixed by “e”, i.e., “eDFS” and “eBFS”

correspond to allValuesDFS and allValuesBFS, respectively. “eIDS(+1)” corresponds

to allValuesIDS with an initial depth bound of 10 and the depth increment operation

(+1), whereas “eIDS(*2)” uses the same initial depth bound but the depth increment

operation (*2), i.e., to depth bound is doubled in each iteration. Finally, “IDS(+1)” and

“IDS(*2)” are iterative deepening strategies with similar parameters but recompute the

69

Program DFS IDS(+1) IDS(*2) eDFS eBFS eIDS(+1) eIDS(*2)

PermSort 12.57 804.82 32.09 34.75 67.02 70.47 46.66

Last 0.10 661.92 0.24 0.35 0.19 6.57 0.39

Half 0.34 72.64 0.58 0.69 0.59 0.78 0.78

Graph 0.00 0.10 0.04 0.00 0.04 0.04 0.03

HorseMan 2.06 636.62 6.64 2.52 2.60 2.61 2.57

MAC 0.14 38.75 0.94 0.94 2.81 2.75 2.79

Queens 1.40 370.26 33.65 2.44 8.95 8.86 3.04

NDNums oom 47.89 0.14 oom oom oom 0.47

Figure 2: Benchmarks: computing a single value

initial expression in each iteration in order to trade space for run time, as discussed in

Section 3.

The table entries in Figure 1 contain the run times in seconds to compute all values of

the initial expression. As one can see, the top-level depth-first search is the most efficient

search strategy. The encapsulated version of depth-first search (eDFS) with the explicit

construction of the search tree causes some overhead, since the search strategy is encoded

in the source program rather than in the run-time system as in the top-level search (DFS).

The benchmarks also show that complete search strategies, like “eBFS” and “eIDS(*2)”

are viable alternatives to the incomplete depth-first search strategy. Their overhead (some-

times they are even faster than “eDFS”, but they are always slower than top-level search)

is acceptable taking into account the fact that one need not to reason about the details of

exploring the search space. The behavior of iterative deepening is largely influenced by

its parameterization. A constant increment of the depth bound causes a big overhead com-

pared to doubling the depth bound in each iteration, in particular, when the search tree is

slim as in “Last”. This is even worse for top-level iterative deepening which recomputes

the initial expression in each iteration, see “IDS(+1)”.

The benchmarks indicate that breadth-first search seems to be a good strategy taking into

account the size of memory provided by modern computers. However, if the search tree is

wide (i.e., the nodes in each level increases with the depth of the tree), then iterative deep-

ening is superior to breadth-first search. To examine such a case, we added a benchmark

“NDNums” which defines a non-deterministic operation with a high branching factor that

returns all inreasing numbers

g n = g (n+1) ? n ? g (n+1)

and solve the equation “g 0 =:= 29”. Obviously, the computation of all values will

never terminate. Therefore, we executed the benchmarks to compute only a first value of

an expression via different search strategies. Figure 2 contains the corresponding results

where “oom” denotes a memory overflow in a computation. As one can see, iterative

deepening is the only search strategy that is able to find a solution in all examples.

70

5 Conclusions

We discussed the use of different search strategies in functional logic programs. In order to

enable user-programmable search strategies, modern functional logic languages like Curry

provide primitives to represent non-deterministic computations or values as data structures

that can be traversed like any term structure. The Curry implementation KiCS2, considered

in this paper, provides a primitive getSearchTree that returns a tree representation of a

non-deterministic computation. This representation can be used to define various search

strategies, like depth-first search, breadth-first search, or iterative deepening search.

We have practically evaluated and compared the efficiency of these strategies. The bench-

marks indicated that complete strategies are a viable alternative to incomplete strategies,

that have been favored in the past due to limited memory requirements. Decoupling non-

deterministic programs from their search strategy could lead to a more declarative pro-

gramming style (instead of the use of predicates with side effects as in Prolog) and enable

more potential for optimization, e.g., parallel search strategies. The explicit definition

of search strategies has also been advocated for combining logic programs with different

constraint solvers [FHPR06, Sch97].

Our results indicate that it could be reasonable to make complete strategies the default in

functional logic languages. This would have a good impact on teaching declarative pro-

gramming to beginners. Furthermore, if efficiency and memory limitations are important,

one can still use an efficient strategy, like depth-first search, provided that it is able to find

all solutions (e.g., in case of a finite search space). It is an interesting topic for future work

to statically approximate situations where the use of theoretically incomplete strategies is

sufficient.

References

[AEH00] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776–822, 2000.

[AFV98] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional
Logic Programs. ACM Transactions on Programming Languages and Systems,
20(4):768–844, 1998.

[AGK06] S. Abramov, R. Glück, and Y. Klimov. An Universal Resolving Algorithm for
Inverse Computation of Lazy Languages. In Perspectives of Systems Informatics
(PSI 2006), pages 27–40. Springer LNCS 4378, 2006.

[AH02] S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th
International Symposium on Functional and Logic Programming (FLOPS 2002),
pages 67–87. Springer LNCS 2441, 2002.

[AH10] S. Antoy and M. Hanus. Functional Logic Programming. Communications of
the ACM, 53(4):74–85, 2010.

