
Parallel Symbolic Relationship-Counting

Andreas C. Doering
IBM Research Laboratory

8803 Rüschlikon, Switzerland
ado@zurich.ibm.com

Abstract:
One of the most basic operations, transforming a relationship into a function that

gives the number of fulfilling elements, does not seem to be widely investigated. In
this article a new algorithm for this problem is proposed. This algorithm can be imple-
mented using Binary Decision Diagrams. The algorithm transforms a relation given
as symbolic expression into a symbolic function, which can be further used, e.g. for
finding maxima. The performance of an implementation based on JINC is given for a
scalable example problem.

1 Introduction

Next to sets, binary relations are one of the most basic mathematical objects. Given two
sets A and B, a relation ∼ is defined by a subset R∼ of A×B, such that

a ∼ b, a ∈ A, b ∈ B ⇔ (a, b) ∈ R∼.

Given a relation on finite sets one of the most basic questions is how many elements are
related to each element of A. This can be represented as a function

C∼ : A→ N : a 7→ |{b : a ∼ b}|,

called ‘counting function’ for the relationship in the following. When viewing the relation-
ship as the edges of a directed graph, the function gives the out-degree of each node. When
the relationship defines a function from B to A, the transformation counts the pre-images
for each function image.

Of course, there is also a counting function with respect to elements of B. Without loss of
generality, in this paper only the first version is studied.

As a simple example consider the relation “less than” a < b on numbers 0 . . .m. For
each given a there are m − a numbers greater than a from the given interval. Formally,
C<(a) = m − a. In this paper the more general relation (a%p) > (b%q) is used as
benchmark, which allows scaling the complexity of the function and the number of bits
for A = {0 . . . 2N − 1} and B = {0 . . . 2M − 1}. % stands for the modulo operation. For
this relation

C(a) = max(0, 2M/q ∗ (q − a%p)) +max(0, 2M%q − (a%p)).

101

The proposed algorithm can be implemented using Binary Decision Diagrams [MT98]. I
am not aware whether there are other representations of Boolean (or more generally finite)
functions which allow the same set of operations, including testing for equality, indexing,
composition; if there are then the proposed algorithm can be implemented using those
representations as well.

The computer algebra system RELVIEW [BN05] is implemented on the basis of Binary
Decision Diagrams, but it does not contain the presented function. JINC [OB08] is a
BDD library that supports multithreading on a shared-memory system. It was used for the
experimental implementation for this paper.

Algorithms to determine the number of fulfilling inputs for a given function are called
SAT-COUNT [Thu12]. This is a more restricted problem as it yields a constant for a given
function. This problem is equivalent with relationship counting when the set A has only a
single element. SAT-COUNT can handle functions in a more general representation, the
creation of a BDD for a given input function can be as complex as SAT-COUNT.

BDDs are used for circuit optimization, circuit verification, state space exploration and
similar tasks. The proposed algorithm allows more sophisticated tests, and analysis in
these domains. The parallel nature of the algorithm gives hope that it can be used also at a
large scale, where the representation of A and B requires 100 or more bits.

In the next section two algorithms for determining the counting function are presented.The
first version, a recursive algorithm, is simpler to implement and has weaker requirements to
the underlying function representation. The second algorithm is based on Binary Decision
Diagrams for the basic data type and exploits the representation structure.

In Section 3 some applications for the algorithm are proposed. One of them is the analysis
of network topologies [Dör10]. In Section 4 performance results for a C++ implementation
based on the BDD library JINC are given. In the outlook further plans for the refinement
of the algorithm are given.

2 Relationship-Counting

One basic idea of the algorithm is that counting the number of elements in a subset can be
done by summing the characteristic function over all elements of the underlying universe.
Consider for example the set of prime numbers, and assume we have given a function
isprime : N → {0, 1}, then we can determine the number of primes up to a limit l
by

∑l
i=1 isprime(i). Therefore, given a relation ∼ by its characteristic function r :

A×B → {0, 1}, r(a, b) = 1⇔ a ∼ b, determining the counting function can be done by
summing over all elements of B:

C∼(a) = |{b : a ∼ b}| =
∑

b∈B r(a, b).

