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Embedded accelerometer signal normalization for
cross-device gait recognition

Maria De Marsico,! Daniele De Pasquale2 and Alessio Mecca>

Abstract: This paper proposes a “’soft” calibration of the signal from smartphone accelerometers,
with the aim to improve cross-device gait recognition. Other applications can also benefit from the
same procedure. The procedure was evaluated on a dataset of walk signals collected by three different
smartphones in two time-separated sessions. The results are extremely satisfactory. For sake of space,
only the most significant ones will be reported. In some recognition settings, especially cross-device
ones, a relative improvement of over 100% of the starting performance was achieved.
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1 Introduction

Gait recognition was formerly mainly carried out by computer vision-based algorithms ,
but at present a new interest is attracted by the possibilities offered by wearable sensors,
e.g., smartphones and the new smartwaches, [Zh15] [DMM15]. Notwithstanding difficul-
ties, using wearable devices is attractive, since it does not require to instrument the envi-
ronment, and can exploit widespread consumer equipment. Gait features depend on many
factors, e.g., the conformation of the lower body, a temporary injury, speed, ground slope,
heel height, or carried weights. Further problems can arise from signals themselves due
to phase alignment, signal normalization, and denoising. A significant performance de-
crease is observed when matching signals from different devices, though of the same type,
due to systematic errors affecting all physical sensors. These errors are possibly different
across the three axes of the accelerometer over which the signal is captured. This can be
tolerated for simple tasks on mobile devices, e.g., screen rotation, but biometric recogni-
tion needs much higher accuracy. When the use of different devices is required/foreseen,
accelerometer data normalization is needed. Physical calibration is not feasible when the
accelerometer is built in a smart device. We rather propose a kind of ”software calibration
strategy”. Some available datasets collect data from different devices and from more de-
vices of the same type [Zh15] , but no cross-device matching is attempted. Some works
explore inter-device signal acquisition, but experiments usually only assess the correlation
among results from different devices of the same model. Even in this case, the obtained
signals may present significant differences (see [Gr06], using three activPAL accelerome-
ters). Very few works test matching of signals from different devices of the same type (e.g.,
[Mal0], comparing activPAL, PALlite and Digi-Walker accelerometers). Most such com-
parisons deal with activity recognition, and do not attempt correction/avoidance of inter-
/cross-device issues. This paper focuses on matching cross-device data from smartphones
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accelerometers. The very quick normalization procedure proposed does not require hard-
ware intervention or special instrumentation. A new dataset was used to validate it in bio-
metric gait recognition. The contribution of this paper is not a new gait matching algorithm,
but rather the proposal and evaluation of an easy, general signal normalization procedure.

2 Related Work

Even the most accurate accelerometer, as any physical sensor, is affected by either system-
atic or occasional errors. Therefore, even two identical sensors from the same productive
cycle provide different measurements in the same conditions. These systematic errors can
be highlighted in each single measurement, where the real output differs from the ideal
one. An important consideration is that the accelerometer is a linear sensor. Its response is
directly proportional to the physical/gravitational acceleration. This allows avoiding com-
plex procedures with special equipment for the device calibration, and rather exploit this
property. A relevant parameter for any normalization procedure is Of fset (or Zero-g Off-
set, or Zero-g Bias). It can be expressed in terms of g (gravitational force, 9.81m/s%), and
describes the difference of real vs. ideal output when no acceleration is applied to the sen-
sor. When the sensor is on a horizontal flat surface with the frontal part facing up, the ideal
value should be Og on X and Y axes and 1g on Z axis. Rotating the sensor by 180°, the val-
ues for X and Y axes would remain unchanged while the value for Z would change in —1g.
Table 1 shows the ideal values. Positions of the sensor are the same shown later in Figure 1
in Section 3, where they rather refer to a smartphone layout. Some existing calibration/nor-
malization procedures inspired our work, that do not use complex equipment, e.g., laser
or optical devices. The note in [Tu07] reports four high level proposals to compute the
Zero-g Offset exploiting the gravity acceleration, and use it to normalize the accelerometer
signals. Actually, values of such parameter reported in datasheet are not reliable, espe-
cially when the sensor is embedded into another device causing further solicitations. The
mentioned procedures are applied directly on the sensor, yet they use high level strategies
that do not access, for example, the inner register and/or modify the tension value of the
sensor. The first technique exploits sensitivity to compute Zero-g Offset. The sensitivity
quantifies the minimum detectable variation. Since the response is linear, this value should
be a constant. The procedure obtains it by taking the acceleration at 1g (1g_value), and at
—1g (—1g_value, obtained by rotating the sensor by 180°). In these cases only the gravi-
tational acceleration is applied to the sensor. An approximation of sensitivity is computed
by dividing by 2 the difference between the 1g and the —1g values. The Zero-g Offset is
finally computed as —1g_value + sensitivity or as 1g_value — sensitivity. This procedure
is repeated for each axis changing the sensor orientation to have gravity acceleration at 1g

