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Abstract: This paper investigates a direct Target Motion Analysis (TMA) estimator
for the problem of calculating the states (i.e. source positions, velocities, etc.) of multi-
ple sources from measurements made with multiple (fixed or moving) antenna arrays.
We use the novel Subspace Data Fusion (SDF) approach and extend it to the multi-
sensor case. In the SDF approach, subspaces are formed in a first pre-processing step
from the raw antenna outputs. Then, the parameters of interest are estimated directly
from a single cost function, which results from fusing all subspaces. This approach
requires only a single low-dimensional optimization and completely circumvents the
bearing data association problem inherent in traditional TMA approaches. We derive
the Cramér-Rao Bound (CRB) for the direct multitarget tracking problem. In Monte
Carlo simulations we find that the SDF estimator approaches the CRB and always per-
forms better than or equal to the traditional TMA approach. We show that the state
estimation accuracy can be improved by using multiple antenna arrays.

1 Introduction

The estimation of the state of multiple emitting sources using passive sensors is a widely

investigated problem encountered in various fields like wireless communication, radar, and

sonar. This problem is commonly referred as the Target Motion Analysis (TMA) problem.

Bearing measurements collected by multiple fixed direction finding (DF) sensors or taken

from points along the trajectory of a single moving observer can be used to determine the

target states. If the target is stationary, the bearings can be intersected to determine the

emitter location (sometimes called triangulation). Various aspects of the two-dimensional

and three-dimensional Bearings-only Tracking (BOT) problem examined in the literature

include estimation algorithms, estimation accuracy, and target observability [Bec01].

Here, we consider a three-dimensional scenario with Q inertially (i.e. non-accelerating)

moving targets and P observers each moving along an arbitrary but known trajectory and

equipped with an antenna array (commonly used to solve the DF problem). The sensors

must not be time-synchronized to calculate Times of Arrival (TOAs), because we focus on

the BOT problem. At N different points in space, the p-th sensor receives signals of all

sources and collects batches of antenna outputs, p = 1, ..., P . The scenario is assumed to

be stationary during one batch and non-stationary from batch to batch.

Within the traditional approach to the multiple source TMA problem, first of all for each



batch of each sensor Directions of Arrival (DOAs) of all sources at all points in space

are estimated with a DF method like the subspace-based Multiple Signal Classification

(MUSIC) method [Sch86]. The subsequent measurement-to-track (M2T) association step

consists of partitioning the DOAs into sets of DOAs, or tracks, belonging to the same

source. Then, the DOA tracks of all sensors are fused in a track-to-track (T2T) association

step. Finally, the DOAs for each source are used to determine its state with the help of

a suitable BOT algorithm [Bec01, NLG84]. We will consider the Least Squares solution

of the Maximum Likelihood (ML) estimator which requires the variances of the DOAs

as well, but is asymptotically efficient. Fig. 1 shows the basic steps of a conventional

bearings-only TMA system.

It is well-known that all tracking algorithms lead to track loss whenever the DOAs of

the targets cannot be resolved for a longer period of time. Multiple Hypotheses Track-

ing (MHT) is generally accepted as the preferred method for solving the M2T association

problem in modern multitarget tracking systems [Bla04]. MHT can deal with cases where

the Global Nearest Neighbor (GNN) approach or the Joint Probabilistic Data Association

(JPDA) fail. However, in situations where the variances of the measurements are too large,

even MHT is unable to partition the sensor data correctly. Another drawback originates

from the bias which is always present in the DOA estimates for a finite amount of data,

number of array elements or signal-to-noise ratio (SNR) [FBL04, XB92]. Moreover, the

bearing estimates may be more or less correlated, a fact that is not considered in the tradi-

tional approach.

Recently, some direct position determination (DPD) methods based on the antenna out-

puts have been proposed without computing intermediate parameters like DOAs. The

basic idea for a subspace-based DPD approach goes back to the pioneering work of Wax

and Kailath [WK85a]. They noted that in this way the data association step is avoided.

Moreover, this kind of approach was used for a multiarray network in order to estimate the
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Figure 1: Basic steps of the traditional TMA approach



positions of multiple sources without explicitly computing DOAs and TOAs [WA06]. ML

methods can be found e.g. in [Wei04, AW07], but they are more computationally demand-

ing in the case of multiple sources. The DPD approach can be adapted to estimate DOAs

and DOA rates [WE95].

