
Support Vector Machines in Relational Databases

Stefan R¨uping
Department of Computer Science, Universit¨at Dortmund

rueping@ls8.cs.uni-dortmund.de

Abstract: Today, most of the data in business applications is stored in relational
databases. Relational database systems are so popular, because they offer solutions
to many problems around data storage, such as efficiency, effectiveness, usability, se-
curity and multi-user support. To benefit from these advantages in Support Vector
Machine (SVM) learning, we will develop an implementation of the SVM learning
algorithm, that can be run inside a relational database system. Even if this kind of im-
plementation obviously cannot be as efficient as a standalone implementation, it will
be favorable in situations, where requirements other than efficiency for learning play
an important role.

1 Introduction

There exist many efficient implementations of Vapnik’s SVM [Vap98]1. So why would
another SVM implementation be of interest? In this paper we aim for an implementation,
that is more adapted to the needs of the user in real-world applications of knowledge
discovery.

Today, most of the data in business applications is stored in relational data-bases or in
data warehouses built on top of relational databases. On the other hand, available SVM
software is either implemented as a standalone tool in a programming language like C, or
as part of a numerical software such as Matlab.

Of course, it would be easy to export the relevant data from the database, run the SVM
software and load the results back into the database, but this approach suffers from various
drawbacks:

Usability: Learning algorithms in general cannot be applied independently. Preprocess-
ing steps have to be taken to clean and transform the data, that can be as complex as
the final learning task itself [Pyl99],[CCK�99]. The same preprocessing steps have
to be taken in order to apply the result to new examples.

Efficiency for learning: While a standalone SVM application can be expected to be much
more efficient than an SVM as a database application, the time that is necessary to
transfer the data from the database to the application cannot be neglected.

1see for examplehttp://www.kernel-machines.org/ for a list of available SVM software

799

Efficiency for prediction: The evaluation of the final decision function is relatively easy.
Calling an external application to evaluate every new example would be extremely
ineffective.

Security: Commercial database management system offer fine grained possibilities to
control, which user can access or modify which data. If the data is exported from
the database, expensive additional measures have to be taken to guarantee this level
of security.

In this paper, we approach this problem by implementing an SVM that can be run entirely
inside a database server. We do this by making use of Java Stored Procedures as the core of
the program and the use of pure SQL statements to compute intermediate results whenever
possible.

2 Support Vector Machines

The principles of SVMs and of statistical learning theory [Vap98] are well known, so we
omit an introduction of the SVM algorithm in this paper. See [Vap98] and [Bur98] for a
introduction to SVMs.

The only thing we need to know is that SVMs find a function��#� � $# 	 � based on
data�#�� ��� and that the calculation depends on the x-values only via the inner product
#�
 #	 (the results of this paper can be generalized to non-linear SVMs, where the inner
product is replaced by a kernel function%�# �� #	�).

In practical implementations of SVMs it turns out that three tricks can speed up the calcu-
lation of the SVM solution dramatically:

Working set decomposition: Osuna et. al. [OFG97] suggest to iteratively split the prob-
lem into a sequence of simpler problems by fixing most variables and optimizing
only on the rest, the so-called working set.

Shrinking: Variables that are optimal at their lower or upper bound for a certain number
of iterations are fixed at that position and not re-examined in any further iteration.

Kernel caching: The values&� �
��

	�� '	%�#	 � #��, that are needed to compute the
gradient of the target function can be computed once and be updated by& �� � &� 	
�'�	 � '	�%�#�� #	� whenever a variable changes from'	 to'�	 .

3 An SVM Implementation for Relational Databases

The only access to the examples x-values in SVMs is via the kernel function%. So, as the
most simple approach one could use any given SVM implementation and replace the call

800

of the function%�#�� #	� by the call of a function

%����� ��(� ��	���&����� ���� ��(� ��	���&�����

Unfortunately, this simple approach does not work very well. The reason for this is, that
any access to the database is far more expensive than a simple memory access. To make
the code more efficient, we need to reduce the number and size of database queries as
much as possible.

3.1 Database Kernel Calculation

There is a more efficient way to access the examples: As we do need only the value
of %�#�� #	�, there is no need to read both x and y from the database, if we can read
%�#�� #	� directly. Then, instead of�� number, only one number has to be read from the
database. This can be easily accomplished in SQL. The following SQL statement gives
the value of%:

select X.att_1 * Y.att_1 +...+ X.att_d * Y.att_d
from EXAMPLES where X.index = <i> and Y.index = <j>

To demonstrate the effect of this optimizations, we give the runtime of this version on two
data sets, one linear classification task PAT and one linear regression task REG.

Dataset Old Version New Version

PAT 23.81s 13.94s
REG 1156.26s 676.64s

3.2 Kernel Rows

The experiment in the last section shows, that there is still need for improvement. The
reason for the inefficiency of the last approach is that a lot of time in the database is spent
analyzing the query and looking up the data tables. Once the tables are found, calculating
the result is relatively easy. This means, that a very limiting factor for performance is the
number of calls to the database and not so much not the size of the data itself.