Tab. 1: The expected values of acceleration when the sensor is laying on a level surface

Positions Portrait Up Portrait Left | Portrait Down | Portrait Right Front | Back
X Og +lg Og -lg 0g Og
Y +1g 0g -lg Og 0g Og
zZ 0g Og 0g Og +lg -lg
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in turn for X, Y, and Z. The second technique requires positioning the sensor on a level
surface with the frontal face up. It records the acceleration values at Og for the X and the
Y axes, and at 1g for Z axis. The Zero-g Offset for the X and the Y axes is taken as the
value recorded at Og while the one for the Z axis is taken as the value recorded for Z at 1g
minus the sensitivity. This procedure does not require repositioning the device, but gives
less accurate results and relies on the preliminary knowledge of the sensor sensitivity. The
third proposal needs registering data at Og in free-falling, at the same time on all three axes.
This is seldom feasible for two main reasons. The first one is trivial, if the sensor is em-
bedded in a mobile device. The second is that, during free-falling, the sensor could change
its orientation and this causes an erroneous measurement. The last procedure asks putting
the sensor on a flat surface facing up, registering the Zero-g Offset for X and Y axes, and
then repositioning the sensor perpendicular to the surface, to get the Zero-g Offset for Z
axis. This technique provides poor accuracy due to only 2 measurements per axis.

Being high level is a mandatory requirement for the procedures we propose, because they
are targeted at sensors embedded in mobile or wearable devices. Direct operations would
not be possible anyway, since they would require extracting the sensor from the mobile
device. In addition to this, it is necessary to consider further possible interferences caused
by the host device. For these reasons, we had to deeply rethink these inspiring techniques.

3 Accelerometer data normalization

The proposed methodology takes as starting point those in 2. However, it was redesigned to
provide reliable results even without direct accelerometer manipulation, when it embedded
into a device and cannot be extracted. This required different mathematical computations
to increase robustness. The procedure is very simple, can be easily repeated whenever
necessary, and the normalization parameters are recorded in a text file stored on the device
itself. Therefore they can be used by any applications that may benefit.

The procedure starts by computing the Of fset for each axis of the sensor. This is the first
difference with related work, where some out of those measures are often only estimated.
Then the same normalization procedure is carried out on each single axis. Let us assume
for the moment that the Of fset (at Og) and the value at 1g, Ref_Value in the following,
have been already computed. The general equation 1 synthesizes the normalization for-
mula that we adopt. It is derived from the well-known Min-Max formula, that is used to
map a given Value onto a New_Value in [0, 1] interval, but represents a variation of this
schema. It does not take as reference values the minimum and maximum measured by
the accelerometer, that are not easily identifiable for each device, but rather the two refer-
ence values measured at Og and 1g for each axis (that may fall in different points in the
accelerometer range). The general equation is then specialized over the three axes:

Value — Of fset
Ref Value — Of fset

ey

New_Value =

A rescaling in [Og, 1g] is obtained. This allows normalizing the range of values from differ-
ent accelerometers. Since the accelerometer produces a linear response within the measure
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range, each movement is translated into a discrete value that is directly proportional to the
physical acceleration. By aligning the results with respect to [0g, 1g] it is also possible to
achieve a correct alignment of the values originally not included in the same interval.

