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Abstract 

Due to the utilization of existing infrastructure and powerful mobile devices, many different 

indoor localization systems have been booming in recent years. However, most of those sys-

tems very focus on technical issues, a few studies investigate usability issues from users’ per-

spective. In this paper, we conduct a case study with 18 participants to study how many effort 

(e.g., physical and mental workload) users would spend in a human-computer cooperation in-

door positioning system. To support the study, we develop a Google Tango tablet based infra-

structure-free indoor positioning system, by mapping users’ walking trajectory and environ-

mental features. Through the evaluation, we confirm that the workload increases as the in-

crease of required walking distance, specifically for the physical and temporal demands. While 

positioning in an infrastructure-free environment, the participants were willing to contribute 

and would walk maximum 50 meters with their mobile devices.  

1 Introduction 

With increasing requirements on location-based services in an indoor environment, indoor lo-

calization attained significance, not only for academic research, but also for commercial pur-

poses. There are a number of infrastructure-tied indoor positioning systems which would pro-

vide instant positioning information, such as WiFi-based and RF beacons based systems. How-

ever, it is a challenge to complete a large-scale deployment in each building, due to various 

reasons, like cost, maintenance and complex indoor environments. Once in some emergent 

situations, such as electric power loss, those systems will not be available.   
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To overcome those requirements, in many systems human beings have been involved in the 

loop of indoor localization - not only as end users, but also as “sensors” (Angemann & Rob-

ertson, 2012). They wear devices with inertial sensors and are tracked for localization. Besides, 

usability is not an aspect of common localization, as cases of lacking confidence or unavaila-

bility of signals are counteracted only technically. Once users are a part of the loop, usability 

issues (e.g., workload, fault tolerance and accessibility) have to be taken into account in the 

period of deployment and evaluation. 

Due to the advantages of emerging 3D time-of-flight (ToF) infrared cameras, in addition to 

sensing the 3D world and creating 3D maps, the devices would provide new approaches to 

interact with physical environment, such as motion tracking, area learning and indoor posi-

tioning. Benefiting from its powerful features, a Google Tango-like mobile device would boom 

infrastructure-free indoor localization systems, for instance, Winterhalter et al. (2015) pre-

sented an accurate infrastructure-free indoor localization system based on tracking walking 

trajectory, acquired from a Tango tablet. However, it is not clear how much effort (e.g., walk-

ing distance, and workload) a user would like to spend in such a human-computer cooperation 

based indoor positioning system.  

In this paper, we address a user study to investigate how much effort users would spend while 

using an infrastructure-free indoor localization system by tracking users’ walking trajectories 

and matching with environmental features. As an intersection is an important cue (e.g., the 

number of connections and the angle of the connections) to locate on a topological indoor map, 

we propose to have a 3D scanning of visited hallway intersections for extracting their 3D fea-

tures (e.g., openings) while tracking with a Tango tablet. When users are at an intersection 

with unique 3D features, they can be localized instantly. Otherwise, they are asked to walk to 

a nearby intersection until enough information for topological map matching is acquired. Since 

the proposed method requires users to scan intersections and walk a considerable distance, we 

conducted an experimental study to investigate usability of the method. Besides completing a 

questionnaire to get foundational insight into users’ general disposition to involvement in a 

localization process, 18 participants in 2 groups (with and without WiFi localization experi-

ences) took part in an evaluation of usability and workload. 

2 Related Work 

Benefiting from the Global Positioning Systems (GPS), people can instantly localize them-

selves in outdoor environments. However, due to the blocked GPS signals in indoor environ-

ments, manifold indoor positioning approaches have been studied in the last decade as sur-

veyed by (Fallah et al., 2013).  

2.1 Infrastructure-free Indoor Positioning Technology 

Aiming at avoiding expensive installations, many localization approaches have been proposed 

to make use of existing infrastructures, for instance, by analyzing GSM signals and magnetic 

fields (e.g., (Xie et al., 2014)). The image processing based visual localization (Mulloni et al., 
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2009), including Google’s Area Learning, is a popular and low-cost approach. However, as-

pects of quality and distinctiveness of the query images (e.g., blurred images, images captured 

in a low light condition) impact the location estimation. Besides, changes of indoor scenes may 

lead to incorrect localization. Google’s Area Learning also needs a pre-scan stage to collect 

environmental data in advance, as well as a large database. 

2.2 Human-computer Cooperation based Indoor Localization 

The human-computer cooperation based indoor localization is an infrastructure-free method, 

but it requires users’ contributions. Similarly to common and reliable approaches in robotic 

that collect odometric data with local measurements of ultrasound, laser or infrared sensors to 

perform map matching, tracking of human movements using dead-reckoning is possible with 

wearable inertial sensors, like FootSLAM (Angemann & Robertson, 2012). However, the ac-

cumulation of measurement errors reduces accuracy of localization in a long-term tracking. 

