
Preference Analytics in EXASolution

Stefan Mandl, Oleksandr Kozachuk

EXASOL AG

Neumeyerstraße 24

90411 Nürnberg, Germany

firstname.lastname@exasol.com

Markus Endres, Werner Kießling

University of Augsburg

Universitätsstr. 6a

86159 Augsburg, Germany

lastname@informatik.uni-augsburg.de

Abstract: Skyline queries and the more general concept of preferences are well-
known in the database community and there are many academic approaches for the
computation of the best-matching objects. Furthermore, data analytics and multi-
criteria optimization play an important role in Business Intelligence where it facilitates
optimal decision making. Preference Analytics is the combination of preferences and
data analytics. SKYLINE is EXASOL’s implementation of Preference Analytics in its
commercial database management system EXASOLUTION. In this paper, we present
SKYLINE from a user’s perspective, describe algorithmic design decisions, and discuss
its implementation in a distributed and parallel environment. The paper closes with an
empirical evaluation of the system based on a number of preference queries over the
TPC-H dataset using different scale factors.

1 Introduction

The Skyline operator [BKS01] and the more general concept of preference database queries

[SKP11, KEW11] has emerged as an important summarization technique for multi-dimen-

sional datasets. The popularity of preferences is mainly due to their applicability for de-

cision making applications [GRB11]. In such applications, the database tuples represent

a set of multi-dimensional data objects, and the Skyline, also named Pareto Set, contains

those objects that are the best trade-offs between different attributes, i.e. those objects that

are not dominated by any others. An object p having d attributes dominates an object q,

if p is strictly better than q in at least one attribute and not worse than q in all other at-

tributes, for a defined comparison function. Preferences enable users to specify a pattern

that describes the type of information he is searching for. Since preferences express soft

constraints, the most similar data will be returned when no data exactly matches that pat-

tern (Best-Matches Only set). From this point of view, preference database queries are an

effective method to reduce very large datasets to a small set of highly interesting results.

EXASolution is a high performance parallel and distributed in-memory engine for data an-

alytics and data warehousing produced by EXASOL AG1. It is the first commercial system

which incorporates the functionality of Skylines for Preference Analytics. Subsequently,

we show an example of a preference query using the novel SKYLINE syntax for Preference

Analytics in EXASolution (see Section 3.1).

1http://www.exasol.com

613

Example 1. Consider the task of finding the best funds in the market – a daily problem

for financial investors. Assume one wants to invest in the fund that provides the highest

return and the lowest risk. Unfortunately, investment funds do not work that way: the more

conservative a fund, typically the lower its risk, but also its return value. Figure 1 presents

a sample dataset of funds in the market and the Standard & Poor’s 500 (S&P 500), which

is a stock market index based on the market capitalizations of 500 large companies. So,

there is no right answer as to which fund to select.

Figure 1: Example of the Fund Universe Comparison graph (http://www.fundreveal.com) and the
best-matches only set (bold points).

However, using SKYLINE you can tell the system that this is your preference and it will

provide you with a shortlist of candidates – effectively eliminating all objects that are

worse in every respect than competitors. In Figure 1 the bold points represent the optimal

subset regarding the subsequent preference query:

SELECT * FROM funds

PREFERRING HIGH return PLUS LOW risk;

Figure 2: Simple preference query to find the best fund.

The PREFERRING keyword introduces a preference. The connection of two preferences by

PLUS is the Pareto composition and states the equal importance of preferences. The key-

words HIGH and LOW define whether an expression should have high or low values. The

query selects all objects which are not dominated by any other objects in all dimensions.

From this Skyline set one can now make the final decision, thereby weighing the personal

preferences for a more conservative or more risky fund.

Preference Analytics addresses the fundamental problems of traditional data mining ap-

proaches and multi-criteria decision making, where the ever-increasing volumes of data

and multiplicity of variables mean that sorting, filtering and weighting lead to sub-optimal

analyses. This capability is unique to EXASolution and was developed to help clients with

more sophisticated analytic and data mining requirements. Potential application areas in-

clude segmentation, next best offer, fraud and portfolio analysis, etc.

614

The remainder of this paper is organized as follows: In Section 2 we discuss some related

work. In Section 3 we present Preference Analytics including a parallel and distributed

Skyline algorithm used by SKYLINE in EXASolution. Afterward we show elaborate ex-

amples of Preference Analytics in Section 4. We conduct a performance evaluation on the

TPC-H benchmark dataset in Section 5. Section 6 contains our concluding remarks.

