
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 21

Accurate Profiling in the Presence of Dynamic Compilation

Yudi Zheng1, Lubomı́r Bulej2, Walter Binder3

Abstract: Many programming languages are implemented on top of a managed runtime system,
such as the Java Virtual Machine (JVM) or the .NET CLR, featuring an optimizing dynamic (just-in-
time) compiler. Programs written in those languages are first interpreted (or compiled by a baseline
compiler), whereas frequently executed methods are later compiled by the optimizing dynamic
compiler.

Common feedback-directed optimizations [AHR02] performed by state-of-the-art dynamic compilers,
such as the optimizing compiler in the Jikes RVM [Ar00] or Graal [Op], include method inlining
and stack allocation of objects based on (partial) escape analysis [Ch99, SWM14], amongst others.
Such optimizations result in compiled machine code that does not perform certain operations present
at the bytecode level. In the case of inlining, method invocations are removed. In the case of stack
allocation, heap allocations are removed and pressure on the garbage collector is reduced.

Many profiling tools are implemented using bytecode instrumentation techniques, inserting profiling
code into programs at the bytecode level. However, because dynamic compilation is transparent
to the instrumented program, a profiler based on bytecode instrumentation techniques is not aware
of the optimizations performed by the dynamic compiler. Prevailing profilers based on bytecode
instrumentation suffer from two serious limitations: (1) over-profiling of code that is optimized (and in
the extreme case completely removed) by the dynamic compiler, and (2) perturbation of the compiler
optimizations due to the inserted instrumentation code.

We present a novel technique to make profilers implemented with bytecode instrumentation techniques
aware of the optimization decisions of the dynamic compiler, and to make the dynamic compiler
aware of inserted profiling code. Our technique enables profilers which collect dynamic metrics that
(1) correspond to an execution of the base program without profiling (w.r.t. the applied compiler
optimizations), and (2) properly reflect the impact of dynamic compiler optimizations.

We implement our approach in a state-of-the-art Java virtual machine and demonstrate its significance
with concrete profilers. We quantify the impact of escape analysis on allocation profiling, object
lifetime analysis, and the impact of method inlining on callsite profiling. We illustrate how our
approach enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing
framework for locating performance bugs in dynamic compiler implementations.

This work was originally presented at OOPSLA’15 [ZBB15], where it received a Distinguished Paper
Award as well as an endorsement from the Artifact Evaluation Committee for having submitted an
easy-to-use, well-documented, consistent, and complete artifact4. In the meantime, the work has been
integrated into the Graal project.

1 Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland, yudi.zheng@usi.ch
2 Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland, lubomir.bulej@usi.ch; Charles

University, Faculty of Mathematics and Physics, Czech Republic
3 Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland, walter.binder@usi.ch
4 http://dag.inf.usi.ch/software/prof.acc/



22 Yudi Zheng et al.

Acknowledgments

The research presented here has been supported by Oracle (ERO project 1332), by the

Swiss National Science Foundation (project 200021 141002), by the European Commis-

sion (contract ACP2-GA-2013-605442), and by the Charles University institutional funding

(SVV). We especially thank Thomas Würthinger and Lukas Stadler for their support with

Graal.

References

[AHR02] Arnold, Matthew; Hind, Michael; Ryder, Barbara G.: Online Feedback-directed Optimiza-
tion of Java. In: Proc. 17th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications. OOPSLA ’02. ACM, pp. 111–129, 2002.

[Ar00] Arnold, Matthew; Fink, Stephen; Grove, David; Hind, Michael; Sweeney, Peter F.: Adap-
tive Optimization in the Jalapeño JVM. In: Proc. 15th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications. OOPSLA ’00.
ACM, pp. 47–65, 2000.

[Ch99] Choi, Jong-Deok; Gupta, Manish; Serrano, Mauricio; Sreedhar, Vugranam C.; Midkiff,
Sam: Escape Analysis for Java. In: Proc. 14th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. OOPSLA ’99. ACM, pp.
1–19, 1999.

[Op] OpenJDK: , The Graal Compiler Project. http://openjdk.java.net/projects/
graal/.

[SWM14] Stadler, Lukas; Würthinger, Thomas; Mössenböck, Hanspeter: Partial Escape Analysis
and Scalar Replacement for Java. In: Proc. IEEE/ACM International Symposium on Code
Generation and Optimization. CGO ’14. ACM, pp. 165:165–165:174, 2014.

[ZBB15] Zheng, Yudi; Bulej, Lubomı́r; Binder, Walter: Accurate Profiling in the Presence of
Dynamic Compilation. In: Proc. 30th ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA ’15.
ACM, pp. 433–450, 2015.