In our previous work, we proposed a subspace-based DPD approach for a single moving

array [DOR08]. Moreover, we have shown that the DPD approach can be extended to es-

timate the target states (e.g. positions, velocities) [OD08] and adapted to solve the bearing

data association problem in the presence of clutter by using a fictitious array [ODW08].

Furthermore, we found that it is preferable to use a high-dimensional search in the case of

multiple sources with intermittent emission [Ois09b] and we proposed a direct DPD ap-

proach to determine the total number of emitting sources [Ois09a]. In all these Subspace

Data Fusion (SDF) approaches, the parameters of interest are obtained by minimizing a

single cost function into which all subspaces at all sensor positions enter jointly (Fig. 2).

In this paper, we show that the SDF approach offers the advantage for the multitarget multi-

sensor case that the M2T and T2T association problem inherent in the traditional method is

circumvented. Furthermore, this approach is computationally efficient, as all source states

are assessed from the minima of one common MUSIC-type cost function that depends on

as many parameters as there are degrees of freedom for a single source. Moreover, the ac-

curacy of the state estimates is much better compared with the traditional TMA approach

in situations where the variance of DOA estimates deviates from the Cramér-Rao Bound

(CRB), e.g. in the case of a weak source, closely-spaced sources or crossing DOA trajec-

tories. We show that the state estimation accuracy can be improved by using additional

(fixed) sensors.

The paper is organized as follows: In Section 2 we consider the multisensor TMA problem.

In Section 2.1 we present the data model, in Section 2.2 we formulate the problem, and in

Section 2.3, we derive the CRB for the TMA problem based on the received signals. Then,
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in Section 3.1, we outline the traditional TMA approach, and in Section 3.2, we give a brief

review of the novel SDF approach. In Section 4 we present Monte Carlo simulation results

that demonstrate the estimator’s performance. The conclusions are given in Section 5.

The following notations are used throughout this paper: (·)T and (·)H denote transpose

and Hermitian transpose, respectively; In and 0n denote the n × n-dimensional identity

and zero matrix, respectively; and E {·} denotes the expectation operation.

2 Estimation Problem

We consider P (fixed or moving) antenna arrays and Q inertially moving sources in the

far field of the arrays. The sources are assumed to radiate narrowband signals (i.e. the

source bandwidth is much smaller than the reciprocal of the time delay across the array)

with wavelengths centered around a common wavelength λ. Let the q-th source state, q =
1, ..., Q, be comprised in the Cartesian position-velocity vector xq = (pT

q(t0), ṗ
T
q )T ∈

R
6×1, where pq(t0) = (x0,q, y0,q, z0,q)

T denotes the source position at reference time t0
and ṗq = (ẋq, ẏq, żq)

T denotes the constant velocity. The source position at some time t
is related to the source state xq by

pq(t) = pq(t0) + (t − t0) ṗq . (1)

Fig. 3 shows the geometry for the scenario of Q inertially moving sources and a single

sensor moving along an arbitrary but known trajectory. During the movement of the p-

th array, N batches of data are collected at time tp,n at the positions rp,n := rp(tp,n),
n = 1, ..., N . For the sake of simplicity, we assume that the antenna attitude does not

change with time, i.e. the orientation of the sensor-fixed coordinate system is fixed during

the batches. The geometry between the p-th observer, p = 1, ..., P , and the q-th source,

q = 1, ..., Q, at time tp,n, n = 1, ..., N , is given by the Cartesian relative vector

△rp,n(x0,q) = rp,n − pq(tp,n)

=





△xp,n,q

△yp,n,q

△zp,n,q



 = △rp,n,q





sinαp,n,q cos εp,n,q

cos αp,n,q cos εp,n,q

sin εp,n,q



 , (2)

where (△rp,n,q, αp,n,q, εp,n,q) denote the corresponding spherical coordinates (i.e. dis-

tance, azimuth angle and elevation angle). They are given by the nonlinear relations

△rp,n,q =
√

△x2
p,n,q + △y2

p,n,q + △z2
p,n,q ,

αp,n,q = arctan
△xp,n,q

△yp,n,q

,

εp,n,q = arctan
△zp,n,q

√

△x2
p,n,q + △y2

p,n,q

. (3)
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Figure 3: Geometry for the scenario of multiple inertially moving sources and the p-th sensor

2.1 Data Model

We assume that the antenna arrays are identical and each composed of M elements. In

the presence of additional noise, the received vector zp(t) ∈ C
M×1 observed by the p-th

array can be expressed as

zp(t) =

Q
∑

q=1

ap(pq(t)) sp,q(t) + wp(t) , (4)

where sp,q(t) is the signal transmitted by the q-th source at time t, where wp(t) represents

the noise, and where the array transfer vector ap(p) expresses its complex response to

a planar wavefront arriving from the position p. For each observation at time tp,n, let

the array be sampled sequentially at k = 1, ...,K different mutually exclusive time slots.