2 Related Work

Preferences in databasesÐas shown by a recent survey [SKP11]Ðare a well established

framework to create personalized information systems. By using well designed preference

models, users can be provided with just the information they need, thereby overcoming

the dreaded empty result set and flooding effect [KEW11]. Traditional database engines

or query languages do not support preference queries. However, in the last decade some

extensions to the SQL language have been proposed.

Börzsönyi et al. [BKS01] introduced the SKYLINE OF clause with its basic form

SELECT ... FROM ... WHERE ...

SKYLINE OF [DISTINCT] A1 [min | max | diff], ...,

An [min | max | diff];

The columns A1, ..., An are the attributes over which the preferences apply. Their

domains must have a natural total ordering, such as integers. The directives min and max

specify whether one prefers low or high values, respectively. The diff states that one

wants to retain the best choices with respect to each distinct value of that attribute. Unfor-

tunately, this approach is restricted to min, max and diff, such that complex preference

queries are not possible.

Chaudhuri et al. show through an implementation in the commercial database product

Microsoft SQL Server 2005 (Beta version) that Skyline queries can substantially benefit

from cardinality estimation techniques [CDK06, End14]. However, their Skyline imple-

mentation never found its way into any product release of MS SQL Server. Eder and Fang

[EF09] implemented the original Skyline syntax in PostgreSQL in order to show the in-

tegration of the Skyline operator with other relational operators, thus more sophisticated

queries can be constructed. This Skyline implementation never became an integral part of

the PostgreSQL database system.

A more general approach of Skylines are preference queries, which allow a more detailed

specification of user wishes. Preference SQL is an extension to SQL to specify such ar-

bitrary user preferences [KEW11]. Preferences in this sense are strict partial orders and

a preference query returns the maximal elements according to this order, also called the

Best-Matches Only set (BMO-set) [Kie02]. The basic form of a PreferenceSQL query is

as follows:

SELECT ... FROM ... WHERE ...

PREFERRING A1 <preference_constructor> [AND | PRIOR TO | RANK | DUAL]

... [AND | PRIOR TO | RANK | DUAL]

An <preference_constructor>;

615

The PREFERRING keyword introduces a preference. The connection of two preferences

by AND is the Pareto composition and states the equal importance of preferences. If we

restrict the attention to LOWEST (min) / HIGHEST (max) as input preferences, then Pareto

preference queries coincide with the traditional Skyline queries above.

Arvanitis and Koutrika [AK12] pushed preference query processing closer to the database

management system (DBMS) and explained how to integrate the preference operator and

its optimization into a DBMS. Levandoski et al. [LEMK13] presented FlexPref, a gen-

eral framework for extensible preference evaluation. FlexPref is implemented in the query

processor of PostgreSQL, and supports various preference evaluation methods. Although

FlexPref was integrated into PostgreSQL, it has never been an inherent part of it. Gol-

farelli et al. [GRB11] followed the basic principles of [Kie02] and developed myOLAP,

an approach to express and evaluate OLAP preferences.

Preference query processing received enormous attention in single-database environments,

i.e., in a centralized setup, cf. [CCM13], as well as in multi-core environments [PKP+09,

SLB10, LVDN14, EK14]. As nowadays data are increasingly stored and processed in

a distributed way, Skyline processing over distributed data has attracted much attention

recently. EXASolution is a highly distributed database management system and therefore

novel algorithms have to be developed for Preference Analytics. We give a short overview

on existing approaches on distributed Skyline computation.

Balke et al. [BGZ04] proposed the first distributed Skyline algorithm, by considering

the underlying relation is vertically partitioned between local servers, i.e., each server

keeps only one attribute of the relation. A vertical partitioning is also used in [TBPY13],

where a general solution for arbitrary dimensionality is proposed. In contrast, Wu et al.

[WZF+06] assume a constrained horizontal partitioning. They used a CAN overlay to

create grid partitions, each assigned to a processor. The main disadvantage of this approach

is its low parallelism and that processors exchange the entire Skyline which floods the

network. Zhu et al. [YSZ09] studied the distributed Skyline query when the underlying

dataset is horizontally partitioned onto a set of local servers. Their algorithm can solve the

problem with low bandwidth consumption. In [RJVDN09] the authors propose AGiDS,

a framework for efficient Skyline processing over distributed data. Thereby a grid-based

data summary is used to reduce the amount of transferred data. The main focus in the

related work on distributed Skyline computation is on highly distributed systems, such

as P2P systems, where each server stores a fraction of the available data, e.g. [LTL06,

WVO+09]. Hose et al. [HLS06] for example focused on Peer Data Management Systems

and proposed an algorithm identifying relaxed Skyline results. Skyline queries have also

been studied in other distributed environments, such as web information systems [BGZ04,

LYLC06], mobile applications [XC10], or parallel shared-nothing architectures [VP10,

VDK08]. Also distributed Skylines are relevant with respect to different data types, such

as streamed [SHZ+10] or uncertain data [DJ10]. A detailed survey on the state-of-the-art

in Skyline processing in distributed environments is given in [HV12].

