
Security Testing by Telling TestStories

Michael Felderer1, Berthold Agreiter2, Ruth Breu3 and Alvaro Armenteros4

Abstract: Security testing is very important to assure a certain level of reliability in a system. On
the system level, security testing has to guarantee that security requirements such as confidential-
ity, integrity, authentication, authorization, availability and non-repudiation hold. In this paper, we
present an approach to system level security testing of service oriented systems that evaluates secu-
rity requirements. Our approach is based on the Telling TestStories methodology for model–driven
system testing. After the elicitation of security requirements, we define a system and a test model.
The test model is then transformed to executable test code. We show how traceability between all
artifacts can be established and how the tests can be executed focusing on security relevant aspects.
All steps are explained based on an industrial case study.

1 Introduction
While testing functional system requirements is one of the core software engineering dis-
ciplines, testing security requirements is a new emerging field. We contribute by defining
and executing security tests based on the Telling TestStories (TTS) approach [FBCO+09],
a methodology for model–driven system testing of service oriented systems. Service ori-
ented systems consist of a set of independent components interacting via services to ex-
ecute collaborative or managed processes. Based on a taxonomy of requirements, TTS
defines a system model for a service oriented system and a related test model that invokes
service operations of the system model. All model artifacts and the executable services are
traceable. More details on TTS are presented in [FBCO+09, FFZ+09].

The work at hand shows how security requirements can be specified as functional require-
ments according to the TTS methodology such that tests of security requirements can be
treated like functional system tests. Functional security tests, as defined in our approach,
are more powerful than tests with other security testing approaches because our method-
ology extends the set of testable security requirements.

Based on the definition of security requirements we design a system model and test model
containing test stories that are traceable to security requirements. Test stories are then
transformed to executable test code which makes security requirements executable. We
also show how the tests can be executed by integrating the test component as passive

1 Institute for Computer Science, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria,
michael.felderer@uibk.ac.at

2 Institute for Computer Science, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
berthold.agreiter@uibk.ac.at

3 Institute for Computer Science, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria,
ruth.breu@uibk.ac.at

4 Telefónica I+D, C/ Emilio Vargas 6, 28043 Madrid, Spain, aap@tid.es

196 Michael Felderer et al.

participant into the process under test. The methodology is demonstrated by an industrial
case study.

The paper is structured as follows. In the next section, we present our case study and show
how security requirements can be modelled and tested with TTS. In Section 3 we provide
related work and finally in Section 4, we sum up and draw conclusions.

2 Security Modeling and Testing

This section explains our security testing approach by TTS based on an industrial case
study5 to control the network access of clients in a home network. Depending on client
properties such as the age of a user or the status of the installed anti–malware application,
the network access control applies policies, e.g. that an underage user may only be allowed
to access a restricted set of resources on the network.

The scenario consists of different peers distributed among the home network and the opera-
tor network. These peers are the Access Requestor (AR), Home Gateway (HG), PolicyEn-
forcement Point (PEP) and the Policy Decision Point (PDP). Following service oriented
principles [Erl05], each peer shares interfaces defining the terms of information exchange.
The AR is the client application to establish and use the connection to the home network.
An AR always connects to a HG. The HG is a device installed at the home of customers
controlling access to different networks and services (e.g. domotics, multimedia, data ser-
vices). The enforcement of who is allowed to access which resources on the network is
made by an internal component of the HG called PEP. The PEP gets the policy it has to
enforce for a specific AR by the PDP which is the only component run by the operator and
not the end user herself. Because we have four independent components only interacting
via well-defined interfaces to execute a process, the example adheres to our definition of
a service oriented system. Furthermore, we are focusing on testing dedicated example se-
quences (i.e. the test stories) of the system and verify whether certain security requirements
hold under such conditions. The TTS framework adheres to a test-driven development ap-
proach, thus it allows the execution of test stories in early stages of system development
and supports the evolution of the underlying system. Thus, TTS is an ideal choice for a
testing framework of the presented system.