The goal of the procedure is therefore to compute Of fset and Ref_Value for each axis.
This requires to carry out two accurate measures per axis. This is another relevant dif-
ference with the state-of-the-art methods. Overall, the procedure requires a series of six
simple tests. As a further improvement, each single test actually provides a value which
is the average of samples taken over a continuous interval of 15 seconds.The device po-
sitions to obtain the required measures are shown in Figure 1, where they are referred to
the smartphone layout. The detailed procedure steps for one device position are as fol-
lows. By setting the device on a plain surface with the screen up (Z at 1g) it is possible to
measure the offset values at Og for X and Y axes and the reference value at 1g for Z axis.
This is done for 15 seconds, and an average value is computed for each axis. Therefore,
from the measurements in this position we obtain three values: Ref_Z_Value and two val-
ues that will be used to compute the final offsets for X and Y, i.e., X_Of fset_Front and
Y_Of fset_Front. For each axis, the final value for O f fset will be given by the average of 4
values measured at Og in different positions. For instance, as for X axis, such values will be
X Offset _Front, X_Of fset_Back, X_Of fset_PortraitU p, and X _Of fset_PortraitDown.
Figure 1 also shows the final equations for each axis.

4 The New Collected Dataset and Experimental Results

A new dataset has been collected to test inter-device gait recognition and assess the possi-
ble improvements achieved by the proposed normalization. Three smartphones of different
brands have been used, each with a different accelerometer model embedded: a OnePlus
One (OnePlus - LIS3DH accelerometer by ST Microelectronics), a Samsung Galaxy S4
Active (Samsung - K330 3-axes accelerometer), and a Sony Xperia S (Sony - Bosch Sen-
sortec BMA250 accelerometer). Walk signals belong to 25 subjects, from two acquisition
sessions (15 days apart on average). The subjects wore different kinds of shoes but no high
heels. Each session includes 6 acquisitions per user, 2 for each smartphone, for a total of
300 walk signals. The subjects were asked to walk normally for ten steps along a straight
hallway. After each recording, the smartphone was detached and repositioned to add some
further variations. The dataset will be expanded to include more variations due to heels,
ground slope and speed, and will be soon freely accessible to the research community !.
In order to test the advantages of using our normalization procedure, the 5 recognition
algorithms proposed in [DMM15] were used. They all exploit the basic formulation of
Dynamic Time Warping (DTW), which is still the most used matching method for gait
signals. Some of them also use step segmentation. For sake of space, it is not possible to
report here the details of the segmentation algorithm. It is worth mentioning that it is based
on the identification of signal maxima that fulfill suitable constraints, to avoid the influ-
ence of noise. Reporting all results would require too much space, therefore only those
for WALK and ALL STEPS VS. ALL are presented below, because they are the most

U http://sites.google.com/a/di.uniromal.it/biometric-interaction/home/gait-recognition/datasets/bwr-multidevice



Embedded accelerometer signal normalization 293

AN é\ T YA
E=—u Level Surface T Leved Surface
AT e T
Front Back

Leve! Surface

Level Surfuce

Porrrair Up
(%) C E Ejé’\

: Level Surface
Landscape Left andscape Rig.

X Offset PortraitUp + X_Qtfset PortraitDown + X Offser_Frome +.X Offrer Sact

Level Surfice

X_Offser =
4
¥_Offser_Landseapelert + ¥_Ofser LandscapeRight + ¥_Otfes_Frome + ¥_Ofver_Savt
Y Qffver =
¢
: Z Offvet Landscapelefi + Z Offset LandscapeRight + £ Offves Pormairly + I e PortrasiDown
Z Offset =
4

Fig. 1: The different positions for the offset measurement, and the final equations.

significant in terms of improved performances. WALK algorithm matches unsegmented
gait signals. Among those using segmentation, ALL STEPS VS. ALL matches all probe
segments against all segments of a gallery walk. Experiments were designed to focus ex-
clusively on normalization effects, by avoiding any denoising and/or interpolation. Aiming
at having the most accurate and comprehensive test scenarios, we exploited the 5 recogni-
tion algorithms proposed in the mentioned work, and we tested biometric recognition in 3
modalities: Closed Set Identification (CSI), Verification (VER), and Open Set Identifica-
tion (OSI). Performance were measured in terms of Recognition Rate (RR) for CSI, and
in terms of Equal Error Rate (ERR) for VER and OSI. Half of these tests were performed
using the walk signals without normalization and the other half using the same data after
the application of the proposed normalization procedure. The full set of analyzed test sce-
narios (zss) was created combining the following conditions:

AllSessions = probe and gallery sets belong to both sessions.

Session_vs_Session = one session in turn is used as probe set and the other as gallery set.
SameSession = probe and gallery sets belong to the same session.