All mentioned approaches from preference specification to distributed Skyline algorithms

have in common that they are of academic nature and none of them has ever been integrated

into a product release of a commercial database system. This paper describes the first

commercial distributed Skyline environment for Preference Analytics.

616

3 Preference Analytics in EXASolution

Data analytics has become a key priority for many companies to enable a better decision-

making process. Preference Analytics which integrates preference computations with data

analytics enables users to define wishes and to extract the best objects from a given dataset.

Preference Analytics is available in EXASolution via SKYLINE which seamlessly inte-

grates with other analytical features. In this section we introduce the basics of SKYLINE;

thereby commercializing the ideas in [Kie02, KEW11] by modifying the syntactical terms

and introducing expressions and partitions in the preference clause.

3.1 Syntax

SKYLINE is available in EXASolution by an extension of the SELECT, DELETE, and UPDATE

statements. In this paper, we only consider the SELECT statement because this is the most

important use case for Skylines. Furthermore, using DELETE and UPDATE with Skylines is

straightforward.

SELECT statements are extended by an preferring clause (Figure 3) which is introduced by

the keyword PREFERRING (as in [KEW11]), and followed by a preference term (Figure 4)

and an optional PARTITION BY sub-clause.

Figure 3: Preference clause in EXASolution.

The PREFERRING clause can be defined after the WHERE condition of a SELECT statement. It

can contain the elements depicted in Figure 4 and is evaluated after the WHERE clause.

• PARTITION BY: If you specify this option, then the preferences are evaluated sepa-

rately for each partition.

• HIGH and LOW: Defines whether an expression should have high or low values. Please

note that any numerical expressions are expected here.

• Boolean expressions: In case of boolean expressions, the elements are preferred

where the condition results in TRUE.

• PLUS: Via the keyword PLUS, multiple expressions of the same importance can be

specified, i.e. the expressions form a Pareto preference query.

• PRIOR TO: With this clause you can nest two expressions hierarchically. The second

term will only be considered if two elements have a similar value for the first term.

• INVERSE: By using the keyword INVERSE, you can create the dual preference expres-

sion. Hence, the expression LOW price is equivalent to INVERSE(HIGH price).

617

Note that in contrast to existing approaches as discussed in Section 2 it is possible to use

arbitrary mathematical and boolean expressions in a preference term.

Figure 4: Preference term in EXASolution.

3.2 Evaluation of Preference Queries in EXASolution

EXASolution is a distributed and high-performance parallel database. It typically runs on

a number of machines in a cluster. Data is distributed horizontally among all machines.

This means that every machine contains parts of all (temporary or permanent) tables and

result sets. When answering queries, an important goal of all algorithms in EXASolution

is to maximize utilization of the available hardware.

Before we go into the details of the Skyline algorithm in EXASolution, we briefly describe

the problem of Skyline computation. In general the Skyline contains those objects of a

given dataset D that are not dominated by any others for a defined comparison function.

In this paper we define the skyline as the set of best objects of a preference query.

More formally, the Skyline of a dataset D is defined by the maxima in D according to the

ordering <P , where x <P y for d-dimensional tuples x = (x1, ..., xd), y = (y1, ..., yd) ∈
D means “y is better than x” concerning the preference P . The SKYline set is

SKY(D) = {t ∈ D| ? ∃u ∈ D : t <P u}

The basic algorithm of SKYLINE in EXASolution belongs to the block-nested-loop class

(BNL) [BKS01] of algorithms that filter the dataset using a compare function. The block-

nested-loop algorithm linearly scans over the input dataset D. The idea of this algorithm

is to continuously maintain a window (or block) of tuples in main memory containing the

maximal elements with respect to the data read so far. When a tuple p ∈ D is read from

the input, p is compared to all tuples of the window and, based on this comparison, p is

either eliminated, or placed into the window. Three cases can occur: First, p is dominated

by a tuple within the window. In this case, p is eliminated and will not be considered in

618

future iterations. Of course, p need not be compared to all tuples of the window in this

case. Second, p dominates one or more tuples in the window. In this case, these tuples are

eliminated; that is, these tuples are removed from the window and will not be considered in

future iterations while p is inserted into the window. And third, p is incomparable with all

tuples in the window. In this case p is inserted into the window. At the end of the algorithm

the window contains the maximal elements, i.e., the Skyline. The best case complexity is

of the order O(n); n being the number of input tuples. In the worst case, the complexity

is of the order of O(n2).