The summing operator can be considered a function of |B| inputs:

S : {0, 1}|B|, S(x0, . . . , x|B|−1) =
∑

i(xi).

Hence C∼(a) = S(r(a, b0), . . . , r(a, b|B|−1)).

102

Note, that here functions are added, not numbers, i.e. (f + g) : a 7→ f(a) + g(a).
To do this symbolically, a function representation is needed that allows concatenation of
two functions, applying partial fixed values to inputs (i.e. concatenation with constant
functions) and forming of elementary functions such as addition. The summing function
can thus be built from addition functions by concatenation.

For the remainder of the paper it is assumed that natural numbers, including interme-
diate sums and the result of the counting function are represented as bit vectors with
binary encoding (

∑
i di2

i). For the representation of elements from A and B, na and
nb respectively bits are used. The relation ∼ can therefore be represented as a function
{0, 1}na+nb → {0, 1}. If not all the codes are used to represent elements of A or B, it is
assumed that the representation of ∼ will always yield 0 when applied to unused codes.
Any given representation can be easily modified to fulfil this condition by AND-ing the
characteristic functions for the sets A and B to the relation. It is a particular advantage
of BDDs that they can handle sparsely represented sets well. For instance permutations,
routing structures, and similar objects can be represented with comparably long bit vectors
and one-hot encoding with good performance.

The first algorithm is presented for illustrative purposes. It recursively branches on the
individual bits bi of B. The recursion stops when a function is found that does not depend
on b anymore, including constant functions. All the functions found at the bottom of the
recursion are collected in a list. Such a recursion on the BDD-representation, limited
to certain layers is typical for many BDD algorithms. In particular, this recursion is a
part from the fulfilment set counting algorithm found in [MT98]. In a second step an
addition tree is built whose leaves are these collected functions. In the simplest form of
this algorithm, all functions are added with weight 1, hence the addition tree corresponds
to a population count function.

collect(f,i)
{
if (f does not depend on bi)
return {f}

else
return append(collect(compose(bi,0,f)),

collect(compose(bi,1,f)))
}

compose(v,e,f) replaces the input variable v of function f by the expression e. In
order to test whether f depends on b or not for a BDD representation the variable order
can be used. By arranging the variables for a at the bottom levels and the b-variables at
the top, testing the level of the root node of the function f is sufficient and requires only
constant time. Other representations, such as polynomials or conjunctive forms might
only have a semi-test. This would also be sufficient but could increase the run-time of
the algorithm. One improvement of the recursive algorithm is to test, whether the two
compositions (compose(bi,0,f) and compose(bi,1,f)) for the recursion parameter represent
the same function. In that case the recursion needs to be calculated only once, and the

103

result is returned with weight two, i.e. every list element is extended by a weight, a natural
number. This requires of course an equality test on functions, and, again, a semi-test, that
can confirm equality but not exclude it, could be applied as well.

The summation step calculates
∑

wifi as multi-bit BDD-function, with weights wi and
Boolean functions fi. The summing is done by constructing a tree from multi-bit adders,
where the width of adders grows as necessary from level to level upwards. The algorithm
that constructs the adder accounts the sum of weights in the subtrees and can thus de-
termine the required result width. To incorporate the weight wi for function fi into the
sum on the leaves of the adder tree, a vector of either the constant-zero function or the
function itself is formed. If for instance the weight is eleven, the formed vector would be
(fi, 0, fi, fi). This is possible because the function is either 0 or 1, so multiplication is
identical with the expression:

if (fi) then
return wi

else
return 0

This optimization already contains the idea of the second algorithm. The idea exploits
the observation that during the calculation of bitwise projections, frequently the same sub-
functions are reached. By collecting the information and refining the function level by
level, each sub-function needs to be handled only once. When using BDDs this approach
is already known with the only difference being, that BDDs typically do the weight ac-
cumulation down to the leaves and do not stop at an intermediate level as is needed here.
BDDs can be viewed as representing a dynamic program and the weight calculation cor-
responds to the well-known dynamic programming algorithm.

