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Abstract: In tracking algorithms where measurements from various sensors are com-
bined the track state representation is usually dependent on the type of sensor informa-
tion that is received. When a multi-hypothesis tracking algorithm is used the probabil-
ities of the different hypotheses containing tracks in different representations need to
be re-evaluated when track state representations are changed. For the particular case of
trilateration a method is presented to adapt the state representation as more information
becomes available. A discussion is given on how to re-evaluate the probabilities of the
hypotheses leading to a method for the trilateration case. This is illustrated by a simple
example.

1 Introduction

In target tracking applications where different target information becomes available at dif-

ferent times, it is desirable to adapt the state description of estimated targets to the compo-

sition of this information. One of such applications is tracking with multiple (range, range

rate) sensors. A potential track is started in range coordinates (r, ṙ). When a detection
from another sensor (located elsewhere) is associated to the track, the state representation is

changed to (x, y, ẋ, ẏ). This transformation is called trilateration.

In the presence of multiple targets, missdetections and false alarms, estimating the correct

target states is a complex task, because incorrect intersensor association give rise to so called

’ghosts’.

To decrease the number of hypotheses that is consumed by ghost associations, valuable a

priori information can be used. Since tracking occurs using different representations simul-

taneously, also a priori information should be given in different representations.

This paper presents adaptive state multiple hypothesis tracking (ASMHT) to resolve the

association problem. A simple example shows hypotheses probabilities can be estimated

more accurately when the representation of prior and estimated information is adaptable.

2 Trilateration

Suppose we have two sensors: one at (x, y) = (s1, 0) and one at (x, y) = (s2, 0). Figure 1
gives a schematic representation of this configuration. Both sensors measure the range and

Doppler shift of reflected signals. A detection made by sensor i on time t = tn is denoted by
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zi(n). The distribution of the estimated target state x on time t = tn given measurements
zi(k . . . n), with tk < tn is denoted by pn(x|zi(k . . . n)). Note that when detections of
only one sensor are made, the state vector x is efficiently described by: (ri, ṙi), the range
and radial velocity to sensor i.
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Figure 1: Trilateration

From the measurements of two sensors zi and zj we find the position and velocity of

the detected object in cartesian coordinates, by means of trilateration. The covariance is

found by using the Jacobian of this transformation [KBKG06]. In figure 1 this can be

seen graphically. Shown are a detection z1 of sensor 1 and detection z2 of sensor 2, both

originating from the same target. In the figure both sensors have a beam width of 180

degrees. It is assumed here that the targets and both radars are situated in a single plane, so

their location can be described completely by their x and y coordinates.

The state distribution given detections of both sensors is denoted as pn(x|zi(k . . . n), zj(m . . . n)),
where m denotes the time when the first detection of sensor j was associated to the track
and thus indicates the moment at which trilateration could be applied. More generally, the

track distribution is denoted as pn(x|Z), where Z denotes the complete set of associated

detections, regardless if they originate from one or more sensors. The sensors update the

track independently once trilateration has been done, using extended Kalman filters.

2.1 Multiple Hypothesis Association

When multiple detections per sensor occur, it is not known beforehand which detections

should be associated together. Incorrect inter-sensor associations result in so called ’ghosts’.

To increase the probability that the correct association is found, a multiple-hypothesis track-

ing algorithm is used.

To facilitate for missed detections and asynchronous sensor updates a flexible state repre-

sentation is used. A potential track is always initiated in (range, range rate) coordinates.

When a contact of another sensor is associated the state representation is changed from

x = (ri, ṙi) to x = (x, y, ẋ, ẏ). The track might otherwise be missed by the other sensor
and only be updated with detections from the first sensor, preserving the state description

(ri, ṙi) of the track.
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Now, we have hypotheses describing tracks in range coordinates and hypotheses describing

tracks in cartesian coordinates. We need a method to relate the hypotheses that have different

state representations to each other.

3 New Source Model

When a new detection arrives, the hypotheses that describe a new target and a false alarm

should be updated with the probability of such events, Pnt and Pfa respectively. It is shown

in [Bla86] that instead of the explicit probabilities of these events, the false alarm and new

target densities βfa and βnt can be used. This results from the fact that it is assumed that

βnt is constant over the uncertainty of the measurement.

Here we assume that the new target density is known as a function of the tracking (cartesian)

coordinates (x, y, ẋ, ẏ). This density can be transformed to the coordinates of sensor i
(ri, ṙi), [The92]. These densities are called βnt(x) and βi

nt(ri) respectively and defined
as the expected number of new targets that arise per unit volume per unit scan time.