The major advantage of a BNL-style algorithm is its simplicity and suitability for comput-

ing the maxima of arbitrary partial orders.

Given these constraints, the general design goals of the algorithm are straightforward:

• Optimize for interesting Skylines to be computed fast (and trade that for non-inter-

esting ones tending to be slower)

• Compute Skyline in parallel and distributed on all machines

For the first goal we assume that smaller Skylines are more interesting than larger ones.

This idea is based on the applications where Skyline is used to create short lists. The

second goal is facilitated by the additivity [HV12] and the distributability of the Skyline

operator. Additivity means that given n datasets Di corresponding to n machines, the

Skyline objects are the same if the Skyline operator is evaluated on (i) the union of the n

datasets or (ii) first on each set separately and then once more on the union of the result

set.

Property 1 (Additivity of the Skyline operator). Given a dataset D and n datasets Di

such that

D = D1 ∪ . . . ∪Dn

Then the following equation holds:

SKY(D1 ∪ . . . ∪Dn) = SKY (SKY(D1) ∪ . . . ∪ SKY(Dn))

Distributability means that members of the Skyline can be computed in the cluster with

distributed data by testing them on each machine in the cluster independently. If they stand

the test on all machines, they are part of the global Skyline. We formally specify this new

outcome in the next property.

Property 2 (Distributability of the Skyline operator). Given a finite dataset D and n

datasets Di such that

D = D1 ∪ . . . ∪Dn

Then for each d ∈ D:

d ∈ SKY(D) ⇔ d ∈ (SKY(D1 ∪ {d}) ∩ . . . ∩ SKY(Dn ∪ {d}))

619

Proof. “⇒”: Let d ∈ SKY(D) and d ?∈ (SKY(D1 ∪ {d}) ∩ . . . ∩ SKY(Dn ∪ {d})), then

for some Di, d ?∈ SKY(Di∪{d}). So there exists some element d0 ∈ Di which dominates

d. Since d0 also is in D, d ?∈ SKY(D) which contradicts the assumption.

“⇐”: Let d ∈ (SKY(D1 ∪ {d}) ∩ . . . ∩ SKY(Dn ∪ {d})) and d ?∈ SKY(D). Then there

exists d0 ∈ D which dominates d. Furthermore, there is some Di with d0 ∈ Di for which

then d ?∈ SKY(Di ∪ {d}), which contradicts the assumption.

-+)'&%$)+

-+)')+)#") !&%$)+

-+)'&%$)+

-+)')+)#") !&%$)+

/.",&#) * /.",&#) (

Figure 5: Skyline algorithm on a cluster with two machines

Based on Property 1 and 2, EXASOL’s Skyline algorithm (see Figure 5) conceptually

works in three steps:

1. Local pre-filtering

2. Local filtering

3. Global filtering

During local pre-filtering, subsets of the dataset are filtered independently on every ma-

chine fully in parallel, typically yielding a much smaller set of candidates per machine.

Each of the datasets comprises a small Skyline but their union does not need to do so. This

step corresponds to the inner SKY(·) operations according to Property 1.

After pre-filtering stopped on all machines. Local and global filtering are executed in par-

allel fashion, therby maximizing hardware utilization. Per node, candidates are compared

to all other candidates (quadratic cost in the number of Skyline candidates). Candidates

that turn out to be local solutions are sent off to the next machine in the cluster and com-

pared to the local candidates there. Following this process, once a candidate reaches the

machine it originated from it is known to be a global solution and written into the result

set. Local filtering corresponds to the outer SKY(·) operations according to Property 1.

The test on remote-machines corresponds to the right-hand side in Property 2.

620

4 Elaborate Examples

In this section we present elaborate examples which show the power of Preference Ana-

lytics and its advantage in comparison to standard SQL.

During this section we use the sample data in Table 1, which presents an energymap, an

extract of renewable energy sources in Germany. The full dataset is publicly available

at www.energymap.info. The dataset contains information on solar stations, wind farms,

biomass gas facilities, and hydro stations, in total more than 1.5M tuples.

generator type town gpscoord power output tso . . .