2.1 Requirements Model

The requirements are modelled by a requirements hierarchy. It defines a refinement from
abstract requirements resp. goals to more detailed requirements. Security requirements
and any other type of non–functional requirements can be integrated into this hierarchy
in a natural way. For this purpose, we use SysML requirements diagrams [OMG07] and
mark security requirements with the stereotype securityRequirement. Several classifi-
cations of security requirements can be found in the literature, e.g. [Fir03]. In this work
we consider confidentiality, integrity, authentication, authorization, availability and non-
repudiation. In Figure 1 the security requirements relevant to our case study are represented
in a requirements hierarchy.

5 The case study was kindly provided by Telefónica.

Security Testing by Telling TestStories 197

Id = "1"
Text = "The agent-based
network access has to be
controlled"

<<requirement>>
1

Id = "1.2"
Text = "An identification has
to be assigned to a
connection"

<<requirement>>
1.2

Id = "1.4"
Text = "Theassigned
policy has to be applied to
the network connection"

<<requirement>>
1.4

Id = "1.4.1"
Text = "Underaged users
are not allowed to access
the home network but only
the internet"

<<securityRequirement>>
1.4.1

Id = "1.2.2"
Text = "The identification
information is only visible
for the involved actors"

<<securityRequirement>>
1.2.2

Id = "1.1"
Text = "The AR
establishes a
connection to the HG"

<<requirement>>
1.1

Id = "1.2.1"
Text = "Networkaccess
is only possible after
identification"

<<securityRequirement>>
1.2.1

Text = "The policy
actions are not
modified"

Id = "1.4.2"

<<securityRequirement>>
1.4.2

Id = "1.3.1"
Text = "The PDP has
to be available"

<<securityRequirement>>
1.3.1

Text = "A policy has to
be assigned to the
connection of an AR"

Id = "1.3"

<<requirement>>
1.3

Fig. 1: Requirements

In this representation, to each security requirement as to all other requirements, model el-
ements of the test model (test stories, assertions, test sequence elements) verifying the
requirement can be assigned. Normally, compliance to a security requirement will be
checked by one or more assertions. In our basic requirements hierarchy, security require-
ments are formulated as positive statements, defining how a vulnerability can be avoided.
Attached test stories may then define possible vulnerabilities that make the requirement
fail. In Figure 1 we have defined an example for different types of security requirements.
Requirement 1.2.1 is an example for authentication, 1.2.2 for confidentiality, 1.3.1 for
availability, 1.4.1 for authorization, 1.4.2 for integrity and 2.1 for non–repudiation.

Requirements traceability refers to the ability to describe and follow the life of a require-
ment, in both a forwards and backwards direction [GF94]. Traceability has to be guar-
anteed by a system testing approach to report the status of the system requirements. Our
representation of requirements allows for a traceability definition by links between model
elements, i.e. by assigning test stories to requirements. Because service operation calls in
test stories are linked to service operation calls in the system model which are linked to
executable service operations in the system implementation, we have traceability between
the requirements model, system model, test model and the executable system.

2.2 System Model

As already mentioned, the AR is the client application to establish and use the connec-
tion to the home network. We model this with an AccessRequest interface required by
the AR. This interface is provided by the HG because an AR always connects to a HG.
The data used to decide to which networks a client is granted access is retrieved via the
Identification interface which is provided by the AR. The HG uses an internal com-
ponent to enforce these restrictions, the PEP. The PEP receives the policy it has to enforce
for a specific AR by the PDP via the PolicyDecision interface.

All components in this scenario are connected with each other and the interfaces be-
tween them are well-defined (see Figure 2). A request by the AR will trigger the input
of user credentials via the identification interface. The data returned by the AR is of type

198 Michael Felderer et al.

<<component>>

PolicyEnforcementPoint

PolicyEnforcement

PolicyDecision

<<component>>

PolicyDecisionPoint

PolicyDecision

<<component>>

AccessRequestor

AccessRequest, Networking

Identification

<<component>>

HomeGateway

Identification, PolicyEnforcement

NetworkingAccessRequest

Fig. 2: Actors modelled as components with provided and required interfaces.