AllDevices = both probe and gallery sets belong to all devices.

Device_vs_Device = one device is used in turn as probe and one as gallery source.
SameDevice = both probe and gallery set come from the same device.

The only missing combination is SameSession with Device_vs_Device, because it is not
much realistic. Summing up there is a total of 38 zss, each one enacted with each of the
5 recognition algorithm in each of the 3 different biometric modalities, for a total of 570
tests. Moreover, each test was repeated with and without normalization, for a total of 1140
tests, out of which we report those carried out with the selected recognition algorithms.
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Tab. 2: Results with WALK. The green cells (lighter) report improvement while the
red ones (darker) decrements. RR=Recognition Rate, EER=Equal Error Rate, O.D.=Original
Dataset, N.D.=Normalized Dataset, AD=AllDevices, D_vs_D=Device_vs_Device, SD=SameDevice,
AS=AllSessions, S_vs_S=Session_vs_Session, SS=SameSession, OP=0nePlus, Sams=Samsung.

Recognition Method: WALK

Closed Set Identification Verification Open Set Identification
Test Scenario Device RR RR Improv. EER EER Tmprov. EER EER Improv.
O.D. N.D. 0.D. N.D. O.D. N.D.
AD 95.00% | 97.00% | 2.11% | 28.00% | 24.10% | 16.18% | 26.30% | 23.70% | 10.97%
OP | Sams | 90.00% | 92.00% | 2.22% | 20.70% | 21.00% 38.00% | 35.00% | 8.57%

OP | Sony | 65.00% | 87.00% | 33.85% | 29.50% | 24.70% | 19.43% | 58.00% | 43.00% | 34.88%
Sony | Sams | 74.00% | 88.00% | 18.92% | 27.30% | 24.80% | 10.08% | 53.00% | 35.50% | 49.30%
AS | D.vs.D | Sony | OP |76.00% |87.00% | 14.47% | 29.50% | 24.70% | 19.43% | 57.00% | 39.00% | 46.15%

Sams | OP | 97.00% | 99.00% | 2.06% | 20.70% | 21.00% 30.00% | 25.50% | 17.65%

Sams | Sony | 70.00% | 93.00% | 32.86% | 27.30% | 24.80% | 10.08% | 56.00% | 34.00% | 64.71%

OP 94.00% | 94.00% | 0.00% |24.60% | 23.50% | 4.68% | 24.60% | 23.60% | 4.24%
SD Sony 90.00% | 90.00% | 0.00% | 28.00% | 28.00% | 0.00% | 28.00% | 28.40% -
Sams 96.00% | 96.00% | 0.00% |24.40% | 24.00% | 1.67% | 24.40% | 24.00% 1 1.67%

AD 52.00% | 54.50% | 4.81% | 31.80% | 29.60% | 7.43% | 31.80% | 29.60% | 7.43%

OP | Sams | 39.00% | 49.00% | 25.64% | 28.08% | 28.45% 75.00% | 70.00% | 7.14%

OP_| Sony | 32.00% | 48.00% | 50.00% | 32.45% | 26.43% | 22.80% | 82.00% | 73.00% | 12.33%
Sony | Sams | 27.00% | 46.00% | 70.37% | 33.50% | 31.55% | 6.18% |82.00% | 78.00% | 5.13%
D_vs.D [ Sony | OP | 27.00% | 42.00% | 55.56% | 32.50% | 31.75% | 2.36% | 85.00% | 76.00% | 11.84%
Svs.S Sams | OP | 50.00% | 55.00% | 10.00% | 28.08% | 30.53% 70.00% | 70.00% | 0.00%
Sams | Sony | 37.00% | 56.00% | 51.35% | 33.50% | 28.38% | 18.06% | 81.00% | 67.00% | 20.90%

OP | 56.00% | 57.00% | 1.79% | 27.00% | 26.80% | 0.75% | 27.00% | 26.80% | 0.75%
SD Sony | 43.00% | 45.00% | 4.65% |31.20% | 31.20% | 0.00% | 31.20% | 31.20% | 0.00%
Sams | 52.00% | 54.00% | 3.85% | 28.20% | 20.00% |[E3I8AGAN| 28.20% | 29.00%

AD 94.50% | 95.50% | 1.06% | 21.40% | 13.35% | 60.30% | 23.00% | 22.10% | 4.07%
SS OP 91.00% | 91.00% | 0.00% | 8.00% | 8.00% | 0.00% | 25.00% | 25.00% | 0.00%
SD Sony 94.00% | 95.00% | 1.06% | 6.00% | 6.00% | 0.00% | 20.00% | 20.00% | 0.00%

Sams 72.00% | 72.00% | 0.00% | 16.00% | 15.95% | 0.31% | 30.50% | 30.00% | 1.67%

An all-against-all matching was always carried out, where, given the chosen scenario,
each template in the probe set is used in turn and compared with all the gallery.