Then, the sampled version of the signals in Eq. 4 is given by

zp,n,k := zp(tp,n + (k − 1)T ) ,

sp,n,k,q := sp,q(tp,n + (k − 1)T ) ,

wp,n,k := wp(tp,n + (k − 1)T ) . (5)

The time T between two snapshots is assumed to be much smaller (several orders in mag-

nitude) than the time interval between two time slots. Therefore, the array transfer vectors

can be considered quasistatic in each slot, i.e. the sensor’s displacement during each time

slot is negligible. Consequently,

ap,n(x0,q) := ap(pq(tp,n + (k − 1)T ) ) (6)



does not depend on k.

External and blind array calibration techniques are well-known, e.g. the calibration of an

airborne antenna array is described in [MSHK07]. We assume that the antenna array is

perfectly calibrated for which the array transfer vector is a known function of the source

states:

ap,n(x0,q) =









e j k
T
p,n(x0,q)d1

...

e j k
T
p,n(x0,q)dM









. (7)

The array transfer vector depends on the position dm of the m-th antenna element, m =
1, ...,M , relative to the position rp,n and the wavenumber vector

kp,n(x0,q) =
2π

λ

△rp,n(x0,q)

△rp,n,q

. (8)

Alternatively, the array transfer vector may be parameterized by the DOA: a(αp,n,q, εp,n,q).
By substituting Eq. 2 into Eq. 8, the corresponding wavenumber vector follows

k(αp,n,q, εp,n,q) =
2π

λ





sinαp,n,q cos εp,n,q

cos αp,n,q cos εp,n,q

sin εp,n,q



 . (9)

The array data model (Eq. 4) can be written more compactly as

zp,n,k = Ap,n(ρx) sp,n,k + wp,n,k , (10)

where Ap,n(ρx) = [ap,n(x0,1) · · · ap,n(x0,Q)] ∈ C
M×Q is the array transfer matrix, all

source states are comprised in the vector ρx = (xT
0,1, ...,x

T
0,Q)T ∈ R

6Q×1, and sp,n,k =

(sp,n,k,1, ..., sp,n,k,Q)T ∈ C
Q×1 is a signal vector formed from the emitted signals.

We introduce the compact data model

zp,k = Ap(ρx) sp,k + wp,k (11)

by stacking the vectors on top and using a block-diagonal matrix:

zp,k = (zT
p,1,k, ..., zT

p,N,k)T ∈ C
MN×1 ,

Ap(ρx) = diag[Ap,1(ρx) · · ·Ap,N (ρx)] ∈ C
MN×QN ,

sp,k = (sT
p,1,k, ..., sT

p,N,k)T ∈ C
QN×1 ,

wp,k = (wT
p,1,k, ...,wT

p,N,k)T ∈ C
MN×1 .



2.2 Problem Statement

The received data batches depend on the array transfer vectors, which depend on the rel-

ative vectors, which themselves depend on the desired source states. Now, the problem is

stated as follows: Estimate all source states ρx from all received signals zp,k, p = 1, ..., P ,

k = 1, ...,K. To solve the multiple source TMA problem, we make the following assump-

tions:

A1. The noise vectors wp,k, p = 1, ..., P , k = 1, ...,K, (Eq. 4) are zero-mean complex

Gaussian and temporally and spatially uncorrelated with the covariance

E
{

wp,k wH
p′,k′

}

= σ2
w IMN δp,p′ δk,k′ ,

E
{

wp,k wT
p′,k′

}

= 0MN , (12)

where δa,b denotes the Kronecker delta.

A2. The signal vectors sp,n,k, p = 1, ..., P , n = 1, ..., N , k = 1, ...,K, (Eq. 4) are

fixed and need to be estimated (deterministic data model). This does not exclude

the possibility that the signals are sampled from a random process. Moreover, we

assume that
∑K

k=1 sp,n,k sH
p,n,k is positive definite.

A3. The number of source signals Q is constant and known. In the past, several methods

have been proposed to determine the number of signal sources [WK85b].

