
A Data Center Infrastructure Monitoring Platform Based
on Storm and Trident

Felix Dreissig1 Niko Pollner2 (Advisor)

Abstract: Sensor data of a modern data center’s cooling and power infrastructure fulfil the character-
istics of data streams and are therefore suitable for stream processing. We present a stream-based
monitoring platform for data center infrastructure. It is based on multiple independent collectors,
which query measurements from sensors and forward them to an Apache Kafka queue. At the plat-
form’s core is a processing cluster based on Apache Storm and its high-level Trident API. From
there, results get forwarded to one or multiple data sinks. Using our system, analytical queries can
be developed using a collection of universal, generic stream operators including CORRELATE, a
novel operator which combines elements from multiple streams with unique semantics. Besides the
platform’s general concept, the characteristics and pitfalls of our real-world implementation are also
discussed in this work.

Keywords: Data Stream, Stream Processing, Apache Storm, Trident, Monitoring, Data Center

1 Introduction

Since the emergence of the data stream model, monitoring of sensor data has often been
cited as a classical use case for data stream systems. As new measurement values arrive
steadily and continuously, it is particularly fitting to view them as a stream of data. Rather
than saving the values to a data store and performing periodic analysis, a data stream system
can process them live and permanently.

In recent years, the data streaming paradigm has gained popularity due to the advent of new
distributed stream processing systems primarily developed in the IT industry. The first and
still one of the most popular systems of that kind is Apache Storm, which has been released
as open-source software by Twitter. While Storm itself does not provide many processing
guarantees, it also includes the Trident interface, which e. g. promises persistent state and
exactly-once semantics.

In this work, we present the architecture and real-world implementation of a monitoring
platform for data center infrastructure based on Storm and Trident. To the best of our
knowledge, it represents the first published usage of Trident for monitoring purposes and
one of the first publications on practical Trident usage.

Data center infrastructure primarily refers to cooling and power distribution systems. These
are auxiliary, but critical to the actual IT equipment like servers and network devices. The
1 Friedrich-Alexander University Erlangen-Nürnberg (FAU), Computer Science 6, Martensstrasse 3, 91058 Erlan-

gen, felix.dreissig@fau.de
2 Friedrich-Alexander University Erlangen-Nürnberg (FAU), Computer Science 6, Martensstrasse 3, 91058 Erlan-

gen, niko.pollner@fau.de

B. Mitschang et al. (Hrsg.): BTW 2017 – Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 281



2 Felix Dreissig

particular data center covered in this work uses a modular structure for electricity supply
and cooling with a multitude of sensors accessible through an IP-based network.

The platform aims to support different areas of monitoring which are usually handled by
separated systems today – health monitoring with alerts in case of problems, data collection
and visualization for capacity planing and performance analysis and live observation of
metrics, e. g. in a schema of system components.

In the remainder of the work, we will first revisit the foundations of data stream processing
and introduce basic concepts of Storm. Afterwards, the general architecture of the monitor-
ing platform and its operator model are discussed. Section 4 features a presentation and
evaluation of the platform’s implementation. This is followed by a review of related works.
Finally, we close with a conclusion and an outlook on future developments.

2 Foundations

2.1 Data Stream Systems

In contrast to database management systems, which work on a persistent collection of data,
data stream processing systems execute continuous queries on sequential, append-only data
streams. According to Babcock et al. [Ba02], a data stream is characterized by the online
arrival of data elements, no influence for the system on the arrival order of data, potentially
unbounded data and the fact that in general, elements cannot be retrieved once they are
processed.

Some operations provided by data stream processing systems have counterparts in database
management, while others introduce special concepts. The most prominent of such concepts
are windows, which limit the number of elements to be considered for a subsequent
operation like a JOIN or an aggregation. Windowing features are provided by virtually all
stream processing systems, but the available characteristics can vary widely [Bo10].

Traditionally, queries for most data stream processing systems are expressed in domain-
specific, declarative languages similar to SQL. Storm, which stems from a background in a
Big Data community, is programmed using high-level procedural programming languages,
mostly Java or Scala, instead.

2.2 Storm

Instead of a comprehensive set of operators, Storm provides a programming and runtime
framework for stream processing code. Developers generally implement two basic abstrac-
tions – Spouts, which represent data sources, and Bolts, which perform processing steps on
data elements. Since Bolts may emit an arbitrary number of elements, including zero, per
input element, they can also act as data sinks.

282 Felix Dreissig, Niko Pollner



Data Center Infrastructure Monitoring with Trident 3

Storm is distributed by nature and designed to run on a cluster of independent hosts for
scalability and fault tolerance. The system will distribute the Spout and Bolt instances across
the cluster and re-assign the workload upon failure of individual hosts. However, keeping
persistent state in Bolts was not supported until the recent Storm version 1.0. Processing
guarantees for the failure case are configurable between at-least-once and at-most-once
semantics [To14].

2.3 Trident

Trident is an alternative, higher-level programming model building on top of Storm, de-
veloped and distributed as part of the Storm project. Its key promises are high throughput
due to “micro-batching” in the order of several hundred milliseconds, a high-level interface
similar to Apache Pig, support for persistent state and exactly-once semantics.

Operations are defined by implementing the Trident Java APIs, which e. g. provide support
for common operations such as aggregations and filters. One or more of these operations are
then mapped to a plain Storm Bolt for execution. With most operation types, the developer
is unaware that the system combines the stream elements to micro-batches internally.

As long as processing results are not revealed to the outside world (and there are no side
effects), streaming operations can be repeated an unlimited number of times without any
consequences. This is why state is fundamental to Trident’s exactly-once support: Since true
exactly-once delivery cannot be guaranteed in a distributed system, the effect of exactly-
once behavior is achieved by only communicating updates to outside systems once. This
generally requires those updates to be idempotent; the exact requirements are defined by
Trident’s “transactional” and “opaque-transactional” modes [St]. It should be noted that
state is always externalized in Trident, as it is only gets stored an external system like
a database or a distributed file system and only becomes relevant when communicating
results to such systems.

3 Concept

Sensor Collector Kafka Storm Sink

Pull

Data

* 1
*

Push data

1 *

Push data

1 1

Push data

*

Fig. 1: High-level Architecture of the Complete Monitoring System

3.1 Components

Besides Storm, the complete monitoring system is made up of several other components,
which are depicted in Fig. 1.

Collectors gather values from one or more sensors and forward them to the rest of the
system. For data center infrastructure, they act as a gateway between sensors from the

A Data Center Infrastructure Monitoring Platform Based on Storm and Trident 283



4 Felix Dreissig

electrical engineering domain and the software-based monitoring system. For this purpose,
existing data collection software like collectd can be used. The collectors also mark the
boundary between pull-based and push-based data transfers, as they have to explicitly
request measurements from the sensors and then actively send them to the processing
system.

Apache Kafka is a distributed message queue system commonly used to feed data into and
move it out of Storm and other stream processing systems. In our architecture, it serves as a
common adapter between collectors and Storm, for which Kafka Spout implementations
are readily available. It also guarantees data persistency during Storm downtimes because
of failures or maintenance. In that case, data can queue up in Kafka and be processed
afterwards with increased latency, but without data loss.

The central processing point for measurements from all collectors is a Storm cluster that
first normalizes the data and unifies them to common message schemas in order to simplify
further processing. Afterwards, various analyses are performed on the unified data elements.
The structure and characteristics of our implementation using Storm are covered in Sect. 4.

Finally, normalized raw measurements or processing results get stored to a data sink. Ex-
amples for data sinks include a time-series databases for historic collection or a notification
system for monitoring alerts.

3.2 Operator Model

3.2.1 General Considerations

Even though Storm and Trident offer the possibility to express arbitrary queries using a
high-level programming language, we developed a set of generic stream operators. These
are provided by the platform and can be used to express analytical queries. The operator
selection has been identified based on real-world use cases in data center infrastructure
monitoring. It aims to be highly universal and reusable, so that development of custom
operators is only necessary in special cases. The reusability is supported by the unification
of all data to common schemas, as explained in the previous section.

The operator set contains common stream operators such as filters, windowed JOINs and
mapping operators. Following the reusability paradigm, arithmetic and boolean operations
are provided in form of elementary mapping operations like addition or “less than”. Map-
pings that work with multiple operands expect so-called Composited Records as input,
which consist of multiple individual data elements. Those are generated by a JOIN or
CORRELATE, a novel operator to combine elements from multiple streams.

3.2.2 CORRELATE

CORRELATE can be considered a ‘symmetrical version’ of the NEXT operator from
Cayuga [De07]: While NEXT buffers an element from the first stream and waits for the

284 Felix Dreissig, Niko Pollner



Data Center Infrastructure Monitoring with Trident 5

next one from the other stream, CORRELATE buffers the first element from either stream
until an element is received on the respective other one. Upon its arrival, a Composite
Record consisting of both elements is emitted. If yet another message from the first stream
is received before one from the second stream, the new message replaces the buffered
one. Another way to describe the CORRELATE operator is to view it as JOIN between
count-based windows of size 1, which lose their content as soon as it becomes part of a
Composite Record.

Primary use case for the CORRELATE operator is the combination of measurement data
from various origins and of various types. In an ideal setup, all measurements would be
taken simultaneously, making correlation rather simple and the derived metrics very exact.
In practice, however, the frequency and exact moments of measurements are outside the
control of the processing system. In contrast to windowed JOINs, CORRELATE ensures
that every input element is used in at most one output element. With windows, a new result
would instead be generated for every input message. Especially when combining lots of
streams with different and possibly irregular message frequencies, this would weaken the
significance of resulting metrics.

Correlations between more than two streams may be performed as well. In that case, the
operator buffers elements from multiple streams until at least one element has been received
per stream. Note that while the explanation refers to “streams”, Trident’s standard API
does not support operations with multiple input streams. Therefore, the following uses
of CORRELATE expects all input elements to be in the same stream. Which elements to
perform correlation on must be specified as parameter of the operator in that case.

3.2.3 Example Query

We now discuss usage of the operators for an example in data center infrastructure mon-
itoring, the calculation of the Power Usage Effectiveness (PUE) value. Despite several
criticisms, it is still the prevalent metric for a data center’s energy efficiency and is defined
as follows:

PUE =
Total facility power
IT equipment power

Total facility power is usually higher than IT equipment power because of infrastructural
overheads such as cooling and power distribution. Thus, the ideal PUE value of 1.0 is
merely theoretic.

An implementation using our stream operators is depicted in Fig. 2. The CORRELATE
operator combines the measurements required to calculate total facility power, in this case
IT equipment power and one value from the main power distribution. The former consists
of the power values from several sub-distributions, which are all part of the correlation. In
the next step, their sum is calculated with the ADD operator. Afterwards, the facility power
is divided through that sum to calculate the PUE metric.

A Data Center Infrastructure Monitoring Platform Based on Storm and Trident 285



6 Felix Dreissig

Measurements CORRELATE ADD DIVIDE Metric

Fig. 2: Operator Graph for the PUE Calculation Query

4 Implementation

As mentioned previously, the platform has been implemented using Storm and Trident.
Storm was selected since it is well-established, available as open-source software and
enables scalability through its distributed nature. At the time of the implementation, the
current Storm version was 0.10. It lacked recent features such as built-in windows and
stateful Bolts, which made Trident’s state management capabilities appear very attractive.
Other features like the built-in operators and exactly-once semantics also played a significant
role in the decision for Trident. All our Trident code is designed for “opaque-transactional”
properties [St].

4.1 Operators

While the implementation of mapping operators and filters in Trident was straight-forward,
CORRELATE and windows provided bigger challenges. Support for filters is readily
provided through a base class, with the filter condition being specified for individual
implementations. Mappings correspond to “Functions” in Trident, another base class where
only the method generating the mapping result is to be implemented.

CORRELATE and windows have to keep an internal buffer of messages for future out-
put. However, Trident’s built-in stateful operations do not support operations which keep
state and emit elements at the same time. Therefore, we had to use regular operations and
manually perform state management. Nevertheless, our state implementation adopts Tri-
dent’s abstractions or at least follows similar practices. It stores data in the existing Apache
ZooKeeper cluster already used by Storm, but does not use ZooKeeper’s coordination
features.

4.1.1 State

The ZooKeeper State class implements Trident’s State interface. When a state commit
begins, a new ZooKeeper transaction is created and stored together with the specified
Trident transaction ID in memory. Keeping that information locally is feasible, as only one
State object should be used per Trident micro-batch. Once the actual commit happens, that
ZooKeeper transaction gets executed. Between commit begin and finish, storage instructions
for arbitrary data can be added to the transaction. The implementation takes care of saving
two versions of data for “opaque-transactional” properties. This is achieved by always
storing two versions of the data to ZooKeeper together with a Trident transaction ID.

Reads from the ZooKeeper State happen outside of commits, but also require a Trident
transaction ID to be specified. The recent stored version of the requested data is returned

286 Felix Dreissig, Niko Pollner



Data Center Infrastructure Monitoring with Trident 7

if that transaction ID is greater than the one stored with the data; otherwise, the previous
version is returned. This ensures that only confirmed state, which cannot be overwritten
anymore, is ever returned from a read.

4.1.2 CORRELATE

The CORRELATE operator does not edit existing messages, but uses them to emit new
Composite Records. The only Trident base operation supporting such behavior is the
Aggregator interface. As the name suggests, it is actually designed for aggregations, but
since it can emit arbitrary elements, it really is the most flexible kind of Trident operation.

Each CORRELATE instance has its own ZooKeeper State, where every new micro-batch
marks the begin of a new State commit. The batch’s single elements are added to an in-
memory buffer if they are part of the correlation. At the end of the batch, elements missing
for the correlation are retrieved from the State. At this step, it is strictly necessary that reads
only return confirmed data.

When all relevant records are available locally, it is checked whether they contain records
for all required types of elements. If that is the case, a Composite Record is subsequently
created and emitted and the used individual elements are deleted from the State. Otherwise,
those elements that were previously only kept in memory get written to the ZooKeeper
State.

Currently, updates are committed to the ZooKeeper State at the end of a micro-batch.
Trident’s built-in stateful operations actually perform commits asynchronously to processing.
Ideally, our custom state updates would be triggered by these commit commands as well.
However, receiving the commands is not trivially possible and requires a deep understanding
of Trident’s undocumented internals. It would also require the ZooKeeper State to be
adjusted to support multiple concurrent transactions.

4.2 Sinks

The Graphite time-series event store serves as proof of concept sink in our implementation.
We implemented a special Trident operation, which stores selected measurement data and
processing results to Graphite. Other sinks could be connected in a similar fashion.

For graphing of the time-series values, Grafana is used. It allows to display data from dif-
ferent sources, including Graphite, in a web frontend. Multiple dashboards, each containing
an arrangement of graphs, are defined. An example Grafana dashboard is shown in Fig. 3.

4.3 Evaluation

The implementation has shown that it is generally feasible to build a monitoring platform
on top of a stream processing system and the concept of collectors, processor and sinks.

A Data Center Infrastructure Monitoring Platform Based on Storm and Trident 287



8 Felix Dreissig

Fig. 3: Excerpt of the Grafana Dashboard for PUE Values (Details about the specific data center
obliterated)

Results, even from reasonably complex queries such as PUE calculation, are available in
real-time. While the example operator graph from Fig. 2 is rather simple, the operator
graphs can get very complex even for mildly more complex use cases. This a downside of
the elementary, generic operator model.

On the other hand, the platform’s usage can easily be expanded to further use cases from
data center infrastructure monitoring or even other domains of monitoring because of the
generic operators and common data schemas. Even if only the Grafana sink has been
implemented as proof of concept, adding further sinks such as an alerting system is straight-
forward. Therefore, the goal of supporting different areas of monitoring is achieved as
well.

One design decision that has proved particularly useful is the incorporation of Kafka as
queue for the case of Storm failures. During development, it prevented several data losses
due to programming errors. After bugfixing, the data could be successfully reprocessed
on the then error-free code. The distributed nature of Kafka and Storm also means high
scalability of the platform’s core components, as both systems can be scaled to a large
number of cluster nodes.

However, limitations of Trident’s persistent state capabilities have been revealed while
implementing stateful operators such as windows or the CORRELATE operator. The current
operator implementations work around these limitations, but are not suitable for large-scale
production usage. Trident’s support for exactly-once processing is also rather limited on
closer examination, as one still has to take care of idempotent state updates and a similar
effect could thus be achieved with plain Storm’s at-least-once guarantees as well.

288 Felix Dreissig, Niko Pollner



Data Center Infrastructure Monitoring with Trident 9

5 Related Works

Several authors propose monitoring systems with architectures similar to the structure
of collectors, processor and sinks, but without the notion of stream processing [BF15;
Ka13]. In [Si13], the stream-based BlockMon network monitoring system is extended by
distributed processing capabilities and its performance is compared to Storm and the S4
stream processing system.

GEMINI2 [BKB11], a monitoring platform for computing grids, is based on the Esper
stream processing system. Rather than using a central processor like our system, par-
tial queries are performed on hosts closer to the monitored system and their results are
subsequently combined to the complete result.

Smit et al. [SSL13] present MISURE, a stream-based platform very similar to the one
introduced in this work: It is also based on Storm, can incorporate data from various
sources and makes results available to different consumers, including a time-series database.
MISURE’s primary focus is unified processing of results from the monitoring systems
of different, possibly geographically distant, cloud computing providers. Besides this
difference in the area of application, MISURE does not use Trident, but plain Storm 0.60.

Only a few stream-based monitoring systems are known to be used in the IT industry.
Volta [Re15], a cloud monitoring platform for systems from the whole application stack, has
been developed at Symantec using Storm, Kafka, and Grafana. Librato is a stream-based
monitoring software as a service. It started out using Storm as central processor, but recently
switched to a custom system [Je15].