IdentificationData (see Figure 3). With this information the PDP is able to look up
the appropriate policy for the request and send the corresponding list of PolicyActions
to the the PEP which enforces them. PolicyAction and IdentificationData are data
types defined internally in the system model. The type IdentificationData describes a
username, a password and optionally attestation data of an AR; the type PolicyAction is
currently only used to describe to which VLAN the PEP should allow access by a specific
AR.

+decidePolicy(identificationData : IdentificationData)
+addPolicy(policy : Policy)

PolicyDecision

+informAccessRequestor(status : Integer)
+requestAuthentication() : IdentificationData

Identification

+enforcePolicy(policy : PolicyAction [*])

PolicyEnforcement

+setPolicy(policy : PolicyAction [*])
+accessRessource(url : String) : Data

Networking

+connect()

AccessRequest

Fig. 3: Interface definitions of services.

The communication among the peers is based on different protocols and standards. Au-
thentication follows IEEE 802.1X6 which defines a supplicant, an authenticator and an
authentication server. In our case the supplicant is the AR, the role of the authenticator is
taken over by the HG and the authentication server (a RADIUS 7 database) is represented
by the PDP. Note that the system model describes all components, their interfaces and op-
tionally also behavioural parts of the system. For the present contribution we only show
the components and interface definitions as it suffices to describe the present scenario.

2.3 Test Model

The TTS test model contains a set of test stories whose execution order is defined in a test
sequence. To make all requirements executable, we assign an assertion, a test story or a
whole sequence element to it. Due to space limitations we present just one complex and
representative test story in Figure 4 and show how the requirements can be mapped to it.

The test story in Figure 4 defines a basic network access scenario containing two asser-
tions. First the AccessRequestor connects to the HomeGateway (step 1 in Figure 4),
which then requests the authentication data containing a username, a password and as-
sessment data from the AccessRequestor (steps 2 and 3). This information is forwarded
to the PolicyDecisionPoint (step 4), which sends a sequence of policy actions to the
HomeGateway (step 5) based on the identity information of the AccessRequestor. We
then assert that there has to be a policy action that contains the expected VLAN ($vlan)
to check the policy actions for integrity. The HomeGateway sends the policy actions to
the PolicyEnforcementPoint (step 6), and then informs the AccessRequestor (step
7), which then accesses a specific URL (steps 8 and 9). Finally, we check whether the

6 Available at http://www.ieee802.org/1/pages/802.1x-rev.html.
7 Remote Authentication Dial In User Service, as specified in RFC 2865.

Security Testing by Telling TestStories 199

: PolicyEnforcementPoint : PolicyDecisionPoint: AccessRequestor : HomeGateway

[pass: policy->contains(pa | pa.vlan=$vlan)
fail: not pass]

assert

[pass: data = $data
fail: not pass]

assert

setPolicy5:

connect1:

accessRessource(url=$url)8:

identificationData3:

requestAuthentication()2:

forwardIdentityInformation4:

informAccessRequestor7:

enforcePolicy6:

data9:

Fig. 4: Test story TestPolicy

accessRessource() call returns the expected data. Test cases for this test scenario are
defined in Table 1.

#TC $username $password $vlan $url $data

1 ’michael’ ’0815’ ’HomeNetwork’ ’http://74.125.43.99’ webpage 1
2 ’michael’ ’0815’ ’HomeNetwork’ ’http://192.168.1.1’ webpage 2
3 ’philipp’ ’0000’ ’Internet’ ’http://74.125.43.99’ webpage 1
4 ’philipp’ ’0000’ ’Internet’ ’http://192.168.1.1’ null
4 ’guest’ ’0000’ ’Internet’ ’http://192.168.1.1’ null

Tab. 1: Test Data Table

The test story is completed by adding some policies to the PolicyDecisionPoint in
an initial setup. In our case, three policies are added to the PolicyDecisionPoint. Each
policy assigns a sequence of policy actions, in our basic example just a list set of accessible
VLANs, to a username/password combination. The identification data objects are stored
in a data pool and are as follows in our example:

policy1:(’michael’,’0815’,([’Internet’,’HomeNetwork’])

policy2:(’philipp’,’0000’,([’Internet’])

policy3:(’*’,’*’,([’GuestNetwork’])