In section (2) we have seen that the kernel values are not accessed randomly, but in terms
of kernel rows. So we can optimize the database access, if we select the whole kernel row
in one query:

select <KERNEL_SELECT>, Y.index
from EXAMPLES X, EXAMPLES Y where X.index = <i>

Here the term<KERNEL SELECT> stands for the SQL term that constructs the kernel
value from the attributes, e.g.X.att 1 * Y.att 1 +...+ X.att d * Y.att d.

801

We also need to get the index ofY to make a kernel row of the result set, as the order the
results are returned in is not defined.

From the following table we can see, that this optimization reduces the runtime by about

�� to ���.

Dataset Old Version New Version

PAT 13.94s 11.96s
REG 676.64s 426.66s

3.3 Shrinking

Shrinking has a big effect on runtime, because information on shrinked examples does
not need to be updated in further iterations. The only kernel information needed in later
iterations is that of the sub-matrix of non-shrinked examples. To get only these kernel
entries, the query to select a kernel row can be adapted.

What we need to do is to adjust thefrom EXAMPLES Y part of the kernel SQL state-
ment, such that only non-shrinked examples are considered. We can create a table named
free examples that contain only the indices of non-shrinked examples. Then the ker-
nel query becomes:

select <KERNEL_SELECT>, Y.index
from EXAMPLES X, EXAMPLES Y where X.index = <i>

and Y.index in (select index from free_examples)

3.4 The Decision Function

To be useful for application in real-world databases, we do need also an efficient way to
evaluate the SVM decision function��#� �

�
���� ��'�#�
#	 � on new examples. This

can simply be done with pure SQL statements.

With the linear kernel we can make use of the linearity and write��#� �
�

���� ���'�#�

#� 	 � � �

�
���� ��'�#��
 #	 � �� $
 #	 �. So we only need to calculate the vector$

and the constant� after learning and can write

select <w_1> * X.att_1 + ... + <w_d> * X.att_d + as f
from X in TOPREDICT

to get the f-values from the examples in tableTOPREDICT.

802

4 Experiments

We used two implementations of the SVM to compare the efficiency of the database ver-
sion of the SVM to a C++ standalone version. Both SVMs used the same algorithm and
parameters. Two datasets were used in the comparison. The first data set PAT consisted
of a simple artificial classification task, the second data set REG is an artificial regression
problem.

In the case of the standalone version, also the time needed to create the input files from
the database tables was recorded. The following table shows the time needed to access the
data from the database for the standalone C++ -Version, the CPU time of the standalone
version and the total time for the standalone version. This is compared to the CPU time of
the database version:

Name Db Access C++ SVM C++ Total Db SVM Factor

Pat 0.29s 0.16s 0.45s 8.73s 19.40
Reg 6.06s 3.48s 9.54s 364.72s 38.23

The experiments show, that the database version is slower than the standalone version by
a factor of 20 to 40. If this difference is acceptable has to be evaluated with respect to the
individual application’s requirements.

5 Discussion and Further Research

In relational databases, data is typically not stored in one but in multiple relations. As the
SVM cannot deal with multi-relational data, the different tables would have to be joined
together for the SVM to access them. In the worst case, the join of two tables of size�
and� can have the size�
 �, when every row of the first table can be joined with every
row of the second table. Of course, one would like to avoid having to store this data as an
intermediate step.

Fortunately there is a trick in the case of SVMs. The important observation is, that the
inner product of two�	�-dimensional points�#� � #� � and��� � �� � can be calculated
as the sum of an�- and an�-dimensional inner product:�#� � #� �
 ��� � ��� � #�

�� 	 #�
 �� .

This mean, instead of a kernel matrix of size��
��� it suffices to compute two matrixes
of size�� and�� of the inner products and calculate the kernel values from them. In the
case of kernel caching, this trick allows for a far more efficient organization of the cache
as two independent caches.

803

5.1 Discussion

This paper proposed an implementation of a SVM on top of a relational database. Even as
this implementation obviously cannot be as efficient as a standalone implementation with
direct access to the data, considerations such as data security, platform-independence and
usability in a database-centered environment suggest that this is a significant improvement
for SVM applications in real-world domains. It has been shown, that the optimal usage of
database structures can significantly improve performance.

Acknowledgments: The financial support of the Deutsche Forschungsgemeinschaft (SFB
475, ”Reduction of Complexity for Multivariate Data Structures”) is gratefully acknowl-
edged.

Literaturverzeichnis

[Bur98] C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

[CCK�99] Pete Chapman, Julian Clinton, Thomas Khabaza, Thomas Reinartz, and R¨udiger Wirth.
The CRISP–DM Process Model. Technical report, The CRIP–DM Consortium NCR
Systems Engineering Copenhagen, DaimlerChrysler AG, Integral Solutions Ltd., and
OHRA Verzekeringen en Bank Groep B.V, March 1999. This Project (24959) is partially
funded by the European Commission under the ESPRIT Program.

[OFG97] E. Osuna, R. Freund, and F. Girosi. An Improved Training Algorithm for Support Vector
Machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors,Neural Networks
for Signal Processing VII — Proceedings of the 1997 IEEE Workshop, pages 276–285,
New York, 1997. IEEE.

[Pyl99] Dorian Pyle.Data Preparation for Data Mining. Morgan Kaufmann Publishers, 1999.

[Vap98] V. Vapnik.Statistical Learning Theory. Wiley, Chichester, GB, 1998.

804