2.3 Cramér-Rao Bound

For judging an estimation problem, it is important to know the maximum estimation ac-

curacy that can be attained with all given measurements Z. Moreover, since the CRB is a

lower bound for any unbiased estimator, its parameter dependencies reveal characteristic

features of the estimation problem. Then, the CRB is related to the covariance matrix C

of the estimation error △ρx = ρx − ρ̂x(Z) of any unbiased estimator ρ̂x(Z) as

C = E
{

△ρx △ρ
T
x

}

≥ CRB(ρx) , (13)

where the inequality means that the matrix difference is positive semidefinite. If the esti-

mator attains the CRB then it is called efficient.

The target parameters of the p-th sensor are comprised in the vector

ρp =
(

s̄T
p,1, s̃

T
p,1, ..., s̄

T
p,K , s̃T

p,K ,ρT
x

)T
∈ R

Q(2NK+6)×1 , (14)

where overbar and overtilde indicate the real and imaginary part of the source signals. The

CRB is given by the inverse Fisher Information Matrix (FIM), i.e. CRB(ρ) = FIM−1(ρ)
with

FIM(ρp) = E

{

(

∂L(Zp;ρp)

∂ρp

)(

∂L(Zp;ρp)

∂ρp

)T
}

, (15)



where Zp = [zp,1 · · · zp,K ] are all measurements of the p-th sensor and

L(Zp;ρp) = −KMN ln(πσ2
w) −

1

σ2
w

K
∑

k=1

|zp,k − Ap(ρx) sp,k|
2

, (16)

is the log-likelihood function. In this log-likelihood function zp,k, k = 1, ...,K, are ran-

dom variables due to the random variables wp,k, k = 1, ...,K, and the expectation opera-

tion in Eq. 15 is w.r.t. these random variables.

Performing all calculations analog to [OD08, SN89, YB92], we obtain the FIM for the

p-th sensor on the source states after some algebra (Assumption A1):

FIMp(ρx) =
2

σ2
w

K
∑

k=1

Re
{

S
H
p,k DH

p P⊥

Ap
Dp Sp,k

}

(17)

with

Sp,k = I6Q ⊗ sp,k ∈ C
6NQ2

×6Q ,

Dp = [Dp,1 · · ·Dp,Q] ∈ C
MN×6NQ2

,

Dp,q =

[

∂Ap

∂x0,q

,
∂Ap

∂y0,q

,
∂Ap

∂z0,q

,
∂Ap

∂ẋq

,
∂Ap

∂ẏq

,
∂Ap

∂żq

]

∈ C
MN×6NQ ,

P⊥

Ap
= IMN − Ap (AH

p Ap)
−1

A
H
p ∈ C

MN×MN ,

where ⊗ denotes the Kronecker product.

It is assumed that the measurements are independent from sensor to sensor. The resulting

CRB is

CRB(ρx) =
[

FIM1(ρx) + ... + FIMP (ρx)
]−1

. (18)

The CRB expression (Eq. 17 and Eq. 18) is quite complicated, and it is difficult to see how

the bound on the estimation accuracy is affected by the different parameters. For this rea-

son we remark, that the CRB for the multiple source TMA problem based on the received

data batches depends on the number of sensors P , the sensor parameters (i.e. noise vari-

ance σ2
w, number of array elements M , array geometry dm, m = 1, ...,M , and number of

collected samples K), the number of sources Q, the number of batches per sensor N , the

emitted signals sp,k, k = 1, ...,K, and the geometry between sensor and source △rp,n,q ,

p = 1, ..., P , n = 1, ..., N , q = 1, ..., Q.

3 TMA Approaches

In this section, we present the implementation of the investigated estimators: the traditional

TMA approach (Fig. 1) and the SDF approach (Fig. 2). For the DF step of the traditional



approach, we use the well-known subspace-based MUSIC algorithm [Sch86], because in

this way the same pre-processing step is applied to the sensor data, so that both approaches

can be compared equally.

In the pre-processing step, subspaces are calculated for each batch of each sensor by

performing an eigendecomposition of the covariance matrix (Assumptions A2 and A3):

Rp,n =
1

K

K
∑

k=1

zp,n,k zH
p,n,k = Ūp,n Λ̄p,n ŪH

p,n + Up,n Λp,n UH
p,n , (19)

where the column vectors of Ūp,n ∈ C
M×Q and Up,n ∈ C

M×M−Q are the eigenvectors

spanning the signal and noise subspaces of the covariance Rp,n, respectively, with the

associated eigenvalues in decreasing order on the diagonals of Λ̄p,n ∈ R
Q×Q and Λp,n ∈

R
M−Q×M−Q, respectively.