Solarstrom Weismain POINT (50.05 11.233) 379865 TenneT TSO GmbH

Solarstrom Dingolfing POINT (48.633 12.5) 53582 TenneT TSO GmbH

Biomasse Papenburg POINT (53.067 7.4) 20000 TenneT TSO GmbH

Biomasse Emden POINT (53.367 7.217) 19975 TenneT TSO GmbH

Biomasse Neumarkt POINT (49.28 11.463) 19900 TenneT TSO GmbH

Solarstrom Fuchsstadt POINT (50.1 9.933) 18737 TenneT TSO GmbH

.

Table 1: Sample dataset of renewable energy sources in Germany (see www.energymap.info; please
note that in order to take advantage of EXASolution’s GEOMETRY type, the original columns GPS-
Lat and GPS-Lon have been combined into the column gpscoord for our example).

Assume that one wants to choose the source of power for his company in Nuremberg.

Given the energymap sample data in Table 1 the goal is to find suitable power stations.

Since there is no power station exactly at the company’s location, we have to consider the

trade-off between big power stations further away and little power stations nearby.

Example 2 (Energymap ± First attempt). The first attempt without Preference Analytics

could be to find all interesting power stations using a WHERE clause to select only big power

stations which are not too far away and very close power stations which are not too small,

cf. Figure 6. We use the ST_DISTANCE function to compute the distance of each power

station to the company’s location coordinates N 49.47 E 11.041.

SELECT (em.power_output/1000000) megawatts,

ST_DISTANCE(’POINT(49.47 11.041)’, em.gpscoord) AS dist,

em.generator_type, em.town, em.tso AS operator

FROM energymap em

WHERE em.gpscoord IS NOT NULL

-- the power station is nearby

-- (< 1.0 degree straight line distance, roughly 100km)

AND LOCAL.dist < 1.0

-- and it is relatively powerful (> 4 MW)

AND em.power_output > 4000000

ORDER BY em.power_output DESC;

Figure 6: Standard SQL query to find big power stations not too far away and very close power
stations which are not too small.

621

One problem to notice here is that this query completely ignores middle sized power sta-

tions and those that are in the middle distance. Some of these might be a good solution.

So this query is not satisfying and does not produce a usable short list of power stations.

In fact, the query above returns no result at all which is an example of the empty result set

effect (see Section 1) which is typical for such scenarios.

Example 3 (Energymap cont’d ± Second attempt). The second attempt is to calculate a

score based on a function of distance and power.

-- We guess a suitable function of distance and power,

-- calculate a score for each station and consider the first 10 results

SELECT (em.power_output/1000000) megawatts,

ST_DISTANCE(’POINT(49.47 11.041)’, em.gpscoord) AS dist,

em.generator_type, em.town, em.tso AS operator

FROM energymap em

WHERE em.gpscoord IS NOT NULL

ORDER BY em.power_output/1000 + 100000/(1 + 10 * LOCAL.dist)

DESC LIMIT 10;

Figure 7: Calculate scores based on a function of distance and power.

However, there is no universal accepted formula for this task so we have to guess the

function. If we are not satisfied with the results we have to change the function, and so

forth. This is an iterative and time consuming approach. Furthermore, this process may

lead to results which are further away and less powerful than other power stations. There

is no protection from getting worse power stations over better ones. Furthermore, what

about really powerful power stations further away? And what about really near small

power stations?

Example 4 (Energymap cont’d ± Preference Analytics). Finally using SKYLINE leads to

a short list of Pareto optimal results. All we have to do is to add the PREFERRING clause

for low distance and high power output to the query, cf. Figure 8.

SELECT (em.power_output/1000000) megawatts,

ST_DISTANCE(’POINT(49.47 11.041)’, em.gpscoord) AS dist,

em.generator_type, em.town, em.tso AS operator

FROM energymap em WHERE em.gpscoord IS NOT NULL

PREFERRING LOW LOCAL.dist PLUS HIGH em.power_output

ORDER BY em.power_output DESC;

Figure 8: Use Preference Analytics to eliminate sub-optimal candidates.

622

The algorithm for Skyline computation in EXASolution is very efficient and runs distributed

and parallel on all the machines of an EXASolution cluster. On a small test cluster of two

rather dated servers, the result is computed in less than 1 second on the energymap dataset

having more than 1.5M tuples. Using Preference Analytics one can compute the optimal

trade-off of distance and power, creating a short list of highly interesting objects, ranging

from a massive solar power station more than 400km away to tiny stations next door, cp.