This initialization has to be executed before the test story TestPolicy can be executed
for every test case of Table 1. Test sequence elements can contain additional arbitrations
that aggregate the verdicts of the stories’ test cases, e.g. such an arbitration could be
pass%=100%, i.e. all test cases of a test story have to pass. The two assertions in our test
story are traceable to requirements. In the requirements model of Figure 1, the first asser-
tion can be assigned to Requirement 1.4.2 testing integrity, and Requirement 1.4.1 testing
authorization. Additionally the overall test story can be mapped to Requirement 1.4 which
is done implicitly in this case because the test story covers all sub requirements. Test sto-

200 Michael Felderer et al.

ries, their states, test sequence elements and traceability for testing other requirements are
similar to the one presented in Figure 4 but differ at least in the assertions.

2.4 Test Execution

The case study consists of four different actors communicating with each other. A crucial
point of our testing strategy is that the different services are not tested individually and
in an isolated way. Instead we define test stories which describe possible sequences of
service invocations on the SUT. Testing each service separately is out of scope of our
testing strategy. What we are interested in, is the value of certain parameters at specific
points in a test story to evaluate assertions.

Another important point of our test execution technique is that the test engine is primar-
ily a passive participant in this process. However, this is not a limitation of the Telling
TestStories framework itself, see [FBCO+09]. The reason for a passive execution engine
lies in the scenario itself: all actors except the AR are hard-wired to each other. For in-
stance, when the AR sends the EAP-Response/Identity message (i.e. the return value
of the requestAuthentication()-call) to the HG this will trigger a message exchange
between HG and PDP. Thus, a central execution engine acting as an orchestration unit
is not reasonable in this scenario because it would simply “miss” certain messages. The
test execution technique for this scenario starts a test story and only interacts with the
AccessRequestor. The parameters for this interaction are given in the data table. The
remaining communication is only observed by the execution engine. For monitoring this
communication we use packet sniffers (TShark8) at various points in the environment so
that we are able to track the full communication in a non-intrusive way.

Before the test story is started, the system is first set to a specific state. In our case the
setup consists of a number of addPolicy()-calls to the PDP for installing the poli-
cies. After the system is initialized, the execution engine triggers the connect()-call
by the AR. In the requestAuthentication()-call, the HG then requests the user cre-
dentials which are provided by the execution engine delivering values for the variables
$username and $password from the data table. The next step involving the AR is the
informAccessRequestor()-call where the AR is notified about the decision by the
PDP. Immediately after this notification the AR can try to access a specific network re-
source via the accessRessource()-call. Again, the parameter for the requested URL is
fetched from the data table, i.e. $url. The rest of the communication, where the AR is not
involved, is only observed.

By monitoring all messages, the execution engine is able to keep track of the current
value of variables defined in the interfaces among services, e.g. which PolicyActions
are returned by the PDP. This information and the content of the data table are sufficient
to compose assertions and to check the behaviour of the system. For example, the asser-
tion [pass: data = $data] in the test story TestPolicy depicted in Figure 4 checks
whether accessing a specific URL is allowed/denied as specified in the policy. This asser-
tion can be evaluated by getting the value for data from the monitored return value of
accessRessource() and the value for $data from the data table.
8 Available at http://www.wireshark.org.

Security Testing by Telling TestStories 201

For each captured message of a running test story, the sniffer matches it to an interaction
step of the test model and assigns the values according to the defined interface. After the
test execution, the results can be evaluated.

3 Related Work

The topic of model-based testing is well-covered in the literature (see [BJK+05] for an
overview) and many tools are already on the market supporting model-based approaches,
e.g. [UL06]. However, to the best of our knowledge, the contribution at hand is the first
to combine model-based tests on system level with security functional testing and security
requirements testing (cf. [Bis03]).