The second algorithm consists of two parts, the collection part and the summing part. Both
are similar to the recursive algorithm. In the collection part the variable order of the BDD
is modified such that variables for b are at the top and the variables for a at the bottom,
if needed. Then, the BDD-graph representing the relation is traversed starting from the
root level by level and the weights per node are computed. In some BDD libraries the
weight can be stored in the graph nodes itself, otherwise a hash table can be used. The
root node is assigned weight one. A child node’s weight is incremented by weight of
the parent multiplied with the power of two of the number of skipped levels, i.e. by
the difference of the variable levels of parent and child minus 1. This is because each
skipped level corresponds to a input variable that is not relevant for the given situation, and
for that reason, every partial assignment for the inputs corresponding to b results in two
assignments including the next level variable, one where the variable is one, and another
where it is zero. In all well-known BDD implementations this update has constant effort.
The terms (the BDD nodes reached which do not depend on b variables) can also be stored
in a hash table.

The summing part is identical to the recursive algorithm.

This second algorithm requires the ability to index functions to store them for instance in
a hash table or tree.

104

Both parts of the algorithm exhibit parallelism. Computing a sum of many terms with
complex addition steps can naturally be done in parallel by forming an addition tree. Also,
the additions itself can be done partially in parallel, for instance by using carry-inputs per
digit and composing the digits afterwards or by calculating the prefix sum for the carries
in parallel with known methods.

The algorithm can be improved in several ways. One option relates to the addition of
weighted vectors on the lowest level of the addition tree. Assuming we add two vec-
tors for functions f and g with weights 5 and 13. This means that we add the vectors
(0, . . . , 0, f, 0, f) and (0, . . . 0, g, g, 0, g), forming

(0, . . . , 0, g xor f&g, f xor g, f&g, f xor g).

As can be seen, two terms, f&g and f xor g can be reused. The caching and reuse of
previously computed expressions is part of most BDD implementations. JINC uses a per-
thread computed table, so, if the sum of the vector is computed in one thread, the reuse
might happen automatically in the BDD functions. Doing it explicitly guarantees the reuse,
in case the size of the computed table is not sufficient.

Another idea for improvement is using carry-save adders for the summation tree, as a
hardware implementation would do. BDDs are canonical and hence the resulting BDD is
determined only by the given relation and not by the algorithm computing it. However, by
using carry-save addition one can expect that the intermediate terms will be smaller.

When building the addition tree it is also not clear which sequence is better, first building
the weighted addition tree with abstract variables as inputs and then composing the tree
with collected functions or building the addition tree directly with the collected terms.
Because JINC does not contain a function for vector compose, only the second variant
was implemented.

Since addition is commutative and associative, the addition tree can be structured arbitrar-
ily. In order to reduce the complexity of the intermediate operations it might be advanta-
geous to compute more pairwise sums than needed, testing their size and choosing a set of
intermediate sums with the smallest size.

3 Applications

Since the described algorithm handles a basic problem, the range of applications is very
wide. One application described in [Dör10] is the counting of paths in a network, where
routing is constrained by methods for deadlock avoidance or the existence of faults. In this
case, one side of the relation covers the start and end points of the path while the other
side represents the path of the network as a vector of nodes. The relation is defined by
the properties of the network (adjacent nodes in the path have to be connected), and the
requirement that the first node of the path is the start and the last node is equivalent to the
end point. Further restrictions such as avoiding certain turns or faulty nodes can be added,
thereby refining the relation. The proposed algorithm allows finding the number of mini-

105

mal paths under these restrictions as a function of the start-end node pair. Since the result
is a BDD-represented symbolic function, further transformations, such as finding extrema
or comparing to the path-counting function for the fault-free network can be carried out in
the same framework.

A second type of applications is the evaluation of approximation algorithms, for instance
for scheduling. In this case two relations are built, one that describes the set of solutions,
and the second representing the set of solutions that a given algorithm can find. BDDs are
traditionally used for state space exploration of digital circuits, the set of solutions of an
algorithm is a typical outcome of such a process. I am currently working on investigating
crossbar scheduling algorithms, such as iSLIP, with this method. It is yet to be seen what
size of problem can be covered on typical machines.