3.1 Traditional TMA Approach

The traditional approach is divided into four steps (Fig. 1): the DF step, the M2T step, the

T2T step, and the BOT step.

In the DF step, the subspace-based MUSIC method is used to determine the DOAs by

minimizing the projection of the array transfer vector onto the noise subspace [Sch86].

For the n-th batch of the p-th sensor, n = 1, ..., N , p = 1, ..., P , the inverse MUSIC cost

function reads

f−1
MUSIC,p,n(α, ε) = aH(α, ε)Up,n UH

p,n a(α, ε) , (20)

where the array transfer vector (Eq. 7) is parameterized by the DOA (α, ε) (Eq. 9). The

DOA estimates are given by the locations of the Q smallest values of the cost function. It

is well-known that MUSIC gives a superior resolution and tends to be power independent

compared to other DF methods (e.g. Capon’s method, conventional beamforming).

In the M2T and T2T step, the bearing data association problem is solved by partitioning

the DOAs into sets of DOAs originating from the same source and fusing the resulting

DOA tracks from all sensors. The bearing data association is not figured out, because

in Section 4 we consider an ideal data association, but we note that this can be achieved

e.g. by MHT. However, finally we obtain the DOA track of the q-th source, q = 1, ..., Q:

α̂p,n,q, ε̂p,n,q , p = 1, ..., P , n = 1, ..., N .

For the BOT step, we assume that the DOA errors are zero-mean Gaussian and that the

DOAs are mutually uncorrelated, uncorrelated from sensor to sensor, from target to target,

and from observation to observation. Then, the cost function for the q-th source has a

Least Squares form and reads

fBOT,q(x) =

P
∑

p=1

[

N
∑

n=1

[α̂p,n,q − αp,n,q(x)]2

σ2
α,p,n,q

+

N
∑

n=1

[ε̂p,n,q − εp,n,q(x)]2

σ2
ε,p,n,q

]

, (21)



where σ2
α,p,n,q , σ2

ε,p,n,q are the variances of the DOAs, and where the bearing errors corre-

spond to the physical angle differences in [0, π]. The expected DOAs are parameterized by

the source state x (Eq. 3). Now, the q-th source state is obtained by finding the global min-

imum of Eq. 21. We note that the DOA variances are unknown and need to be estimated,

because otherwise an estimator could be used with even further reduced performance, and

that the DOAs may be more or less correlated, but these correlations are not considered in

the BOT approach.

3.2 SDF Approach

In this section, we outline the SDF approach to solve the TMA problem (Fig. 2). This

approach relies on the same key idea as the localization approach of Wax and Kailath

for decentralized array processing [WK85a]. They mentioned that this kind of estimation

offers the advantage that the association problem inherent to the traditional method is cir-

cumvented. Furthermore, no intermediate parameters like DOAs or additional parameters

like DOA variances are necessary.

The SDF approach is based on the same sequence of noise subspaces. We can therefore

use the same pre-processing step applied to the array output data. The SDF approach uses

a MUSIC-type cost function [Sch86], which minimizes the sum of all projections of the

array transfer vectors at the sensor positions onto the corresponding noise subspaces. The

source states are calculated directly in one step by fusing the subspaces of all batches of

all sensors:

fSDF(x) =
P

∑

p=1

N
∑

n=1

aH
p,n(x)Up,n UH

p,n ap,n(x) , (22)

where the array transfer vector (Eq. 7) is parameterized by the source state x (Eq. 8). The

cost function shows minima for a proper choice of x, if the subspace of each sensor and

each batch is orthogonal to the corresponding array transfer vector.

4 Simulation Results

As an illustration, Monte Carlo simulations with 1500 runs have been carried out to study

the performance of the estimators given in Sections 3.1 and 3.2. In our simulations, we

use a suitable optimization to find the minima of the cost functions (Eq. 20, Eq. 21, and

Eq. 22) and initialize every search with the true value.

We consider a scenario with P = 2 sensors and Q = 2 targets shown in Fig. 4 (left).