To prevent the accumulated errors, several mixed systems combine human-tracking and Wi-

Fi signals, e.g., ARLEL (Jiang et al., 2012) or magnetic fields, e.g., MaLoc (Winterhalter et 

al., 2015). Just as early systems, those combined methods require human labor for measuring 

signal strengths in buildings. In addition to various sensor fusion based methods, recently sev-

eral indoor navigation systems employ human feedback for compensating the shortcomings or 

measurement errors of digital sensors. In RedPin (Bolliger 2008) users are allowed to input 

corresponding room names/numbers while collecting WiFi fingerprints. The Navatar system 

(Fallah et al., 2012) needs visually impaired users to explicitly confirm landmarks to compen-

sate accumulated sensor errors.  

Human beings are different to robots who can follow commands completely (e.g., walking, 

turning, and scanning) while positioning. The human factors (e.g., workload and willing) must 

to be considered while using an indoor navigation system. However, there were a few studies, 

like the Navatar system, which investigate work load when users were in the loop of indoor 

localization, in terms of mental and physical demands. 

3 Tango Positioning System 

To support the evaluation, we developed a lightweight indoor positioning system with a Tango 

tablet, namely Tango Positioning System (TPS). The limited range of the built-in ToF camera 

is ca. 4.5m. A 2D floor plan is required in advance for the TPS.  

3.1 The Concept 

The basic idea of TPS is to collect topological information of hallway intersections or their 

connections, which might contain intrinsic unique features for positioning. Figure 1 presents 

how to locate a user at an intersection on the basis of unique physical environmental features, 

captured by a 3D ToF camera. 
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If the TPS cannot locate a user after scanning an intersection, the user has to walk to a next 

intersection and hold the tablet for detecting the length of the path via motion tracking.  Once 

a new intersection is scanned, the system generates a connected graph consisting of visited 

intersections and walking trajectory. Graph matching is performed to determine the user’s lo-

cation. To match a connected intersection graph, the topological information consists of indi-

vidual intersection information, the number of intersections, and the length and angles of con-

nected paths.   

Figure 1. A user positioning himself via TPS at an intersection with unique physical features 

3.2 The Software Modules 

In order to locate users, TPS consists of 4 key software modules, which are listed below:  

The 3D Intersection Feature Extractor Module acquires physical features of intersections by 

processing the 3D point cloud data captured by the ToF infrared cameraA fast K-NN based 

3D point cloud clustering algorithm is used to segment walls (Klasing et al., 2008).  

The Motion Tracking Module, creates and updates global 3D coordinates during scanning of 

intersections and walking trajectory. In the current version of TPS, we made use of Google’s 

APIs to implement the motion tracking module via fusion of inertial measurements and motion 

tracking data. 

The Matching Intersection Module matches unique intersections or a topological graph corre-

sponding to intersections with a given floor map. This module consists of two matching algo-

rithms. One algorithm identifies a unique intersection by analyzing its physical features (num-

ber of paths, angles, lengths between paths). Another algorithm identifies a graph representing 
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visited intersections and their connections on a given topological map. To reduce impact of 

measurement errors (e.g., openings’ angles and distance of two intersections) while matching, 

a series of tolerance values has been set.  

The User Interface Module allows users to interact with TPS and displays the final position 

(see Fig. 2), including 4 sub-windows which indicate the calculating part, the intersection scan-

ning, the walking trajectory and the final result of the position.  

Figure 2. The basic user interface of TPS with 4 sub-sections 

4 User Evaluation 

4.1 Participants 

Eighteen participants (8 females), 21 to 40 years old (M = 29.5, SD = 5.4), were recruited from 

within the university community. Nine of them had experience in using instant indoor posi-

tioning systems, such as Wi-Fi or beacon-based approaches.  

4.2 Preparation 

4.2.1 Creating a topological map for the tests 

For our evaluation, we selected one floor of a modern university building (ca. 2380 m2), con-

sisting of two similar parts with 7 intersections in total (see Figure 3). We developed an in-

house software to create topological maps (with an XML-based data structure) from imported 

indoor floor plans, and each intersection had a unique number. Intersection 5 (I5) is a unique 

intersection which consists of two openings.  
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Figure 3. The topological map of the floor for the evaluation 

4.2.2 Experimental settings 

To speed up the process of scanning intersections, TPS only keeps those parts of the point 

cloud whose y-value between -0.25 and 0.25. For clustering walls, it looks for 3 nearest neigh-

bored points (K = 3) that in a radius of 0.2 meters, and minimum number of points in a cluster 

is 15. Openings are detected with a min. length of 2.5 meters and a min. width of 1.0 meters. 