Table 2. From this set the user can make the final decision, thereby weighing the personal

preferences for the best object.

megawatts dist generator type town operator

1.468280 2.343107338557071 Solarstrom Herrenberg TransnetBW GmbH

0.626608 0.484542051838642 Solarstrom Schirradorf TenneT TSO GmbH

0.019900 0.462800172860813 Biomasse Neumarkt TenneT TSO GmbH

0.009200 0.374518357360488 Solarstrom Pleinfeld TenneT TSO GmbH

0.008213 0.277218325512582 Solarstrom Heilsbronn TenneT TSO GmbH

0.006125 0.093171884171138 Solarstrom Zirndorf TenneT TSO GmbH

0.006025 0.080993826925266 Biomasse Sandreuth TenneT TSO GmbH

0.001999 0.074060785845142 Biomasse Fürth TenneT TSO GmbH

0.000856 0.069570108523705 Solarstrom Fürth TenneT TSO GmbH

0.000451 0.034828149534534 Solarstrom Nürnberg TenneT TSO GmbH

Table 2: Result of the Preference Analytics query in Figure 8.

Example 5 (Energymap ± Standard SQL). Since Skyline queries are not outside the ex-

pressive power of standard SQL [BKS01] we want to present the query in Example 4 in

SQL using an inelegant WHERE NOT EXISTS clause. Doing so, this is cumbersome and

not practical and leads to a much longer runtime of several minutes, especially for large

datasets and many dimensions.

SELECT (emo.power_output/1000000) megawatts,

ST_DISTANCE(’POINT(49.47 11.041)’, emo.gpscoord) AS disto,

emo.generator_type, emo.town, emo.tso AS operator

FROM energymap emo

WHERE emo.gpscoord IS NOT NULL

AND NOT EXISTS (

SELECT (emi.power_output/1000000) megawatts,

ST_DISTANCE(’POINT(49.47 11.041)’, emi.gpscoord) AS disti

FROM energymap emi

WHERE emi.gpscoord IS NOT NULL

AND (

-- no closer stations that are at least as powerful

(LOCAL.disti < LOCAL.disto AND emi.power_output >= emo.power_output) OR

-- no more powerful stations that are at least as close

(LOCAL.disti <= LOCAL.disto AND emi.power_output > emo.power_putput)

)

);

Figure 9: Preference Analytics query in standard SQL.

623

In our next example we would like to show that, as indicated in Figure 4, arbitrary expres-

sions can be used in EXASolution’s Preference Analytics.

Example 6. If for some reason the user in Example 4 had an affinity to the location

Pleinfeld, he could use a preference like in Figure 10. Here the standard SQL expression

LIKE is used to find all towns which have the term PLEINFELD in their name. Then all towns

are preferred where the condition results to TRUE.

SELECT (em.power_output/1000000) megawatts,

ST_DISTANCE(’POINT(49.47 11.041)’, em.gpscoord) AS dist,

em.generator_type, em.town, em.tso AS operator

FROM energymap em

WHERE em.gpscoord IS NOT NULL

PREFERRING UPPER(em.town) LIKE ’%PLEINFELD%’

PLUS LOW LOCAL.dist PLUS HIGH em.power_output

ORDER BY em.power_output DESC;

Figure 10: Preference with Boolean expression.

5 Experiments

5.1 Test Environment

All experiments for Skyline processing have been performed on a powerful EXASolution

cluster [KMZG13]. EXASolution is a parallelized relational DBMS which runs on a clus-

ter of standard hardware servers. Following the single program, multiple data (SPMD)

model, on each node the identical code is executed simultaneously. The data is stored in

a column-oriented way and proprietary in-memory compression methods are used. Fur-

thermore, EXASolution is designed to run in-memory, although data is persistently stored

on disc following the ACID rules. EXASolution supports the SQL Standard 2003 and can

be integrated via standard interfaces like ODBC, JDBC or ADO.NET. EXASolution runs

on EXASOL’s own Cluster Operating System (EXACluster OS). It is based on standard

Linux and provides functionality for parallel programs. In our tests we used a cluster of 25

Dell PowerEdge R720xd servers which supports 1000 simultaneously executing threads.

5.2 Dataset

In many research papers on traditional Skylines the well-known real-world datasets NBA2,

Household3, or Zillow4 are used to examine the performance of preference query process-

2www.nba.com
3www.ipums.org
4www.zillow.com

624

ing [YSZ09, HV12, TBPY13, EK14]. The NBA dataset is a small 5-dimensional dataset

containing 17264 tuples, where each entry records performance statistics for a NBA player.