The aim of functional security tests is mainly the quality assessment of specified (security)
requirements. In [JMT08, MJP+07] the authors describe a model-based testing approach
for checking whether access control policies are properly enforced by the SUT. The func-
tional model is written in the B language and used for the security test generation from
so called test purposes. Test purposes are defined as regular expressions and describe a
general sequence of operation calls to induce a certain situation on the SUT. The approach
aims at the automatic generation of test cases from the SUT. Our approach differs in sev-
eral points: it supports test-driven development which also implies that test cases are not
meant to be generated automatically but modelled by a domain expert (e.g. the customer);
for the same reason, TTS allows for the execution of tests during system development. Our
approach, furthermore, describes how the information passed among components is to be
interpreted and how this information can be used to check for compliance with arbitrary
security requirements and not only access control rules.

Vulnerability scanners, e.g. Nessus9 constitute a tool-based approach to perform security
tests on a very low level. Furthermore, only known vulnerabilities are detectable with such
tools.

Other approaches, such as [WJ02], also use the system specification for generating secu-
rity tests. However, our goal is not the automatic test case generation but a continuous
connection among security requirements, tests and the system. Opposed to other security
testing approaches, TTS supports a test-driven way of system development. This means
that the system model does not have to be complete beforehand.

4 Conclusions

We have presented an approach to security requirements testing of service oriented sys-
tems by the methodology of Telling TestStories. Based on an industrial case study, we have
defined a requirements model including security requirements, a static system model con-
taining services, a test model and its execution. The test execution itself is accomplished
by integrating the test engine as passive component into the process under test. Security
requirements are specified as functional requirements. This enables the application of the
TTS framework and extends the set of testable security requirements on the system level.
We also guarantee traceability between security requirements and the executable system.

9 Available at http://www.nessus.org.

202 Michael Felderer et al.

Security testing which is generally considered as very difficult can be addressed by TTS
in a clear, structured and intuitive way.

Our next step will be the implementation of our testing methodology on the real industrial
system to conduct empirical data and to evaluate the system.

Acknowledgements. This work was partially supported by the SecureChange (ICT-FET-
231101) EU project10, the Telling TestStories project11 funded by the trans-it and the
MATE project funded by the FWF.

References

[Bis03] Matt Bishop. Computer Security: Art and Science. Addison Wesley Professional,
2003.

[BJK+05] M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, and A. Pretschner. Model-based Testing
of Reactive Systems, volume 3472 of Lecture Notes in Computer Science, 2005.

[Erl05] T. Erl. Service-oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR Upper Saddle River, NJ, USA, 2005.

[FBCO+09] M. Felderer, R. Breu, J. Chimiak-Opoka, M. Breu, and F. Schupp. Concepts for
Model-based Requirements Testing of Service Oriented Systems. In Proceedings of
the IASTED International Conference, volume 642, 2009.

[FFZ+09] M. Felderer, F. Fiedler, P. Zech, , and R. Breu. Flexible Test Code Generation for
Service Oriented Systems. 2009. QSIC’2009.

[Fir03] D.G. Firesmith. Engineering Security Requirements. Journal of Object Technology,
2(1), 2003.

[GF94] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements traceability
problem. 1994.

[JMT08] Jacques Julliand, Pierre-Alain Masson, and Regis Tissot. Generating security tests in
addition to functional tests. In AST ’08: Proceedings of the 3rd international workshop
on Automation of software test, New York, NY, USA, 2008. ACM.

[MJP+07] P.A. Masson, J. Julliand, J.C. Plessis, E. Jaffuel, and G. Debois. Automatic generation
of model based tests for a class of security properties. In Proceedings of the 3rd
international workshop on Advances in model-based testing. ACM, 2007.

[OMG07] OMG. OMG Systems Modeling Language, 2007.
http://www.omg.org/docs/formal/2008-11-01.pdf.

[UL06] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA, 2006.

[WJ02] G. Wimmel and J. Jürjens. Specification-based test generation for security-critical
systems using mutations. Lecture notes in computer science, pages 471–482, 2002.

10 Information available at http://www.securechange.eu/
11 Information available at http://teststories.info/