To improve accuracy of our graph matching, angle tolerance is set to 30° and the tolerance of 

the intersections’ distance is 10 meters.   

4.3 Main Trials 

4.3.1 Tasks and procedure 

Each participant had to locate themselves in 3 trials, respectively.  The 3 test routes consisted 

of 1 - 3 intersections (i.e., Route 1: I5; Route 2: from I6 to I3; Route 3: from I3 to I2, I1). After 

a training about how to make use of TPS, each participant was guided to the corresponding 

intersections for the 3 main trials. In each trial, they were asked to find out the unique number 

of the intersection where they were. In order to avoid an influencing effect by the 6 possible 

combinations of routes, orders of test routes were counterbalanced. When each trial was fin-

ished, a NASA Task Load Index (TLX) based questionnaire was conducted to assess workload 

on 7-point scales (1: strongly positive – 7: strongly negative).  
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4.3.2 Study design 

In daily life, some people might have the indoor localization experience by using installed 

infrastructure, such as Wi-Fi hotspots or beacons, where users would locate themselves in-

stantly and do not need to walk or be tracked.  This study investigates whether and how they 

accept the concept of human-computer cooperative localization, by comparing with the par-

ticipants who do not have such indoor localization experience.  Therefore, we designed the 

study as following:    

Between-subject Variables. There was one between-subject variable: user group. The factor 

of user group consists of 2 levels, where Group 1 had instant indoor positioning experience 

and Group 2 had none.  

Within-subject Variables. The test routes were the independent within-subject variable. The 

route factor has 3 levels according to the number of intersections.  

5 Results 

5.1 Objective Measurements 

Training Time: The average training time for Group 1 (with instant indoor positioning experi-

ence) was 396 seconds (SD: 98.9) and for Group 2 was 412 seconds (SD: 136.9). There was 

no significant main effect for the user group factor. 

Success Rate: 3 participants failed to find out the correct number of the final intersection in 

Route 2, and 2 failures occurred in Route 3. Thus, the mean success rate was 100%, 83.3% 

and 88.9% in Route 1, Route 2 and Route 3, respectively.  

Completion Time: Table 1 and Table 2 illustrate the completion time by the participants from 

Group 1 and Group 2, respectively. A mixed ANOVA showed that the route factor had a sig-

nificant effect on the completion time (Wilks’ λ = .077, F (2, 11) = 65.56, p < .001). A post 

hoc Tukey test showed that Route 3 (M: 154.4, SD: 12.2) required significantly more time than 

Route 1 (M: 28.8, SD: 12.2) and Route 2 (M: 124.9, SD: 13.4). 

5.2 Subjective Feedback on Workload Assessments 

With increasing number of visited intersections, the related workload increased for both groups 

regarding all 7 workload assessments (i.e., ease to use, mental demand, physical demand, tem-

poral demand, performance, effort, and frustration), see Table 1 and Table 2. A mixed ANOVA 

showed no significant main effect of the group factor on the 6 workload assessments, but a 

significant main effect for the 6 workload assessments by the route factor (Ease of use: λ = 

.495, F (2, 15) = 7.662, p = .005; Mental: λ = .537, F (2, 15) = 6.456, p = .009; Physical: λ = 

.28, F (2, 15) = 19.319, p < .001; Temporal: λ = .346, F (2, 15) = 14.207, p < .001; Performance: 

λ = .413, F (2, 15) = 10.65, p = .001;  Effort: λ = .528, F (2, 15) = 6.696, p = .008; Frustration: 

λ = .401, F (2, 15) = 11.197, p = .001). Furthermore, there was no significant main effect for 
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the sum workload by the user group, but the route factor had a significant main effect (λ = 

.236, F (2, 15) = 24.302, p < .001).  No interaction effects were significant. 

Time 

(s) 

Ease 

of Use 
Mental Physical Temporal 

Perfor-

mance 
Effort Frustration 

Route1 26 2.22 1.67 1.89 1.89 1.56 1.78 1.22 

Route2 139 3.11 2.22 3.0 3.0 2.56 2.44 2.44 

Route3 167 3.78 2.22 3.67 4.22 2.44 3.11 2.56 

Table 1: Participants’ completion time and workload assessments in Group 1 

Time 

(s) 

Ease 

of Use 
Mental Physical Temporal 

Perfor-

mance 
Effort Frustration 

Route1 30 2.22 1.44 2.44 2.33 1.89 2.22 1.33 

Route2 110 2.33 2 2.78 2.78 2.22 2.67 2 

Route3 141 2.89 2.22 3.33 3 3 3.11 2.22 

Table 2: Participants’ completion time and workload assessments in Group 2 

5.3 Post-questionnaire 

Table 3 indicates both groups ranked the proposed method intuitive (Median of Group 1 = 6; 