All tests in all scenarios demonstrate a generally significant performance improvement,
that arrives to 225%. Even for tests involving a single device there is an extremely high
improvement, though unexpected given that they involve exactly the same smartphone.
Analyzing the best results only among those reported in Table 2 for WALK matching
algorithm and in Table 3 for ALL STEPS VS. ALL, we observe that in ¢s Same_Device
combined with AllSessions with ALL STEPS VS. ALL, we start from confirming that,
also using a single device, normalization increases matching accuracy. In fact, we got
up to a 89.74% relative improvement in CSI, achieved using Samsung with which the
results pass from 39% to 74% of RR; the improvement in VER reaches 157.14%, with the
performances passing from 36% to 14% of EER, and a 75.68% improvement in OSI, with
performances passing from 70% to 30% of EER, in the case of Same_Device combined
with SameSession using OnePlus with ALL STEPS VS ALL.

In the cases of Device_vs_Device tss, we got the following improvements: up to 131.25%
in CSI, when combined with AllSessions using templates from Samsung as probes and
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Tab. 3: Results with ALL STEPS VS. ALL. The green cells (lighter) report improvement while
the red ones (darker) decrements. RR=Recognition Rate, EER=Equal Error Rate, O.D.=Original
Dataset, N.D.=Normalized Dataset, AD=AllDevices, D_vs_D=Device_vs_Device, SD=SameDevice,
AS=AllSessions, S_vs_S=Session_vs_Session, SS=SameSession, OP=0nePlus, Sams=Samsung.

Recognition Method: ALL STEPS VS. ALL

Closed Set Identification Verification Open Set Identification
Test Scenario Device RR RR Tmprov. EER EER Tmprov. EER EER Tmprov.
0.D. N.D. 0.D. N.D. O.D. N.D.
AD 51.00% | 78.00% | 52.94% | 50.00% | 50.00% | 0.00% | 57.70% | 38.60% | 49.48%

OP | Sams | 45.00% | 67.00% | 48.89% | 50.00% | 50.00% | 0.00% | 70.50% | 48.50% | 45.36%
OP | Sony | 32.00% | 52.00% | 62.50% | 44.00% | 37.70% | 16.71% | 79.00% | 61.50% | 28.46%
Sony | Sams | 28.00% | 57.00% | 103.57% | 50.00% | 50.00% | 0.00% | 84.00% | 57.00% | 47.37%
D.vs.D | Sony | OP |38.00% |56.00% | 47.37% | 44.80% | 33.30% | 34.53% | 74.00% | 58.50% | 26.50%

AS Sams | OP | 54.00% | 76.00% | 40.74% | 50.00% | 50.00% | 0.00% | 67.00% | 48.00% | 39.58%
Sams | Sony | 32.00% | 74.00% | 131.25% | 50.00% | 50.00% | 0.00% | 67.00% | 48.00% | 39.58%

OP 43.00% | 73.00% | 69.77% | 40.30% | 32.70% | 23.24% | 40.30% | 32.60% | 23.62%

SD Sony 52.00% | 51.00% |=1196%"| 40.30% | 38.80% | 3.87% [40.30% | 38.830% | 3.87%

Sams 39.00% 74.00%1 89.74% [50.00% 50.00% | 0.00% | 50.00% | 50.00% | 0.00%

AD 22.50% | 34.50% | 53.33% | 50.00% | 50.00% | 0.00% | 83.30% | 71.30% | 16.83%
OP | Sams | 17.00% | 25.00% | 47.06% | 45.00% | 38.95% | 15.53% | 92.50% | 85.00% | 8.82%
OP | Sony | 15.00% | 31.00% | 106.67% | 44.60% | 38.05% | 17.21% | 90.00% | 83.50% | 7.78%