Typically, the probability density of false alarms is given in measurement coordinates, since

false alarms are sensor related. This pdf we call βi
fa(zi). Since false alarms are described

in sensor coordinates, this representation is sufficient to estimate the probability that a de-

tection is a false alarm.

Unwanted detections that originate from the environment are usually called clutter and are

omitted here.

In the case of trilateration, the volume of the new source depends on the hypotheses and it

is no longer allowed to compare the false alarm and new target densities. Initially, we form

a new track (in ri, ṙi coordinates) and thus use βnt(ri, ṙi) and βfa(ri, ṙi) to compare the
new target hypothesis with the false alarm hypothesis. Then, when a detection of another

sensor is associated, the trilateration operation is performed and the state representation is

changed. Therefore, we will have to re-evaluate the probability Pnt.

Pnt =
�

p1(x|zi(k . . . n), zj(n))βnt(x)dx (1)

Here p1(x|zi(k . . . n), zj(n)) denotes the predicted target distribution of the trilaterated
state x given detections zi(k . . . n) of sensor i and detection zj(n) of sensor j on the initi-
ation time of the track. Thus, a backward prediction, or retrodiction will have to be made in

the new state representation, given all the measurements.

4 State and State Representation Dependent Detection Probability

We introduce a state dependent detection probability of sensor i:

P i
d(x) = 1− P i

m(x) (2)
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Pm(x) denotes the probability that no detection is made by sensor i given a target with
state x. P i

d(x) denotes the total probability that sensor i detects a target with state x. Note
that here sensor information like beamwidth can be introduced. Also information about

occlusions could be represented here.

To calculate the probability that a track with state distribution pn(x|Z(k . . . n)) is detected
by sensor i we weigh the detection probability with the target distribution and take the
avarage:

Pd =
�

pn(x|Z(k . . . n) · P i
d(x)dx (3)

The probability of the event that a track is missed by sensor i is given by:

Pm =
�

pn(x|Z(k . . . n− 1)) · P i
m(x)dx (4)

Note that we are free to choose the coordinate system in which we want to solve this integral.

This could be cartesian, polar, or other coordinates.

When the state description changes to a representation where the detection probability is

representedmore complete, the detection probability of previously associated contacts could

be reconsidered, since it may be that the state on which the detection probability was based

can be estimated more accurately now.

5 Example

To show the possible advantage of applying a priori information in different state rep-

resentations, knowledge of the antenna beams is assumed. An example of 2 stationary

(range,doppler)radars with a very simple antenna model will be given.

The model in the example assumes that detection probability is unity inside and zero outside

the bundle and depends only of the location of a target and not of its velocity, nor any other

kinematic or non-kinematic properties of the target.

An angle of φb defines the beamwidth of the antennas. To find the detection probability of

each sensor given a track consisting of only one sensor we need P i
d(x) as a function of range

coordinates. This is best done using polar coordinates: P i
d(r

i, φi) = P i
d(φi) = 1, |φi| <

φb/2 and 0 elsewhere.

Now we need to represent the distribution of the target state pn(x|zi(k . . . n)) in the same
coordinates. Since no angle information is known, we assume the target is distributed uni-

formly in φi: pn(x|zi(k . . . n)) = 1
2π pn(ri|zi(k . . . n))

P i
d =

�
1
2π

pn(ri|zi(k . . . n))P i
d(φi)dφidri (5)

=
1
2π

�
pn(ri|zi(k . . . n))dr

�
P i

d(φ
i)dφi =

φb

2π
(6)

A schematic representation of the sensors and the beamwidth of their antennas can be seen

in figure 2.
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detection region of sensor i

detection region of sensor j

Figure 2: detection regions of both sensors

Thus, in the case the track consists of detections made by one sensor only, the estimated

detection probability is equal to the beamwidth of the sensor.

If a contact of sensor j is associated to the track, the state representation is changed from
(r, ṙ) to (x, y, ẋ, ẏ). The detection probability P j

d (pn(x|zi(k . . . n), zj(n))) is used to up-
date the hypothesis probability. The detection probabilities P i

d(ph(x|Z)) for h = k . . . n
could now be re-estimated by using the new state representation and retrodiction.

6 Conclusion

This paper introduces the concept of ASMHT. The description of a priori knowledge as

well as the description of estimated states changes adaptively as new information becomes

available. Furthermore, hypothesis probabilities of past associations can be estimated more

accurately. A simple example shows how ASMHT can be applied. The example here is

trivial. However, a probabilistic framework is presented which can be applied in less trivial

settings.
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