Following [CJT+06], NBA is fairly correlated and therefore is not a very challenging

case for Skyline computation. Household is a larger 6-dimensional dataset having 127931

points. The Zillow dataset contains more than 2M entries about real estates in the United

States. In a distributed environment synthetic datasets with less than 10M entries are often

used to examine the performance of parallel Skyline processing. However, such a small

input size is not really a challenge for a high-performance database management system

such as EXASolution.

Currently there exists no real world benchmark for Skyline queries which supports large

datasets. In order to gain access to realistic data sets with large volumes, we use the dataset

which is used in the TPC-H benchmark5 for analytical databases. The TPC-H benchmark

is a decision support benchmark. It consists of a suite of business oriented ad-hoc queries

and concurrent data modifications. The queries and the data populating the database have

been chosen to have broad industry-wide relevance. This benchmark illustrates decision

support systems that examine large volumes of data, execute queries with a high degree of

complexity, and give answers to critical business questions.

By using the TPC-H dataset to evaluate Skyline queries, we gain access to data at nearly

arbitrary volumes. Data volumes in TPC-H are defined by scale factors, where a scale

factor of 1 refers to 1 GB of data.

5.3 Queries

In this section we present queries for Preference Analytics based on queries in the TPC-H

benchmark but expanded by PREFERRING clauses. We used queries having simple pref-

erences (Q0) and complex queries using Pareto or Prioritization as well as partitioning

(Q14). All queries are given below.

Q0: SELECT p_partkey, p_size, ps_supplycost

FROM part, partsupp

WHERE p_partkey = ps_partkey

PREFERRING LOW ps_supplycost;

Q1: SELECT p_partkey, p_size, ps_supplycost

FROM part, partsupp

WHERE p_partkey = ps_partkey

PREFERRING LOW ps_supplycost PRIOR TO HIGH p_size;

Q2: SELECT p_partkey, p_size, ps_supplycost

FROM part, partsupp

WHERE p_partkey = ps_partkey

PREFERRING LOW ps_supplycost PLUS HIGH p_size;

5http://www.tpc.org/tpch/spec/tpch2.17.0.pdf

625

Q3: SELECT p_partkey, p_size, ps_supplycost, s_acctbal

FROM part, partsupp, supplier

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

PREFERRING HIGH p_size PRIOR TO LOW s_acctbal;

Q4: SELECT p_partkey, p_size, ps_supplycost, s_acctbal

FROM part, partsupp, supplier

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

PREFERRING HIGH p_size PLUS LOW s_acctbal;

Q5: SELECT p_partkey, p_size, ps_supplycost, s_acctbal

FROM part, partsupp, supplier

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

PREFERRING (LOW ABS(ps_supplycost - 500) PLUS LOW ABS(s_acctbal))

PRIOR TO LOW ABS(p_size - 12);

Q6: SELECT p_partkey, p_size, ps_supplycost, s_acctbal

FROM part, partsupp, supplier

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

PREFERRING HIGH p_size PLUS LOW ps_supplycost PLUS LOW s_acctbal;

Q7: SELECT p_partkey, p_size, ps_supplycost, s_acctbal, l_orderkey

FROM part, partsupp, supplier, lineitem

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

AND l_suppkey = s_suppkey AND l_partkey = p_partkey

PREFERRING (LOW ps_supplycost PLUS LOW s_acctbal PLUS HIGH p_size)

PRIOR TO HIGH l_quantity;

Q8: SELECT p_partkey, p_size, ps_supplycost, s_acctbal,

l_orderkey, l_quantity

FROM part, partsupp, supplier, lineitem

WHERE p_partkey = ps_partkey and ps_suppkey = s_suppkey

AND l_suppkey = s_suppkey AND l_partkey = p_partkey

PREFERRING LOW ABS(ps_supplycost - 300) PLUS LOW ABS(s_acctbal)

PLUS LOW CASE WHEN p_size <= 10 THEN 0

ELSE p_size - 10 END

PLUS LOW CASE WHEN l_quantity >= 20 AND l_quantity <= 30 THEN 0

ELSE LEAST(ABS(l_quantity-20),

ABS(l_quantity-30)) END;

Q9: SELECT p_partkey, p_size, ps_supplycost, s_acctbal, l_orderkey

FROM part, partsupp, supplier, lineitem

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

AND l_suppkey = s_suppkey AND l_partkey = p_partkey

PREFERRING LOW ps_supplycost PLUS LOW s_acctbal PLUS

HIGH p_size PLUS HIGH l_quantity;

Q10: SELECT ps_suppkey, p_partkey, p_size, ps_supplycost

FROM part, partsupp where p_partkey = ps_partkey

PREFERRING LOW ps_supplycost PRIOR TO HIGH p_size

PARTITION BY ps_suppkey;

