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Abstract: Motion sensing devices like Microsoft’s Kinect offer an alternative to tradi-
tional computer input devices like keyboards and mouses. Graph databases can natu-
rally make use of gesture control as traversing graphs can easily be described by swip-
ing or pointing gestures. In our demo we traverse the Internet Movie Database (IMDB)
using a Kinect interface with the control logic in our data stream engine AnduIN. The
gesture detection is done based on AnduIN’s complex event processing functionality.

1 Introduction

Research has shown that more than 60% of the interpersonal information exchange are
passed non-verbal. New hardware achievements like gesture detecting devices as Mi-
crosoft’s Kinect [SFC+11] moved gestures as a new input alternative into the focus of
research and industry. Also graph databases recently attracted interest again, not only
driven by social networks, but also by applications in the fields of linked and big data.
In contrary to SQL systems, they offer natural ways for user interaction, e.g., traversing
nodes and edges can be intuitively expressed with hand movements. In our demonstration
we show how gesture based interaction and graph databases can be combined. We address
the following issues:

• Exploiting online techniques for complex event processing (CEP) implemented in
our data stream engine AnduIN [KKH+11] for gesture recognition in sensor data
which is provided by a motion sensing input device as the Kinect camera.

• Using this solution to build a gesture controlled interface for a graph database which
enables the user to navigate through the data with natural movements.

We have previously used gesture detection to navigate an OLAP cube [HSS+12]. There
we used gestures to execute for example rotate, drill down or role up operations. A link to
a video of this demo is provided in the references.

The rest of this paper is structured according to our software architecture as shown in Fig-
ure 1. First, we provide a short overview of the Kinect and its drivers. Next, we introduce
the InfiniteGraph graph database, followed by an introduction of the main gestures used
for interaction. The paper closes with a description of the demonstration.
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Figure 1: Software architecture. Motion sensors deliver a continuous stream of body positions.
AnduIN’s complex event processing (CEP) engine is used for detecting gestures in this sequence
of poses. The gesture descriptions are passed to the graph DB wrapper which translates them into
database queries for updating the controller’s state and to visualize query results.

2 Gesture Detection using the Kinect System

The Kinect camera comprises three types of sensors: a real-time infrared depth camera,
a simple color camera, and multiple microphones. The cameras deliver 640x480 pixel
images with a centimeter resolution at a rate of 30 frames per second. The sensors work at
distances from 0.8m to 3.5m.

For communication with the Kinect, we used the OpenNI framework [Ope]. It implements
several middleware components and provides interfaces for sensors as well as for applica-
tions. Components are registered in the form of modules and can be used for accessing the
sensor values directly, or at a higher abstraction level as provided by NITE [NIT]. NITE
implements modules for full body analysis and realizes the tracking of a human in form of
a skeleton which consists of 15 characteristic joints like head, left/right hand, etc. The 3D
coordinates of each skeleton joint are calculated every ten milliseconds using the 2D color
image in conjunction with the depth image. For example, the coordinates of the left foot
can be accessed with the following statements:

XnSkeletonJointPosition joint;

g_UserGenerator.GetSkeletonCap().GetSkeletonJointPosition(

playerID, XN_SKEL_LEFT_FOOT, joint);

3 InfiniteGraph as a graph database

Our demonstration is based on InfiniteGraph [IG], developed by Objectivity Inc., as one
representative of (commercially available) graph database systems. InfiniteGraph is a
schema based graph database, that defines its schema using Java objects. Database man-
agement and access is provided by the class GraphFactory. Base classes for nodes
and edges are provided, i.e. BaseVertex and BaseEdge, from which a user can de-
rive application-specific subclasses. InfiniteGraph offers a transactional concept to insert,
delete, or modify nodes or edges. A given graph can be traversed or searched. For this,
methods to retrieve connected edges or neighboring nodes and such are provided in the
base classes. Searching is based on a Guide that defines the order in which nodes are
traversed. InfiniteGraph supports indexing according to class properties. In our demon-
stration we will focus on the traversal of a given graph. Although, we implemented our
demonstration for InfiniteGraph, the approach is generally transferrable to similar systems
like neo4j, where similar interfaces are available.
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Figure 2: “Swipe Right” gesture for expanding a selected edge

4 The Controller and Database Interaction
After identifying gestures based on events by the AnduIN system, it is the controller’s
task to derive queries for the graph database based on the actions and the current state and
trigger adequate queries for the graph database.

For this demonstration we have implemented a basic set of gestures/queries on the Infinite-
Graph database focusing on graph navigation. Each detected gesture triggers a new query
and results are displayed on the screen. The gestures are

• select edge/node - the user can select one of the currently visualized nodes or edges
• about edge/node - the user can request additional information about a node or edge,

i.e. get the properties
• undo/redo - during a graph traversal, undo and redo of moves are enabled
• shortest path - the user can query the database for the shortest path between two

present nodes
• solve - triggers a shortest path query between a start and end node

For example, a selected Person node of “Johnny Depp” is shown in Figure 3. The visual-
ized graph can be expanded further by selecting an outgoing edge and expanding it with
a “Swipe Right” gesture. The gesture and its corresponding AnduIN CEP translation is
illustrated in Figure 2. Once, the gesture is detected by AnduIN, the new node is requested
from the InfiniteGraph database with getNode(ID), where ID corresponds to the outgoing
selected edge (comp. “The Ginger Man” in Figure 3), and is derived by the controller
from the preceding select edge gesture.

5 Demonstration
For the demo session, we plan to show our prototype system in action. We will bring a
notebook equipped with a Kinect camera running our InfiniteGraph interface for IMDB.
Everyone can try to navigate the database by gestures playing the Kevin Bacon [Kev]
game. The game is simple, one starts out with a node representing the actor Kevin Bacon
and traverses the graph through gesture navigation to find the shortest path to another given
actor (Figure 3). The length of the path is then the Kevin Bacon number of the other actor.

For the database we use a simple data model. There are two node types, Person and
Project, and one edge type workedOn. Person contains name and gender of an actor,
Project contains name and release year of a movie. workedOn contains the name of
the role an actor played in a movie.
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Figure 3: Screenshot of the demonstration showing a path between Kevin Bacon and Johnny Depp.

For a user playing the game, this means he or she has to select a node, query its properties,
check for its outgoing edges and decide which next node, i.e. movie or actor, to choose.
In addition, we allow a glance into the internals of the overall system. Raw events gener-
ated by the Kinect camera are passed to our stream engine AnduIN, which performs the
gesture detection. Due to the usage of AnduIN’s CEP functionality, necessary gestures can
be exchanged on the fly. To show this effect, we prepare different gestures for a single
interaction with the database. Additionally, the usage of the simple SQL like declarative
user interface offers an easy way to define new gestures. After a short briefing, participants
should be able to define there own gestures and apply them instead of the original ones.
This way it will be possible for users to customize UI controls for traversing the graph.
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