
Secure Data-Flow Compliance Checks between Models and
Code based on Automated Mappings (Summary)

Sven Peldszus1, Katja Tuma2, Daniel Strüber2, Jan Jürjens13, Riccardo Scandariato2

Abstract: We present our paper published at the 2019 edition of the International Conference on
Model Driven Engineering Languages and Systems (MODELS) [Pe19]. During the development of
security-critical software, the system implementation must capture the security properties postulated by
the architectural design. To iteratively guide the developer in discovering such compliance violations we
introduce automated mappings. These mappings are created by searching for correspondences between
a design-level model (Security Data Flow Diagram) and an implementation-level model (Program
Model). We limit the search space by considering name similarities between model elements and code
elements as well as by the use of heuristic rules for matching data-Ćow structures. The automated
mappings support the designer in an early discovery of implementation absence, convergence, and
divergence with respect to the planned software design as well as the discovery of secure data-Ćow
compliance violations. We provide a publicly available implementation of the approach and its
evaluation on Ąve open source Java projects.

1 Introduction

Security threats to software systems are a growing concern in many organizations. Therefore,
one needs to consider security early in the design phase, when little is known about the
system. Before any new functionality is released, it must be checked that every security
assumption made in any of the phases is met. The state of the art for this check in practice are
manual code reviews by security experts. Since such reviews are expensive and error-prone,
they are only performed on selected code parts, leaving a large leeway for security threats.

In the context of software architecture design, threat analysis techniques aim to identify
security threats to software systems and to plan countermeasures to mitigate them. Yet,
empirical evidence shows that existing threat analysis techniques can be manually labor
intensive and lack in automation. Furthermore, design-level models are seldom kept in sync
with the implementation, potentially resulting in architectural erosion and technical debt.
Threat analysis is often performed on Data Flow Diagrams (DFD), an informal representation
of the software architecture. To support the detection of problematic information Ćows, in
our rearlier work we introduced SecDFD, an extension of the DFD notation supporting
the speciĄcation of security-relevant information [TBS19]. However, the outcomes of such

1 University of Koblenz-Landau, Koblenz, Germany, EMail: speldszus@uni-koblenz.de, juerjens@uni-koblenz.de
2 University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden, EMail: katja.tuma@

cse.gu.se, danstru@chalmers.se, riccardo.scandariato@cse.gu.se
3 Fraunhofer Institute for Software and Systems Engineering, Dortmund, Germany

cba doi:10.18420/SE2020_13

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 51

https://creativecommons.org/licenses/by-sa/4.0/
mailto:speldszus@uni-koblenz.de
mailto:juerjens@uni-koblenz.de
mailto:katja.tuma@cse.gu.se
mailto:katja.tuma@cse.gu.se
mailto:danstru@chalmers.se
mailto:riccardo.scandariato@cse.gu.se
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_13


detection are of limited value if the implementation does not comply with the security
properties described in the DFD model.

Our work aims to support the discovery of secure data-Ćow compliance violations between
the designed and the implemented system. We present a technique that automatically estab-
lishes mappings between a design-level model enriched with security-relevant information
(SecDFD) and an implementation-level model (Program Model [Pe15]). These mappings
can be used to discover compliance violations of secure data-Ćow properties: First, the
designed data Ćow is captured in the SecDFD model and afterwards the actual data Ćow is
obtained from implementation-level data-Ćow analysis tools. These tools typically require
sophisticated meta-data (e.g. an explicit tagging of security-critical data) as input, which
can be obtained from our mappings. Finally, our mappings also support the designer in an
early discovery of implementation absence, convergence, and divergence with respect to the
planned software design and its security properties. We make the following contributions:

(i) We present an automated technique for establishing mappings between SecDFDs and
program models, thereby supporting the discovery of secure data-Ćow compliance
violations. The key idea of our technique is twofold. First, we deĄne a mapping
between SecDFD and program-model element types, constraining how elements can
be mapped to each other. Second, we combine similarity-based matching of element
names with structural heuristics (based on data-Ćow properties) to automatically
derive suggested mappings between the SecDFD and the program model.

(ii) We present an incremental methodology, in which the user is involved to successively
discover new mappings and eventually derive an adequate mapping.

(iii) We present our implementation of the approach as a publicly available Eclipse plugin
and the evaluation of its accuracy on Ąve open source Java projects.

Our tool implementation as well as all experimental data sets are available on our GitHub
site (https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping).

References

[Pe15] Peldszus, S.; Kulcsár, G.; Lochau, M.; Schulze, S.: Incremental Co-Evolution of
Java Programs based on Bidirectional Graph Transformation. In: PPPJ. 2015.

[Pe19] Peldszus, S.; Tuma, K.; Strüber, D.; Jürjens, J.; Scandariato, R.: Secure Data-Flow
Compliance Checks between Models and Code based on Automated Mappings.
In: MODELS. 2019.

[TBS19] Tuma, K.; Balliu, M.; Scandariato, R.: Flaws in Flows: Unveiling Design Flaws
via Information Flow Analysis. In: ICSA. 2019.

52 Sven Peldszus, Katja Tuma, Daniel Strüber, Jan Jürjens, Riccardo Scandariato

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping

