. S e
-

A Description of the

Programming Language

MASCOT

SOFTWARE SCIENCES




A Description of the
Programming Language
MASCOT

GRUPPE

¥ b

Reference No: <22/1132

Date: ~ l6th February 1976

This is a first Draft Specification.
Inevitably there will be detail changes
during the development of the first
translator and its integration into the
MASCOT System.

Software Sciences Limited
Abbey House, Farnborough Road, Farnborough, Hampshire
Telephone: Farnborough 44321

Telex: 858228. Cables: Softwares Farnborough Hampshire




Preface

MORAL is a programming language designed to integrate
with the MASCOT System. The name stands for 'MASCOT-
oriented Reliable Application's Language'.

The language was designed by the author during the
period November 1975 to January 1976 under Contract
for the Royal Radar Establishment at Malvern in England.

Two influences have had a pronouned effect upon the
language. Because it is designed specifically to
support the development of real-time Systems using
MASCOT, MORAL contains no mechanism for communication
with any environment other than that of a MASCOT
Activity. Secondly, MORAL is designed specifically

to be implemented initially via translation into

CORAL 66 and this has constrained the language in a
number of ways which may seem surprising in the context
of current language design practice.

H.F.Harte
Software Sciences Ltd
February 1976.




NN
.

CONTENTS

Introduction
The MORAL Language
Data
2.1.1 Simple Data Types
2.1.2 Arrays
2.1.3 References
2.1.4 Constant Variables
2.1.5 Structured Data
Declaring Variables
Constant Values
Usertype Declarations
Groups
Expressions
2.6.1 Primaries
2.6.1.1 vVariables
2.6.1.2 Values
2.6.1.3 Other Primaries
2.6.2 Operations
2.6.3 Conditional Expressions
Conditions
Statements
2.8.1 Blocks
2.8.2 Assignmentstatements
2.8.3 Conditionalstatements
2.8.4 Loopstatements
2.8.5 Casestatements
2.8.6 Procedurestatements
2.8.7 Dummystatement
2.8.8 Labels
2.8.9 Jumps
2.8.10 Structure-related Jumps
2.8.11 Mascotstatements




2.9 Procedures
2.10 Comments
2.11 Macros

3. Complete Syntax in Alphabetical Order




INTRODUCTION

This description takes the form of a conventional
syntax accompanied by prose explanations of the
semantics of each construction.

The notation adopted is basically that used in
the official definition of CORAL 66. Class names
are written as single words, beginning with a

capital letter but otherwise in lower case.

The classname being defined is followed by an equals
sign and then one or more alternative forms in which
the class can be written. Where alternatives are
separated by explanatory text and/or other rules the
classname being defined is repeated for subsequent
alternatives.

Each alternative of every rule is numbered at the
right in the form R.A where R is the rule-number and
A the alternative-number. For a rule with only one

alternative only the rule-number is used.

Following the main description, Section 3 contains
the collected syntax rules in alphabetical order
with their rule number to facilitate finding them in
the main text.




2.1
2.1.1

THE MORAL LANGUAGE

Data

Simple Data Types

In MORAL, information is represented and manipulated
in the form of the wvalues taken by data variables of
many types. The basic types from which all other
types are derived are the Simpletypes

Simpletype = 'INTEGER' 1.1
An 'INTEGER'variable takes values which are the
positive and negative whole numbers within some range

determined by the size and form of a machine word in

the execution environment.

Simpletype = 'INTEGER' (Range) 1.2

An 'INTEGER' (Range) variable takes values within

its explicitly specified range

Range = Bound 'TO' Bound
Bound : Bound
Bound = Integerconstant 3

The use of a colon is purely a lexical alternative

in a range. The value of the second Bound must be
greater than or equal to the value of the first Bound.
Both must lie within the range of a normal 'INTEGER'
variable. |

Simpletype = ‘'FIXED' (Size, Fractionbits)
1.3




A ‘FIXED' (Size, Fractionbits) Variable takes

values which are representable as a fixed-point
binary number within a total of 'Size' bits including
sign.'Fractionbits' gives the number of bits

of the representation, counting from the least
significant end, which are to be regarded as falling

after the binary point.
Size = Integerconstant 4

Size must be positive and not greater than the

number of bits available in an execution environment word.
Fractionbits = Integerconstant 5

Fractionbits may be positive or negative. Where the
apparent position of the binary point falls outside the
stored representation of the value, zeros are assumed to
occupy the positions between the point and the stored
portion of the number (except in the case of positions
at the most significant end where the virtual bits are

assumed to be such as to preserve the sign.)
Simpletype = 'FLOATING' 1.4

A 'FLOATING' Variable takes values which are those

provided by the single-precision floating-point

facilities within the execution environment.
Simpletype = 'BYTE' 1.5

A 'BYTE' Variable takes values which are the positive

integer interpretations of the bit-patterns comprising
the character set of the execution environment.




Simpletype = ‘'STATUS' (Identifierlist) 1.6

A 'STATUS' (Identifierlist) Variable takes values

as listed in the Identifierlist. ©No numerical
interpretation is implied although the order of the
Identifiers is significant in defining the relationships
of lessthan and greaterthan.

example: A 'STATUS' (RED, REDANDAMBER, GREEN,
AMBER) takesg the four values RED, REDANDAMBER, .
GREEN and AMBER.

" note: A status value such as RED only has a
meaning in a context which defines a status
type including RED as one of its values. The
same identifier may be used in several Status
types without confusion.

The same identifier may not be used to declare

a Variable of a Status type including itself among
its values.

Simpletype = Usertype 1.7

Syntactically a Usertype is also treated as a simple..
type. A Usertype is a type which has been given a
specific user-defined name in a type definition
(Typedec). It is written in quotes as for a built-in
type.

Usertype = 'Identifier' 6

A Usertype Variable takes values appropriate to its
definition.




Arrays

Arraytype = 'ARRAY' (Range) Simpletype 7.1
'ARRAY' (Range,Range)Simpletype 7.2

An Arraytype Variable is a conventional one or two-
dimensional array of Simpletype Variables and its value

is the composite set of the values of its Simpletype
elements. Each subscript range is as defined for a ranged

—integer type.

Arraytypes and Simpletypes are together classified as

Directtypes.
Directtypes = Arraytype
Simpletype 8.2
References
Referencetype = 'REF' Directype 9.1

A Referencetype Variable takes values which are references
to variables of the specified Directtype.

Referencetypes and Directtypes are together classified

as Assignabletypes.

Assignabletype = Referencetype 10.1
Directtype 10.2

Constant Variables

A Constanttype Variable may have a value of some
specified Assignabletype, but it may not have a new

value assigned to it. It remains constant throughout
its existence.




Constanttype = 'CONST' Assignabletype 11

References to Constanttype Variables are also

describable.
Referencetype = 'REF' 'CONST' Directtype 9.2

The limitation to Directtype in this last case is so
that types may always be described fairly briefly. If
the effect of a " 'REF' 'CONST' 'REF' Sometype" is
required this can be achieved by introducing a named
Usertype defined to be 'REF' Sometype.

Constanttypes and Assignabletypes are together classified
as Declarabletypes.

Declarabletype = Constanttype 12.1
Assignabletypes 12.2

Structured Data

Compound data types whose values are aggregates of field
values are provided in MORAL in the form of Group data
types. These are described in Section 2.5.

Declaring Variables

A Variable is introduced into a program by the appearance
of a Datadec.

Datadec

il

Declarabletype Kpidlist 13

Kpidlist = Identifier Keyoption Presetoption 14.1
Identifier Keyoption Presetoption,Kpidlist
14.2




The meaning of Keyoption when not empty is explained
in Section 2.6.1.1

Each identifier which appears in the Kpidlist is the
name by which a Variable of the specified Declarabletype
is to be known. The Variable exists and may be referred
to only within the Block (rule 68) in which its
declaration occurs. The same identifier may not be

used for more than one Variable within the same Decs
(rule 69). Where the same identifier is used to

name a further Variable declared within an inner Block
then occurrences of the identifier are taken to refer to
that further variable within the inner Block.

The Presetoption is used to give a variable an initial

value and takes the form

Presetoption = := Presetunit 15.1
Empty 15.2

In the case of a declaration of a Simpletype Variable
the Presetunit must be a single constant of the correct type.

Presetunit = Constant 16.1

For declarations of compound data variables (arrays and

Usertypes which have been defined as Groups) the Preset-
unit must, if present, supply the correct number and type
of constants corresponding to the basic field and element
variables of the compound. However, where it is inappropriatef
or impossible to supply a particular field with a preset

value the corresponding constant may be omitted.

Presetunit = (Presetsequence) 16.2
Empty 16.3




2.3

Presetsequence = Presetunit 17.1
Presetunit, Presetsequence 17.2

Constant Values

The forms of a Constant Value as they may appear in a
Presetoption are the following ‘

Constant = Addoperator Unsignedconstant 18.1
Unsignedconstant 18.2

Numeric constants may be signed

Addoperator = + - 19.1
~ : 19.2
Unsignedconstant = Number 20.1
Identifier 20.2

In the case of an Identifier, this must be one which
has already been declared to stand for a constant
variable of the required type and to have been given a
preset value. Syntactically a status-value is also

included in this case.

Number = Real 21.1
Integer 21.2
Real = Digitlist. Digitlist 22.1
Digitlist10 Signedinteger 22.2
Digitlist. Digitlistlo Signedinteger22.3
lOSignedinteger 22.4
Signedinteger = Addoperator Integer 23.1

Integer 23.2




Integer = Digitlist 24

Digitlist = Digit 25.1
Digit Digitlist 25.2
Digit = 0/1/2/3/4/5/6/7/8/9 26

For 'BYTE' Constants either the intecer form may be
used (non-negative) or a character form. The character

form also extends as a shorthand for arrays of Bytes

Constant = String 18.3
String = "Stringitemlist" 27
Stringitemlist = Stringitem Stringitemlist 28.1
Stringitem 28.2
Stringitem = Anycharacterotherthanquotationmarks
"en 29.1

A pair of quotation symbols are used to stand for a single
quotation symbol within a string. A string is regarded
as equivalent to one constant value for each character
within it.
One other form of constant is available.

Constant = 'NIL' 18.4
'NIL' can be used for any Referencetype. A Reference
variable with this value refers to no target variable and

may be regarded as being 'zero'.

Usertype Declarations

A Usertype is introduced by a Typedec.

Typedec = 'TYPE' Usertype = Typedefiner 30




Typedefiner = Declarabletype 31.1
Proctype 31.2
Groupdefinition 31.3

For Proctype see 2.9 . We can now describe the

form of a Groupdefinition.

GrouEs

Groupdefinition = Denseoption 'GROUP' Fields 'ENDGROUP'
32

A Group-type is defined in terms of its Fields. The
Denseoption is a qualification which relates to the
way in which the individual Fields are mapped onto the

storage used in the execution environment.

Denseoption ='DENSE' 33.1
Empty 33.2

A description of the storage layout for a 'DENSE' Group
is a gquestion of implementation and falls outside the

scope of the present document.

' The Fields of a Group are defined in the same way that

variables are declared with certain additional features.

Fields = Fieldsunit ; Fields 34.1
Fieldsunit _ 34.2
Fieldsunit = Fielddec 35.1
Lockedseguence 35.2

A Lockedsequence defines fields which may only be
selected from variables of this grouptype if an
acceptable key has been associated with the wvariable.




Lockedsequence = Lockedset Lockedsequence 36.1
'UNLOCK' 36.2

Lockedset = 'LOCK' Keys Readonlyoption
Fieldsequence 37

Each lockedset specifies a number of keys which may be
used to give access to the Fieldsequence contained within it.

Keys = Identifierlist 38.1
Empty 38.2
Identifierlist = Identifier 39.1

Identifier, Identifierlist 39.2

Each of these identifiers denotes a key which will
give full access to the Fieldsequence of the Lockedset.
Keys may also be defined which give Read-only access

Readonlyoption = 'READONLY' Identifierlist 40.1
'READONLY' 'OPEN' 40.2
Empty ‘ 40.3

The use of 'OPEN' specifies that no key is required to
Read the fields of the Fieldsequence.

Fieldsequence = Fielddec 41.1
‘ Fielddec ; Fieldsequence 41.2

A Fieldsequence is a series of individual Fielddecs.
A Fielddec is either the declaration of a single field
variable or may define a set of alternative layouts.

Fielddec = Datadec 42.1

Proceduredec 42.2

Procedures may be defined as if they were fields of

the grouptype.




Fieldec = Casedec 42.3
This is the form for alternative layouts.

Casedec = 'CASE' Identifier Casedecwhenset
"ENDCASE' 43

The identifier must name a field variable of either
'INTEGER', 'INTEGER' (Range) or 'STATUS' (identifierlist)t
type which has already been declared as part of this
Groupdefinition (and not within a separate arm of an
enclosing Casedec). The following field structure

is then defined according to the value of the nominated
field wvariable.

Casedecwhenset = Casedecother 44.1
Casedecwhen 44.2
Casedecwhen Casedecwhenset 44.3

Each Casedecwhen gives the fieldsequence corresponding to
certain of the values which may be taken by the
controlling field.

Casedecwhen = '"WHEN' Cases : Fieldsequence 45
Cases = Caseunit 46.1
Caseunit, Cases 46.2
Caseunit = Constant 47.1
Constant 'TO' Constant 47.2

The constant must correspond to the type of the controlling
field variable.

The final arm of the casedec may take the form

Casedecother = 'WHEN' 'OTHER' : Fieldsequence 48




This specifies the fieldsequence which is to

correspond to all the possible values of the
controlling field variable which have not already

been used in a case-arm.

The values specified for different arms must not
have any common values.

2.6 Expressions

An expression is the construction by which new values
may be created through the application of operators
upon existing wvalues.

2.6.1 Primaries
2.6.1.1 Variables
A Primary is the basic form of operand

Primary = Variable 49.1

The most important Primary is the use of a declared
Variable

Variable = Identifier 50.1

Syntactically this embraces two cases:- Direct access
by name to a Variable's current value or in a reference
context to the name itself and invocation of a procedure

which requires no parameter and returns a value;
Variable = Variable. Identifier 50.2

This form denotes selection of a field-variable

'Identifier' from a Variable of a Group type. It is

subject to restriction in the case of fields which have

been defined within Locked sets. For such a case the Variable




2.6.1.2.

from which the field is being selected must be
associated with an acceptable Xey in the context

of use of the selected field. Association of a key
with a variable is established by the appearance of ¢
the key-identifier in a Keyoption in the Declaration
of the variable (or in the case of a parameter of a

procedure in the Parameter Specification).

Keyoption =(Identifier) 51.1
Empty 51.2

The third form of a Variable represents either access to
an element of an array or a call to a procedure requiring

parameters which delivers a result.
Variable = Variable (Parameterpack) 50.3

In the case of an Array the Parameterpack must supply the
appropriate integer-valued Subscripts, both in number and
range. In the case of a procedure the Parameter pack
must supply values matching the procedure. The final
form of a Variable represents access via a reference
variable to the further variable to which it currently
refers.

Variable = [Variable) 50.4
The Variable must be of a Referencetype.
Values

The second form of Primary is direct reference to a
value

Primary = Value 49,2




Value = Number 52.1
String 52.2
- INIL? 52.3

These cases are described in Section 2.3
Value = Identifier 52.4

The identifier here must be a status value and can
only be used in a situation where the statustype
involved is defined by the context in which the wvalue
appears. The contexts which satisfy this criterion
are the right-hand sides of assignment statements and
comparisons and components of a Parameterpack.

Value = Display 52.5

This final form of value applies to compound values
of either array or group type. There are two forms,
each with two variations.

Display = 'PRESET' (Presetsequence) 53.1

A 'PRESET' Display must contain only values which are
constant and is analagous to the presetting of a variable
when it is declared. This form may only appear in a
context which defines its type. A second preset form

is available where the context does not define its type:-

Display = 'PRESET' Assignabletype : (Presetsequence)
53.2

There are also two forms of display in which the elements
are dynamically evaluated each time the display is used.

Again the second of these specifies its type explicitly.




2.6.1.3

Display = 'EVAL' (Parameterpack) 53.3
'EVAL' Assignabletype :(Parameterpack)

53.4
Parameterpack = Expression 54.1
Expression, Parameterpack 54.2
Other Primaries
There are three further types of Primary
A nested expression:-
Primary = (Expression) 49,3
A typed expression :-
Primary = Assignabletype :(Expression) 49.4

Access to a section of the Binary representation of
a Variable:-

Primary = 'BITS' (Integerconstant, Integerconstant)

'OF' Variable 49.5

The first Integerconstant specifies the number of bits
to be accessed; the second specifies the bit-position
of the least significant of the bits accessed taking
zero as the position of the least-significant bit of

a variable.

The value involved is the positive integer interpretation

of the bits accessed.




2.6,2 Operations

Simpleexpression = Term 55.1
Addoperator Term 55.2

Simpleexpression Addoperator Term
55.3
Term = Factor , 56.1
Term Multoperator Factor 56.2
Factor = Logicalterm 57.1
Factor 'DIFFER' Logicalterm 57.2
Logicalterm = Logicalfactor 58.1

Logicalterm 'UNION' Logicalfactor

58.2
Logicalfactor = Primary 59.1

Logicalfactor 'MASK' Primary 59.2

The operators 'DIFFER', 'UNION' and 'MASK' are the
logical operators Exclusive-or, Inclusive-or and
Logical-and.

Multoperator = * 60.1
/ 60.2

All the above operators apply to numeric operands
of types 'INTEGER', 'INTEGER' (Range), 'FIXED' (Size,

Fractionbits)and 'BYTE'. Addoperator and Multoperators
also apply to 'FLOATING' operands.

Operands of Addoperators are always converted to the

same type before the Addoperator is applied. The type
to which they are converted is either a) the type of

the left operand if the context is weak or b) the

type required by the context if the context is strong.




An Expression is in a strong context if it is in
the right hand side of an assignment or comparison
or if it is in a Parameterpack or if it is in a

statement form requiring an Integer value.

'BYTE' operands are always converted to 'INTEGER'

as a first step before further conversion or before

direct application of an operator. This is the only
conversion ever applied for operands of the Logical

operators.

Usertypes which have been defined to be acceptable

- operand types are convertible to their defined base-type

for the purpose of operations. However, only one

derived Usertype is allowed among the Terms of a

Simpleexpression.
(For example:- If we have 'TYPE' 'AGE' = 'INTEGER' and
'TYPE' 'SIZE' = 'INTEGER' and we declare 'AGE' Al,

A2; 'SIZE' S1,S2; then Al+A2, Al+10, S1+S82, S1+8 all
are legal but Al+S1l is illegal. Notice that Al+S1*1
is legal since the result of an operation is always
taken as the base type).

Conditional Expressions

Expression = Simpleexpression 61.1
'IF'Condition 'THEN' Expression 'ELSE'

Expression 'Fl' 61.2

Conditions
Condition = Subcondition 62.1.
Condition 'OR' Subcondition 62.2

Conditionsare evaluated only as far as the first true
Subcondition if any.




63.1

Conditionelement
63.2

Subcondition = Conditionelement
Subcondition 'AND'

Subconditions are evaluated only as far as the first false

conditionelement if any.

Conditionelement = Comparison 64.1
64.2

Variable

A Variable is a sufficient conditionelement only if it is
a statustype including TRUE among its status values.

Expression Comparator Expression

Comparison =
65

The result of the second expression must be convertible

into the type of the first expression.

Comparator = <t<&%\>=\>\<> 66

Comparisons are permissable

<> means not-equal-to.
However only = and

between Expressions of any type.
<> may be used between Expressions of types other than

the numeric types and the status types.

2.8 Statements
2.8.1. Blocks

Statement = Block 67.1

A statement may be a nested Block




Block = 'BEGIN' Decs Statementsequence 'END' 68

Decs = Dec ; Decs 69.1
Empty 69.2
Dec = Datadec 70.1
Proceduredec 70.2
Typedec 70.3
Statementsequence = Statement 71.1

Statement ; Statementsequence
71.2

2.8.2 Assignmentstatements

Statement = Assignementstatement 67.2

The form of an Assignmentstatement is conventional
Assignmentstatement = Variable := Expression 72

The Expression must result 1n a value of a type convertible
into that of the Variable.

2.8.3. Conditionalstatements
Statement = Conditionalstatement 67.3
Conditonalstatement = 'IF' Condition 'THEN'
Statementsequence Elseoption
'FI? 73
Elseoption = 'ELSE' Statementsequence 74.1
Empty 74.2
2.8.4. Loopstatements
Statement= Loopstatement y 67.4

Loopstatement = Controlpart Body Tail 75




The Body of a Loopstatement is executed repeatedly
under the control of the Controlpart. The Tail is
executed once, following the last execution of
the body according to the controlpart. TIf an
Escapestatement is obeyed inside the Body the

Loopstatement terminates immediately without execution
of the Tail.

Body = 'DO' Statementsequence 76
The forms of the Controlpart are described below:-
Controlpart = 'FOR' Controlspec 77.1
The controlspec defines a control-variable and set of
values which it will take in turn, the Body being
executed in the context of each of these values. Within
the Body the Control-variable is available as though it
had been declared to be'CONST' preset to the present value.

i.e. it may not be assigned to.

Four forms of Controlspec are available

Controlspec = Rangetype Identifier 78.1
Rangetype = 'INTEGER' (Range) 79.1
'STATUS' (Identifierlist) 79.2
Usertype 79.3

The identifier stands for the Control-variable which
takes the values in the range of the Rangetype. The
Usertype here must be defined to be of a suitable Rangetype.

Controlspec = Declarabletype Identifier 'FROM' Primary
78.2




In this form of Controlspec the Primary must be of

the

type 'ARRAY '(....) Declarabletype. The Controlvariable

is successively given the values of the elements of

the array.

{

Controlspec = Pointertype Identifier 'OVER' Primary

Pointertype = Referencetype

|

Usertype

78.3
80.1
80.2

This form is similar but now the Control-variable is

of a referencetype (or Usertype defined as such)
and successively takes values which refer to the
elements of the array, which must be of a suitable

Controlspec = Identifier Fromoption Byoption

This form is the conventional loop control with an
'INTEGER' Controlvariable stepping through the set
values specified by the From, By and Tooptions.

Fromoption ='FROM' Expression
Empty

type.

Tooption

78.4

of

8l.1
81.2

The Expression must provide an Integer starting value.

If Empty the value zero is used.

Byoption = 'BY' Expression
Empty

82.1
82.2

The expression must provide an Integer step-value by which

the control-variable is incremented at the end of each

execution of the Body.




If Empty the value 1 is used. The expression is
evaluated once only at the start of the Loopstatement
and the resulting value used thereafter.

Tooption = 'TO' Expression 83.1
Empty 83.2

The Expression must provide an Integer wvalue which
defines the endof the loop. The Expression is evaluated
once at the start of the loop. If Empty the largest
available integer value is used. The Loopstatement is
complete where the last execution of the Body is followed
by an increment which gives the control-variable a value

greater than the limit given by the Tooption.

The second form of a Controlpart is:-

Controlpart = 'WHILE' Condition 77.2

In this case the number of executions of the Body is not
specified. It will continue to be executed repeatedly
as long as the Condition is satisfied.

Controlpart = Empty 77.3

If the Controlpart is Empty the Body is executed
repeatedly. The only termination available in this
case is either an 'ESCAPE' or a direct Jdump out of the
loop. The Tail will never be executed in this form

of Loopstatement.

Tail = '"THEN' Statementsequence 'ENDLOOP' 84.1
'ENDLOOP' 84.2

The Statementsequence in the Tail is executed when the
Loopstatement terminates according to the Controlpart.




2.8.5.

Casestatements

Statement = Casestatement 67.5

Casestatement= 'CASE' Expression Whenset 'ENDCASE'
85

The whenset consists of a number of arms, one of which
will be executed according to the value of the Expression.
The Expression must result on a value of type 'INTEGER',
'"INTEGER (Range), 'BYTE' or 'STATUS' (Identifierlist)

Whenset = Lastwhen 86.1
Whenelement 86.2
Whenlement Whenset 86.3

Whenelement = 'WHEN' Cases : Statementsequence

87

Cases = Caseunit 88.1

Caseunit, Cases , 88.2
Caseunit = Constant 89.1
Constant 'TO' Constant 89.2

The Statementsequence of the Whenelement is chosen for
execution if and only if the value resulting from the
Case Expression is included within the Cases either
directly or within the range of a Constant 'TO' Constant.

Lastwhen = 'CASE' 'OTHER' : Statementsequence
90

The Last arm of a case statement may take this form.
The Staterentsequence of a Lastwhen is chosen for
execution if and only if the value resulting from the
case expression is not included within the Cases of any

Whenelement of the Casestatement.




No value may be included within the cases of

more than one Whenelement.

Procedurestatements

Statement = Procedurestatement 67.6

Procedurestatement = Variable 91

Syntactically the Parameterpack is part of the Variable.
This statement is a call to the Procedure involved.

A suitable Parameterpack to match the Procedure's
Parameterspeclist must be supplied.

Dummystatements
Statement = Dummystatement 67.7
Dummystatement = Empty 92

The execution of a Dummystatement naturally produces
no effect whatsoever.

Labels
Statement = Label : Statement 67.8
Label = Identifier 93

Any statement may be labelled provided the identifier
used does not clash with that of a variable or another
label declared within the smallest enclosing Block.

Jumgs

Statement = 'GOTO' Label 67.9




2.8.10

Execution of this statement causes immediate transfer

of control to the Statement labelled with the given
Label and occurring within an enclosing Block. Normal
scope rules apply in that identifiers within inner
Blocks supersede identifiers with the same spelling

in outer Blocks for the duration of the Block containing
them.

Structure-related Jumps

Statement = 'ANSWER' Expression 67.10

This statement may only appear within a procedure

which delivers a value. It causes immediate termination
of the execution of the Procedure with the value resulting
from the Expression being returned as the result of the
Procedure.

Statement = 'RETURN' 67.11

This statement may only appear within a Procedure which
does not return a value and it causes immediate termination
of the execution of the Procedure.

Statement = ‘REPEAT' 67.12

This Statement may only appear within the Body of a
Loopstatement and causes the execution of the current
iteration to be terminated. The Controlpart then
determines whether there are to be further iterations

in the normal way.
Statement = 'ESCAPE' 67.13
This Statement may only appear within the Body of a

Loopstatement and causes the execution of the entire
Loopstatement to be terminated without execution of the Tail.




2.8.11 Mascotstatements

Statement = Mascotstatement 67.14

A number of Statement forms are provided to make the
Mascot Primitive-operations available. For a fuller
explanation of the meaning of these operations the

Reader is referred to the Mascot System.
Mascotstatement = 'JOIN' Variable 94.1

The Variable must provide a variable of type 'CONTROLQ',
a Usertype predefined in MORAL. This statement requests
control of the Control-gqueue in question and the Activity
making the request will be suspended until Control can

be given.
Mascotstatement = 'WAIT' Variable 94,2

Again the Variable is of type 'CONTROLQ'. The Statement
causes the executing Activity to be suspended until a
'STIM' is executed by another Activity upon the same
Control-queue. The fact that a 'STIM' has occurred

is remembered, and if one has already been performed

the activity proceeds immediately and the memory of

the 'STIM' is cancelled.

'WAIT' and 'LEAVE' may only be executed by an Activity
which has control of the Control-queue in question.

Mascotstatement = 'STIM' Variable 94.3

This statement gives a 'STIM' to the Control-queue
nominated.




Mascotstatement = 'LEAVE' Variable 94.4

This statement releases control of the Control-queue.

Mascotstatement = 'DELAY' Expression 94.5

An activity executing this statement is suspended and
does not become eligible for scheduling again for. the
number of time units given by the value of the Expression.

Mascotstatement = 'JOININT' Variable 94.6
'WAITINT' Variable 94.7
'LEAVEINT'Variable 94.8
'SETTRANSFER' Primary, Variable

94.9

These four Statement forms apply to Variables of

type 'INTERRUPT', a second predefined Usertype.'JOININT'
and 'LEAVEINT' respectively request and release control
of the Interrupt-Control-gueue, and'WAITINT' requests

a transfer on the associated Interrupt-driven Device, the
Activity being suspended while this transfer occurs. A
SETTRANSFER Statement establishes the data-address
associated with the transfer. The Primary gives that
address in the form of a Referencetype value. The
Variable identifies the Interrupt Control-queue in the
normal way.

'WAITINT', °LEAVEINT" and SETTRANSFER' may only be

executed by an activity having control of the Interrupt
Control—-gqueue involved.

Mascotstatement = 'SUSPEND' Integerconstant 94.10




This statement causes the Activity executing it to

be suspended but it immediately becomes reavailable for
scheduling at the back of the Scheduler's list with
priority given by the Integerconstant.

Procedures

Proceduredec = Answerspecoption Recursivity
Prochead ; Statement 95

Answerspecoption = Answerspec 96.1
Empty 96.2

Answerspec = Referencetype 97.1
Simpletype 97.2

The Answerspec gives the type of value if any returned by
the procedure. Array and Group values cannot be returned
except by reference.

Recursivity = 'RECURSIVE' 98.1
'PROCEDURE" 98.2

Only procedures declared as 'RECURSIVE' may be called

recursively.

Prochead = Identifier 99.1
Identifier (Parameterspeclist) 99.2

The Prochead gives the name of the Procedure and declares

its formal parameters if any.

Parameterspeclist = Parametergroup 100.1
Parametergroup ; Parameterspeclist
100.2
Parametergroup = Paramtype Kidlist 101




Paramtype = Answerspec 102.1
TCONST' Answerspec 102.2

Proctype 102.3

Parameter types are restricted to these types, Proctype
is not strictly a data type but procedures as parameters
are supported.

The Parameter mechanism in MORAL is basically 'call-by
~value' although the value involved may be a reference-
value and give access to actual parameter data. It is as
though each formal parameter is assigned its value from
the actual parameter list and is thereafter an independent

variable in its own right.

In the case of 'CONST' parameters this assignment is a

dynamic presetting operation.

In a parameterspeclist one parameter of a type involving
'REF' 'ARRAY' (....) may use as its Bounds in array
subscript ranges another parameter from earlier in the
paramspeclist provided this is a 'CONST' 'INTEGER'
parameter.

In this way it is permissable to communicate the size

of an array in a parameter list.

Kidlist = Identifier Keyoption 103.1
Identifier Keyoption,Kidlist 103.2

Formal parameters may be given associated Keys in just

the same way as normal variables.




Proctype = Answerspecoption Recursivity 104.1
Answerspecoption Recursivity (Paramtype-
speclist) 104.2

A parameter of type procedure is specified in a similar
manner to the declaration of a procedure, except that

any parameters of the parameter procedure are left unnamed
and no statement is now necessary.

Paramtypespeclist = Paramtype 105.1
Co Paramtype, Paramtypespeclist
| 105.2

Comments

Two forms of €omment may be inserted into a program
text without affecting the execution of the program

in any way. "

The form:~ 'COMMENT' any text not containing semicolon ;
may be inserted anywhere where a Dec or a Statement
would be legal.

Also the form ; (Any text in which parentheses are matched)
may be inserted anywhere as an alternative to a semicolon
by itself.

Macros

The MORAL translator includes a macro processor which
processes the text before it is analysed as a MORAL text.

This is in fact a standard CORAL 66 macro-processor.

A macro definition may be written anywhere where a
declaration or statement could occur and takes one of

the forms:-




'DEFINE' Identifier String ; s
'DEFINE' Identifier (Identifierlist) String ;
A macro definition may be cancelled by the form:-

'DELETE' Identifier ;
A macro Identifier may also be redefined without
deleting it.

Between the Definition of a macro and its deletion
or redefinition occurrences of the macro identifier
will be expanded into the Defined String. Actual
parameters may be any strings of characters in which
brackets are matched and any commas are protected

by brackets. The number of actual parameters must
match the number of formals.

The expanded text of a macro may contain both macro
calls and macro definitions and will be processed only
after the expansion of the basic macro has been
performed.




19)

97)

96)

7)

10)

72)

68)

76)

3)

82)

43)

48)

45)

44)

46)

85)
47)

66)
65)

Complete Syntax in Alphabetical Order

The numbers at the left are the rule numbers in the
order in which they appear in the main specification.

Addoperator

Answerspec

Answerspecoption

Arraytype

Assignabletype

Assignmentstatement

Block
Body
Bound
Byoption

Casedec
Casedecother

Casedecwhen

Casedecwhenset

Cases

Casestatement

Caseunit

Comparator

Comparison

+

Referencetype

Simpletype

Answerspec

Empty

'ARRAY' (Range) Simpletype
'ARRAY' (Range, Range) Simpletype

Referencetype
Directtype
Variable := Expression

'BEGIN' Decs Statementsequence 'END'
'DO' Statementsequence
Integerconstant

'BY' Expression

Empty

'CASE' Identifier Casedecwhenset
'ENDCASE'

'WHEN' 'OTHER' : Fieldsequence

'"WHEN' Cases : Fieldsequence

Casedecother

Casedecwhen

Casedecwhen Casedecwhenset
Caseunit

Caseunit, Cases

'CASE' Expression Whenset 'ENDCASE'
Constant

Constant 'TO' Constant

=| <| >| <:i >= ‘<>

Expression Comparator Expression




62)

73)

64)

18)

11)
77)

78)

13)

70)

12)

69)

33)

26)
25)

8)

Condition

Conditionalstatement

Conditionelement

Constant

Constantype
Controlpart

Controlspec

Datadec

Dec

Declarabletype

Decs

Denseoption

Digit
Digitlist

Directtype

Subcondition

Condition 'OR' Subcondition

'IF' Condition 'THEN'

Statementsequence Elseoption'FI'

Comparison

Variable

Addoperator Unsignedconstant

Unsignedco:.stant

String

'NIL'

"CONST' Assignabletype

'FOR' Controlspec

'WHILE' Condition

Empty

Rangetype Identifier

Declarabletype Identifier 'FROM'
Primary

Pointertype Identifier 'OVER' Primary

Identifier Fromoption Byoption
Tooption

Declarabletype Kpidlist

Datadec

Proceduredec

Typedec

Constanttype

Assignabletype

Dec ; Decs

Empty

'DENSE'

Empty

0/1/2/3/4/5/6/7/8/9

Digit

Digit Digitlist

Arraytype

Simpletype




53)

92)
74)

61)

57)

42)

34)

41)

35)

5)
81)

32)

/)

39)

24)
/)

Display

Dummystatement
Elseoption

Expression

Factor

Fielddec

Fields

Fieldseqguence

Fleldsunit

Fractionbits

Fromoption

Groupdefinition

Identifier

Icdentifierlist

Integer

Integerconstant

'PRESET' (Presetsequence)
'PRESET' Assignabletype :
(Presetsequence)
'EVAL' (Parameterpack)
'EVAL' Assignabletype :

(Parametervack)
Empty
'ELSE' Statementsequence
Empty
Simpleexpression

'IF' Condition 'THEN' Expression
'ELSE' Expression

Logicalterm

Factor 'DIFFER' Locicalterm

Datadec

Proceduredec

Casedec

Fieldsunit ; Fields

Fieldsunit

Fielddec

Fielddec ; Fieldsecuence

Fielddec

Lockedseguence

Integerconstant

'FROM'Expression

Emnty

IFII

Denseoption 'GROUP' Fields 'EIDGROUP'

Letter

Identifier Letter
Identifier Digit
Identifier

Identifier, Icentifierlist
Digitlist

Addoperator Intecer
Integer

Addoperator Identifier
Identifier




51)

38)

103)

14)

93)

90)

/)

36)

37)

59)

58)

75)
94)

60)

Keyoption

Keys

Kidlist

Kpidlist

Label

Lastwhen

Letter

Lockedseqguence

Lockedset

Logicalfactor

Logicalterm

Loopstatement
Mascotstatement

Multoperator

(Identifier)

Empty

Identifierlist

Empty

Identifier Keyoption

Identifier Keyoption, Kidlist

Identifier Keyoption Presetoption

Identifier Keyoption Presetoption,

Kpidlist

Identifier

'WHEN' 'OTHER' : Statementlist

A/B/C/D/E/F/G/H/TI/T/K/L/M/N/O/P/

Q/R/S/T/U/V/W/X/Y/3

Lockedset Lockedsequence

'UNLOCK'

'LOCK' Keys Readonlyoption
Fieldsequence

Primary

Logicalfactor 'MASK' Primary

Logicalfactor

Logicalterm ‘UNION' Logicalfactor

Controlpart Body Tail

'JOIN' Variable

'WAIT' Variable

'STIM' Variable

'LEAVE' Variable

'DELAY' Expression

'JOININT' Variable

'"WAITINT' Variable

'LEAVEINT' Variable

'SETTRANSFER' Primary, Variable

'SUSPEND' Integerconstant
*

/




21)

101)
54)

100)

102)

105)

80)

15)

17)

16)

49)

95)

91)
99)

104)

Number

Parametergroup

Parameterpack

Parameterspeclist

Paramtype

Paramtypespeclist

Pointertype

Presetoption

Presetsequence

Presetunit

Primary

Proceduredec

Procedurestatement
Prochead

Proctype

Real

Integer

Paramtype Kidlist

Expression

Expression, Parameterpack
Parametergroup
Parametergroup ; Parameterspeclist
Answerspec

'CONST' Answerspec

Proctype

Paramtype

Paramtype, Paramtypespeclist
Referencetype

Usertype

:= Presetunit

Empty

Presetunit

Presetunit, Presetsedquence

Constant

(Presetsequence)

Empty

Variable

Value

(Expression)

Assignabletype (Expression)

'BITS' (Integerconstant,

Integerconstant) 'OF' Variable

Answerspecoption Recursivity
Prochead ; Statement

Variable

Identifier

Identifier (Parameterspeclist)

Answerspecoption Recursivity

Answerspecoption Recursivity

(Parameterspeclist)




2)

79)

40)

22)

98)

9)

23)

55)

1)

4)

Range

Rangetype

Readonlyoption

Real

Recursivity

Referencetype

Signedinteger

Simpleexpression

Simpletype

Size

Bound 'TO' Bound

Bound : Bound

"INTEGER' (Range)

'STATUS' (Identifierlist)
Usertype

'READONLY' Identifierlist
'READONLY' 'OPEN'

Empty

Digitlist . DigitlisthSignedinteger
Digitlist . Digitlist
DigitlisthSignedinteger
lOSlgnedlnteger

'RECURSIVE'

'"PROCEDURE"

'REF' Directtype

'REF' 'CONST' Directtype
Addoperator Integer

Integer

Term

Addoperator Term
Simpleexpression Addoperator Term
'INTEGER'

'"INTEGER' (Range)

'FIXED' (Size , Fractionbits)
"FLOATING'

'BYTE'

'STATUS' (Identifierlist)
Usertype

Integerconstant




67) Statement = Block
Assignmentstatement
Conditionalstatement
Loopstatement
Casestatement
Procedurestatement
Dummystatement
Label : Statement
'GOTO' Label
'ANSWER' Expression

'RETURN'
'REPEAT'
'ESCAPE’
Mascotstatement
71) Statementsequence = Statement
Statement ; Statementsequence
27) String = "Stringitemlist”
29) Stringitem = Character other than quotation marks
"om
28) Stringitemlist = Stringitemlist Stringitem
Empty
63) Subcondition = Conditionelement
Subcondition 'AND' Conditionelement
84) Tail = '"THEN' Statementsequence 'ENDLOOP'
'ENDLOOP!
56) Term = Factor
Term Multoperator Factor
83) Tooption = 'TO' Expression
Empty
30) Typedec = '"TYPE' Usertype = Typedefiner
31) Typedefiner = Declarabletype
Proctype

Groupdefinition




20)

6)
52)

50)

87)
86)

Unsignedconstant

Usertype
Value

Variable

Whenelement
Whenset

Number

Identifier

'Identifier’

Number

String

'NIL'

Identifier

Display

Identifier

Variable . Identifier
Variable (Parameterpack)
[variable]

'WHEN' Cases : Statementsequence
Lastwhen

Whenelement

Whenelement Whenset




SOFTWARE SCIENCES LIMITED

Abbey House

2827292 Farnborough Road

Farnborough Hampshire

Telephone: 0252 44321

Telex : 8568228

Cables: Softwares Farnborough Hampshire

London & Manchester House
Park Street

Macciesfield

Cheshire SK11 65R

Telephone Macclesfield 29241-4

Software Sciences Nederland BV,
Reguliersdwarsstraat 9
Amsterdam

NETHERLANDS

Telephone Amsterdam 235631
Telex 17029