6 Conclusion and Outlook

This work showed that monitoring is not only a common use case example in the data
streaming literature, but data stream processing systems can actually be utilized for practical
use cases in data center infrastructure monitoring.

The architecture for a monitoring platform based on Storm and Trident has been developed
as well as an operator model. The subsequent implementation revealed that while Trident
promises support for persistent state, its API has shortcomings for stateful operators.
Another contribution of the work is the CORRELATE operator, which combines elements
from multiple streams with unique semantics.

As a next step, Trident should be replaced with a stream processing system that is better
suited for the requirements of our operator model. An obvious choice would be Storm 1.0
with its support for persistent state and windows. Another option which we are currently
exploring is Apache Flink (formerly Stratosphere [Al14]), which on top of those features
also provides built-in support for application time.

With regard to more applications of the platform, additional data sinks are required. After-
wards, the platform may be expanded towards other monitoring domains such as individual
hosts and network infrastructure.

A Data Center Infrastructure Monitoring Platform Based on Storm and Trident 289



10 Felix Dreissig

References

[Al14] Alexandrov, A. et al.: The Stratosphere platform for big data analytics, The
VLDB Journal 23/6, pp. 939–964, 2014.

[Ba02] Babcock, B. et al.: Models and Issues in Data Stream Systems. In: Proceed-
ings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, ACM, Madison, WI, pp. 1–16, 2002.

[BF15] Bauer, D.; Feridun, M.: A Scalable Lightweight Performance Monitoring Tool
for Storage Clusters. In: 2015 IFIP/IEEE International Symposium on Integrated
Network Management, IEEE, Ottawa, ON, pp. 1008–1013, 2015.

[BKB11] Balis, B.; Kowalewski, B.; Bubak, M.: Real-time Grid monitoring based on com-
plex event processing, Future Generation Computer Systems 27/8, pp. 1103–
1112, 2011.

[Bo10] Botan, I. et al.: SECRET: A Model for Analysis of the Execution Semantics
of Stream Processing Systems, Proceedings of the VLDB Endowment 3/1,
pp. 232–243, Sept. 2010.

[De07] Demers, A. et al.: Cayuga: A General Purpose Event Monitoring System. In:
Third Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, pp. 412–422, 2007.

[Je15] Jenkins, R.: SuperChief: From Apache Storm to In-House Distributed Stream
Processing, Librato Blog/, Sept. 24, 2015, URL: http://blog.librato.com/

posts/superchief, visited on: 2016-10-20.
[Ka13] Kai, L.; Weiqin, T.; Liping, Z.; Chao, H.: SCM: A Design and Implementation

of Monitoring System for CloudStack. In: 2013 International Conference on
Cloud and Service Computing, IEEE, Beijing, pp. 146–151, 2013.

[Re15] Renganarayana, L.: Volta: Logging, Metrics, and Monitoring as a Service,
Talk recording and slides, Jan. 7, 2015, URL: http://www.slideshare.net/

LakshminarayananReng / volta - logging - metrics - and - monitoring - as - a -

service, visited on: 2016-10-20.
[Si13] Simoncelli, D.; Dusi, M.; Gringoli, F.; Niccolini, S.: Stream-monitoring with

Blockmon: convergence of network measurements and data analytics platforms,
ACM SIGCOMM Computer Communication Review 43/2, pp. 29–36, Apr.
2013.

[SSL13] Smit, M.; Simmons, B.; Litoiu, M.: Distributed, application-level monitoring
for heterogeneous clouds using stream processing, Future Generation Computer
Systems 29/8, pp. 2103–2114, 2013.

[St] Storm Project: Verison 0.10.0 Documentation, Apache Software Foundaton,
chap. Trident State, URL: https://storm.apache.org/releases/0.10.0/Trident-

state.html, visited on: 2016-10-19.
[To14] Toshniwal, A. et al.: Storm @Twitter. In: Proceedings of the 2014 ACM SIG-

MOD International Conference on Management of Data, ACM, Snowbird, UT,
pp. 147–156, 2014.

290 Felix Dreissig, Niko Pollner

http://blog.librato.com/posts/superchief
http://blog.librato.com/posts/superchief
http://www.slideshare.net/LakshminarayananReng/volta-logging-metrics-and-monitoring-as-a-service
http://www.slideshare.net/LakshminarayananReng/volta-logging-metrics-and-monitoring-as-a-service
http://www.slideshare.net/LakshminarayananReng/volta-logging-metrics-and-monitoring-as-a-service
https://storm.apache.org/releases/0.10.0/Trident-state.html
https://storm.apache.org/releases/0.10.0/Trident-state.html