[AH11] S. Antoy and M. Hanus. New Functional Logic Design Patterns. In Proc. of the
20th International Workshop on Functional and (Constraint) Logic Program-
ming (WFLP 2011), pages 19–34. Springer LNCS 6816, 2011.

71

[AHH+05] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics
for Declarative Multi-Paradigm Languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

[BH07] B. Braßel and F. Huch. On a Tighter Integration of Functional and Logic Pro-
gramming. In Proc. APLAS 2007, pages 122–138. Springer LNCS 4807, 2007.

[BH09] B. Braßel and F. Huch. The Kiel Curry System KiCS. In Applications of Declar-
ative Programming and Knowledge Management, pages 195–205. Springer
LNAI 5437, 2009.

[BHH04] B. Braßel, M. Hanus, and F. Huch. Encapsulating Non-Determinism in Func-
tional Logic Computations. Journal of Functional and Logic Programming,
2004(6), 2004.

[BHM08] B. Braßel, M. Hanus, and M. Müller. High-Level Database Programming in
Curry. In Proc. of the Tenth International Symposium on Practical Aspects of
Declarative Languages (PADL’08), pages 316–332. Springer LNCS 4902, 2008.

[BHPR11] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A New Compiler from
Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS
6816, 2011.

[CL00] K. Claessen and P. Ljunglöf. Typed Logical Variables in Haskell. In Proc. ACM
SIGPLAN Haskell Workshop, Montreal, 2000.

[CLF99] R. Caballero and F.J. López-Fraguas. A Functional-Logic Perspective of Parsing.
In Proc. 4th Fuji International Symposium on Functional and Logic Program-
ming (FLOPS’99), pages 85–99. Springer LNCS 1722, 1999.

[FHPR06] S. Frank, P. Hofstedt, P. Pepper, and D. Reckmann. Solution Strategies for Multi-
domain Constraint Logic Programs. In Perspectives of Systems Informatics (PSI
2006), pages 209–222. Springer LNCS 4378, 2006.

[Fis05] S. Fischer. A Functional Logic Database Library. In Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005),
pages 54–59. ACM Press, 2005.

[FK07] S. Fischer and H. Kuchen. Systematic generation of glass-box test cases for func-
tional logic programs. In Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP’07),
pages 63–74. ACM Press, 2007.

[GMHGLFRA99] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodrı́guez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

[HAB+10] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry Sys-
tem. Available at http://www.informatik.uni-kiel.de/˜pakcs/,
2010.

[Han97] M. Hanus. Teaching Functional and Logic Programming with a Single Compu-
tation Model. In Proc. Ninth International Symposium on Programming Lan-
guages, Implementations, Logics, and Programs (PLILP’97), pages 335–350.
Springer LNCS 1292, 1997.

72

[Han00] M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pages 47–62. Springer LNCS 1753, 2000.

[Han01] M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the
Third International Symposium on Practical Aspects of Declarative Languages
(PADL’01), pages 76–92. Springer LNCS 1990, 2001.

[Han06] M. Hanus. Type-Oriented Construction of Web User Interfaces. In Proceedings
of the 8th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP’06), pages 27–38. ACM Press, 2006.

[Han07] M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Inter-
national Conference on Logic Programming (ICLP 2007), pages 45–75. Springer
LNCS 4670, 2007.

[He06] M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://www.curry-language.org, 2006.

[Hin01] R. Hinze. Prolog’s control constructs in a functional setting - Axioms and
implementation. International Journal of Foundations of Computer Science,
12(2):125–170, 2001.

[HK10] M. Hanus and S. Koschnicke. An ER-based Framework for Declarative Web
Programming. In Proc. of the 12th International Symposium on Practical As-
pects of Declarative Languages (PADL 2010), pages 201–216. Springer LNCS
5937, 2010.

[HS98] M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pages 374–390. Springer LNCS 1490, 1998.

[LFSH99] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declara-
tive System. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

[LFSH04] F.J. López-Fraguas and J. Sánchez-Hernández. A Proof Theoretic Approach to
Failure in Functional Logic Programming. Theory and Practice of Logic Pro-
gramming, 4(1):41–74, 2004.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended
edition, 1987.

[Lux99] W. Lux. Implementing Encapsulated Search for a Lazy Functional Logic Lan-
guage. In Proc. 4th Fuji International Symposium on Functional and Logic Pro-
gramming (FLOPS’99), pages 100–113. Springer LNCS 1722, 1999.

[PJ03] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Re-
port. Cambridge University Press, 2003.

[RNL08] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck:
automatic exhaustive testing for small values. In Proc. of the 1st ACM SIGPLAN
Symposium on Haskell, pages 37–48. ACM Press, 2008.

[Sch97] C. Schulte. Programming Constraint Inference Engines. In Proceedings of the
Third International Conference on Principles and Practice of Constraint Pro-
gramming, pages 519–533. Springer LNCS 1330, 1997.

73

[SH06] J. Sánchez-Hernández. Constructive Failure in Functional-Logic Programming:
From Theory to Implementation. Journal of Universal Computer Science,
12(11):1574–1593, 2006.

[Wad97] P. Wadler. How to Declare an Imperative. ACM Computing Surveys, 29(3):240–
263, 1997.

74