A third class of problems deals with configurable circuits. Figures of interest in this context
are the set of functions that can be implemented with a given configurable circuit or a
minimal configurable circuit that covers a given set of target functions. As an example,
consider a configurable random number generator. It consists of a combinational circuit
that implements a function with two sets of inputs, one for a uniform random number
source and one for the configuration bits. Several classes of circuits can be considered
individually, for instance all circuits consisting of three levels of NAND gates. A circuit
in such a class is defined by the wiring between the gates which can be represented as a
BDD. Doing so results in a relation that combines the wiring, the inputs and the result.
With the proposed algorithm the frequency for each output when the random input is
varied can be computed as a BDD function. Further processing, including sorting of result
vectors, is needed. First experiments have shown that this method works quite efficiently
for reasonable circuit sizes.

4 Results

The second algorithm was implemented using JINC on a 64-bit Linux system based on In-
tel core i5 processors (two cores, two threads each). The tests were repeated on a Freescale
T4240-based system called RDB which provides 24 processor cores, and the results were
comparable. Table 1 lists the run time of the two parts of the algorithm for several example
problems.

As can be seen, scalability works well, and is better for larger problems. Note, that JINC
needs internal locking for shared data structures, in particular the so called “unique” table,
with one table per variable. Scaling of part 1 is limited by the global lock for the hash table
that collects the individual functions. This can be improved by using a hash-map imple-
mentation that allows concurrent insertion, as is provided by Intel’s Threading Building
Blocks library. However, the thread management of the TBB is somewhat different than
that of the boost library. Since a concurrent hash table is in preparation for the boost
library, this improvement was postponed.

106

Table 1: Results for some example runs, note that 1536=3*512 resulting in a particular simple BDD
for the modulo operation. p1 and p2 are the runtimes of the two parts of the second algorithm in
seconds.

N M p q threads p1 p2 terms
16 16 1697 1879 1 0.05 33 2047
16 16 1536 1879 1 0.04 1.75 2047
16 16 1697 1536 1 0.03 7.3 2047
16 22 10697 1035641 1 0.96 42.5 16383
22 16 1035641 10697 1 0.15 42.5 16384
16 16 1697 1879 2 0.07 18 2047
16 16 1536 1879 2 0.1 1.0 2047
16 16 1697 1536 2 0.06 11.2 2047
16 22 10697 1035641 2 2.08 29.7 16383
22 16 1035641 10697 2 0.3 37.7 16384
16 16 1697 1879 3 0.09 15.7 2047
16 16 1536 1879 3 0.18 0.93 2047
16 16 1697 1536 3 0.08 11.5 2047
16 22 10697 1035641 3 2.5 26.8 16383
22 16 1035641 10697 3 0.4 30.3 16384

5 Outlook

It has to be noted that the chosen example has some particular properties, as can be seen
from the number of terms. Another property that was observed is that there are few edges
that skip one or several levels. This is a property of the BDD representing the input rela-
tion. These level-skipping edges however contribute to the acceleration of the algorithm.
More level-skipping edges improve the parallel performance of the first step because the
locking for weight updates are better distributed; the current implementation uses one lock
per level.

Therefore, one of the most important next steps is the use of other examples, in the best
case by applying the algorithm to applications or by integration into a more general tool,
such as RELVIEW.

Furthermore, using a concurrent hash table once it is available in the boost library should
improve the scalability of the first step of the algorithm.

References

[BN05] Rudolf Berghammer and Frank Neumann. RelView - An OBDD-Based Computer Algebra
System for Relations. In Victor G. Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov,
editors, CASC, volume 3718 of Lecture Notes in Computer Science, pages 40–51. Springer,

107

2005.

[Dör10] Andreas C. Döring. Analysis of Network Topologies and Fault-Tolerant Routing Algo-
rithms using Binary Decision Diagrams. Parallel and Distributed Processing Workshops
and PhD Forum, 2011 IEEE International Symposium on, 0:1–5, 2010.

[MT98] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI Design.
Springer-Verlag New York, Inc., 1998.

[OB08] Jörn Ossowski and Christel Baier. A uniform framework for weighted decision diagrams
and its implementation. Int. J. Softw. Tools Technol. Transf., 10:425–441, September 2008.

[Thu12] Marc Thurley. An Approximation Algorithm for #k-SAT. In Christoph Dürr and Thomas
Wilke, editors, STACS, volume 14 of LIPIcs, pages 78–87. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

108