Sony | Sams | 13.00% | 23.00% | 76.92% | 47.50% | 39.65% | 19.80% | 94.50% | 91.00% | 3.85%

D.vs.D | Sony | OP | 14.00% |22.00% | 57.14% | 47.65% | 46.10% | 3.36% | 92.00% | 91.50% | 0.55%

S_vs_S Sams | OP | 16.00% | 30.00% | 87.50% | 50.00% | 50.00% | 0.00% | 93.50% | 91.00% | 2.75%
Sams | Sony | 16.00% | 29.00% | 81.25% | 48.50% | 42.05% | 15.34% | 90.50% | 90.00% | 0.56%
OP 18.00% | 34.00% | 88.89% | 42.85% | 36.55% | 17.24% | 90.00% | 80.00% | 12.50%

SD Sony 25.00% | 22.00% 41.85% | 42.75% 84.00% | 88.00%

Sams 23.00% 31.00%1 34.78% | 50.00% | 49.90% | 0.20% | 89.50% | 82.00% | 9.15%

AD 54.00% | 79.00% | 46.30% | 44.05% | 35.00% | 25.86% | 56.50% | 38.35% | 47.33%
OP 40.00% | 71.00% | 77.50% | 36.00% | 14.00% | 157.14% | 65.00% | 37.00% | 75.68%
SS SD Sony 54.00% | 54.00% | 0.00% | 27.60% | 26.25% | 5.14% | 58.50% | 57.50% | 1.74%

Sams 40.00% | 75.00% | 87.50% | 40.40% | 32.00% | 26.25% | 74.00% | 48.50% | 52.58%

templates from Sony as gallery, with the ALL STEPS VS. ALL, with the result increasing
from 32% to 74% of RR; we got up to 34.5% improvement in VER when combined with
AllSessions using Sony templates as probes and OnePlus templates as gallery with the
ALL STEPS VS. ALL, with results improving from 44.8% to 33.3% of EER; finally, we
got up to 64.71% relative improvement in OSI when combined with AllSessions using
Samsung templates as probes, and Sony templates as gallery with the WALK recognition
method, with results passing from 56% to 34% of EER. Notwithstanding the peaks due to
worse starting values, the improvements in cross-device matching are higher on average
than those obtained when using the same device.

Table 2 shows the complete set of results for the zss with the recognition method WALK,
that experimentally achieved the best results among the recognition methods in [DMM15],
even without normalization. For symmetric conditions, e.g. the pair of Session_vs_Session,
we just report the average results. With WALK, the global performances stay the same
or increase. The fss involving different devices, especially in Device_vs_Device setting,
always achieve an improvement in all three biometrics testing modalities (except for few
tss in VER and in OSI). The improvements are up to 70.37% for CSI, up to 60,3% for VER,
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and up to 64,7% in OSL. It is worth pointing out that the major benefits of normalization,
as expected, are in Device_vs_Device tss.

Table 3 shows the complete set of results for zss with the recognition method ALL STEPS
VS. ALL, that is the one that achieved the best benefit from normalization. Even in this
case, for symmetric conditions we just report the average results. The global performances
are lower in this case. This matching algorithm is free from the limitation to require about
the same number of steps/segments in the signals to match, and therefore this result was
expected due to possible greater inaccuracy. In fact, this algorithm uses step segmentation,
and matches single steps having a limited number of signal points (about 100). There-
fore it is more affected by signal distortions, such as systematic errors. In fact, in the not
normalized dataset, it achieves quite poor performances, yet it is interesting to notice that
normalization provides an even higher improvement, especially in Device_vs_Device tss,
so that we achieve a twofold important result.

5 Conclusion and Future Work

Solutions to improve accelerometer signal quality for gait recognition, at the best of our
knowledge, do not tackle extensively cross-device signal matching. This paper has pro-
posed an effective procedure for signal normalization. It was not possible to test it on ex-
isting datasets, due to the lack of the required measures, but it can be easily implemented
for a brand new system gallery, either during acquisition, or even afterward, given that the
requested measures are computed later. Experimental results demonstrate that normaliza-
tion also positively affects matching of data from the same device, though being especially
beneficial in cross-device matching. This reveals that it is not possible to export normal-
ization parameters from one sensor to another, though of the same model.
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