Median of Group 2 = 5) and very understandable (Median of Group 1 = 7; Median of Group 2 

= 6). They thought the cost of the proposed method was not high, in terms of time, physical 

and mental demand. In particular, the participants from Group 1 (Median = 4) who had instant 

indoor positioning experience were less interested in utilizing such a system in the future, than 

the participants from Group 2 (Median = 6). A Mann-Whitney U test showed that there was a 

significant main effect for future use by the group factor (U: 16.5, p = .029).  

The participants from Group 1 (M: 2.22; SD: 0.83) and Group 2 (M: 2.56; SD: 1.01) had 

similar opinions on the maximum number of visited intersections. 30%, 30%, 20% and 20% 

of the participants would maximally visit 20 meters, 30 meters, 50 meters and 100 meters, 

respectively. 10 participants reported a perfect TPS-like system should only need to visit/scan 

one intersection, and 6 thought visiting 2 intersections sufficient. One participant would accept 

to visit 3 intersections. However, one participant would not visit one intersection at all, as he 

expects instant indoor positioning to work anywhere. Group 1 (M: 1.22; SD: 0.83) expected 

to visit less intersections in a perfect TPS-like system than Group 2 (M: 1. 56; SD: 0.53), 

though differences were not significant. 

Intuitive Understandable Cost Future Use 

G1 6 7 5 4 

G2 5 6 5 6 

Table 3. The participants’ median ratings on Q8 – Q11 (1: strongly negative – 7: strongly positive) 
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Regarding to the advantages, most of them liked the system did not require any construction 

of infrastructure and expensive online calculation. They criticized they had to hold the tablet 

with both hands while walking. 

5.4 Discussion and Limitations 

For a human-computer cooperation based indoor localization system, it is necessary to recon-

sider balancing system capabilities and users’ workload. It is labor- and cost-consuming to 

install and maintain infrastructures for sophisticated localization systems. In contrast to robotic 

indoor localization which requires high accuracy, users may use their capabilities to locate 

exact targets in many cases if a not accurate position is provided.   

All participants highly agreed that TPS was very easy to understand after a short introduction 

practice. It was confirmed that TPS did not require high mental demands to utilize. However, 

with the increase of walking distance and the number of visited intersections, participants’ 

work load increased as well, specifically in terms of the physical and temporal demand. Con-

sidering the participants reports, they would accept to maximally visit 2.39 intersections on 

average and 80% of them preferred to walk less than 50 meters. A TPS-like system, therefore, 

should localize users in one or two intersections.  

Most of the participants suggested TPS would be useful in large office buildings or hospitals 

with many intersections, specifically in an environment with a bad light condition. All of them 

preferred to not rely on local infrastructure, and liked the concept that they would interact with 

the system while localizing. They had strong interest to use such a system in the future, and 

the participants with instant indoor localization experiences less than the ones who had not. 

Perhaps, it is promising to combine the two types of localization methods together in one sys-

tem, and then users would use the human-computer cooperation localization in case the indoor 

localization infrastructure is not available. Besides, as our proposed method is based on the 2D 

floor plan (e.g., the connections of an intersection and the distance between them), for multiple 

floor buildings where the 2D floor plan of each floor would be similar, it is a challenge to use 

the proposed method to self-localization.  

6 Conclusions & Future Work 

In this paper, we investigate how much effort users would spend for a human-cooperation 

indoor localization system. To support this study, we develop an infrastructure-free indoor 

localization prototype which employs a handhold device with a built-in 3D ToF infrared cam-

era and inertial sensors. Via 3D scanning and extracting physical features of intersections (e.g., 

the number of openings, their angles and distances), and mapping users’ walking trajectory, 

the prototype would locate users at an intersection on a given 2D floor plan. Experiments with 

18 participants indicated their workload increased with the increase of walking distance and 

the number of visited intersections, specifically for the physical and temporal demands. The 

participants reported they were willing to contribute for indoor positioning systems, for exam-

ples, they would maximally walk 50 meters, and visit two intersections.  
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The proposed system can be improved at several aspects. Firstly, it is important to detect more 

physical environmental features of intersections, in order to quickly locate a unique intersec-

tion. Besides, unique indoor facilities (e.g., pillar, stairs) would be cues for improving the lo-

calization speed. Though the Google Tango tablet is not available on the market, there are 

some similar RGB-D camera based wearable systems which can use the concept for indoor 

localization, like for blind indoor navigation (Zeng et al., 2017).  
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