The first sensor moves along an arc from (−1, 0, 1) km to (0,−1, 1) km and the second

sensor is fixed at (−0.5, 1, 1) km. We assume that each sensor collects (only) N = 16
batches at time tn with K = 100 samples per batch, and that t0 = tN . For each sensor,

we consider a 10-element uniform circular antenna array with element positions dm =
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Figure 4: Left: Considered scenario; Right: xy-plane of the SDF cost function with true (circles)
and estimated (crosses) target locations

ρ (cos mπ
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5 , 0)T and radius ρ = λ
2 (sin π

10 )−1. The two ground-located sources

move inertially from (0, 0.5, 0) km to (0, 0, 0) km, and parallel from (0.5, 0.5, 0) km to

(0.5, 0, 0) km, respectively. For all emitted source signals, we use in our simulations the

assumption of constant amplitude for each batch of each sensor: |sp,n,k,q| = s. Then, the

single element signal-to-noise ratio of a single source is defined by SNR = s2/σ2
w.

For the sake of simplicity, we give the traditional approach a head start, but we show

that nevertheless the SDF approach performs always better or equal: Firstly, we assume

an ideal M2T and T2T association. Secondly, we exploit the CRB on the azimuth and

elevation angles [SN89, YB92] for the DOA variances in Eq. 21: σα,n,q,p = 1/ sin εn,q,p

and σε,n,q,p = 1/ cos εn,q,p.

Note, that if we use only the data of the second sensor, the problem has not a unique

solution, because the observability condition established in [Bec93] is not satisfied. With

the assumption that the sensor lies always above each source (△zp,n,q > 0, p = 1, ..., P ,

n = 1, ..., N , q = 1, ..., Q), the considered TMA problem has a unique solution, if we

use the first sensor or both sensors, because the observability condition and the condition

for unique DF [WZ89] hold. For the multisensor case and SNR = 5 dB, the xy-plane

of the SDF cost function (Eq. 22) is shown in Fig. 4 (right). The cost function displays

well-pronounced minima and no further spurious peaks.

In Fig. 5, we show only the root mean square error (RMSE) of the x-location of the first

source (x0,1-coordinate), because the RMSE of the other coordinates, even for the other

source, has a similar form. We compare the estimation error covariance (Eq. 13) with the

corresponding CRB (Eq. 18). Both approaches attain the CRB with expected asymptotic

performance, but the RMSE reveals that the SDF approach performs much better than the

traditional TMA approach. During the path of the first moving sensor, the azimuth angle

separation decreases. This geometry between sensor and sources leads to biased bearing

estimates, to resolution conflicts and to mistakes by solving the bearing data association
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Figure 5: Square-root of the CRB (dashed lines) and the estimated RMSE for the traditional (dotted
lines) and direct (solid diamond lines) TMA approach versus SNR for x0,1-coordinate; only sensor
1 (blue), both sensors (red)

problem (for a non-ideal data association). Since the SDF approach does not compute in-

termediate (and maybe biased) bearings, this approach has a smaller RMSE. Furthermore

the performance can be improved by using the additional second sensor.

5 Conclusions

We have extended the recently developed SDF approach to multiple sensors. We compared

the direct SDF approach with the traditional TMA approach under the most favorable

assumptions for the traditional approach: ideal M2T and T2T association and fully known

DOA variances.

The following advantages of the SDF approach over the traditional TMA approach were

reported:

1. The M2T and T2T association problem is completely circumvented and all source

states are estimated in a single step.

2. Joint processing of all sensor data (as done by the SDF approach) provides enhanced

performance in estimating the states of multiple sources. The SDF approach per-

forms always better than or the same as the traditional approach. The SDF estimator

attains the CRB in cases where the traditional approach does not reach the CRB.

3. For low SNR, the SDF estimator benefits from a full integration gain. Consequently,

the SDF approach offers a tactical advantage of increasing the operational range or

for locating weak sources.



4. The bias inherent in DOA estimates, which reduces the performance of the tradi-

tional approach, does not influence the direct state estimation where no intermediate

parameters like DOAs are used. Furthermore, no additional parameters like DOA

variances are required. The traditional approach decreases in performance for a

mismatch of the DOA variances.

5. Correlations between DOAs of different sources, in particular for closely-spaced

sources, that are not included in traditional TMA approach are completely consid-

ered in the SDF approach.

6. The state estimation accuracy can be improved by an additional sensor, even in the

case that this sensor does not satisfy the observability condition.

Finally, we remark that the SDF approach can be extended to non-linear target movements

and also non-identical array sensors.
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