626

Q11: SELECT p_partkey, p_size, ps_supplycost, s_acctbal

FROM part, partsupp, supplier

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

PREFERRING (LOW ABS(ps_supplycost - 500) PLUS LOW ABS(s_acctbal))

PRIOR TO LOW ABS(p_size - 12)

PARTITION BY s_suppkey;

Q12: SELECT ps_suppkey, p_partkey, p_size, ps_supplycost, s_acctbal

FROM part, partsupp, supplier

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

PREFERRING HIGH p_size PLUS LOW s_acctbal

PARTITION BY ps_suppkey;

Q13: SELECT p_partkey, p_size, ps_supplycost, s_acctbal,

l_orderkey, l_quantity

FROM part, partsupp, supplier, lineitem

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

AND l_suppkey = s_suppkey AND l_partkey = p_partkey

PREFERRING LOW ABS(ps_supplycost - 300) PLUS LOW ABS(s_acctbal)

PLUS LOW CASE WHEN p_size <= 10 THEN 0 ELSE p_size - 10 END

PLUS LOW CASE WHEN l_quantity >= 20 AND l_quantity <= 30 THEN 0

ELSE LEAST(ABS(l_quantity-20), ABS(l_quantity-30)) END

PARTITION BY s_suppkey;

Q14: SELECT ps_suppkey, p_partkey, p_size,

ps_supplycost, s_acctbal, l_orderkey

FROM part, partsupp, supplier, lineitem

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

AND l_suppkey = s_suppkey AND l_partkey = p_partkey

PREFERRING LOW ps_supplycost PLUS LOW s_acctbal

PLUS HIGH p_size PLUS HIGH l_quantity

PARTITION BY ps_suppkey;

5.4 Results

In Tables 3 - 6 we used the TPC-H dataset with a scaling factor of 1 to 1000, i.e. up to

1000 GB of data. The column titled join size (rows) contains the number of rows after the

join in the SQL query. The result size (rows) denotes the Skyline size, i.e. the number of

objects after the preference selection. The last column elapsed time represents the runtime

of the query in seconds.

Since there is no other commercial implementation of Skyline and other approaches for

Preference Analytics (cp. Section 2) are of academic nature, this is the first benchmark of

Skylines on large datasets.

627

Query join size (rows) result size (rows) elapsed time (seconds)

Q0 800 000 6 0.094

Q1 800 000 1 0.049

Q2 800 000 1 0.049

Q3 800 000 3 0.058

Q4 800 000 3 0.059

Q5 800 000 12 0.066

Q6 800 000 33 0.077

Q7 6 001 215 35 0.184

Q8 6 001 215 51 0.197

Q9 6 001 215 73 0.206

Q10 800 000 10 000 1.109

Q11 800 000 10 001 0.695

Q12 800 000 19 646 0.886

Q13 6 001 215 58 119 3.098

Q14 6 001 215 101 997 3.610

Table 3: Benchmark results for TPC-H scale factor 1.

Query join size (rows) result size (rows) elapsed time (seconds)

Q0 8 000 000 91 0.077

Q1 8 000 000 5 0.053

Q2 8 000 000 5 0.056

Q3 8 000 000 1 0.086

Q4 8 000 000 4 0.086

Q5 8 000 000 7 0.093

Q6 8 000 000 53 0.110

Q7 59 986 052 56 0.445

Q8 59 986 052 66 0.405

Q9 59 986 052 140 0.483

Q10 8 000 000 100 001 6.236

Q11 8 000 000 100 001 5.622

Q12 8 000 000 199 263 7.752

Q13 59 986 052 580 554 34.033

Q14 59 986 052 1 000 383 38.765

Table 4: Benchmark results for TPC-H scale factor 10.

628

Query join size (rows) result size (rows) elapsed time (seconds)

Q0 80 000 000 816 0.216

Q1 80 000 000 20 0.085

Q2 80 000 000 20 0.094

Q3 80 000 000 4 0.364

Q4 80 000 000 4 0.618

Q5 80 000 000 10 0.357

Q6 80 000 000 48 0.377

Q7 600 037 902 49 4.595

Q8 600 037 902 41 5.746

Q9 600 037 902 125 4.856

Q10 80 000 000 1 000 007 55.782

Q11 80 000 000 1 000 024 61.296

Q12 80 000 000 2 000 115 79.933

Q13 600 037 902 5 496 641 350.081

Q14 600 037 902 9 268 943 406.202

Table 5: Benchmark result for TPC-H scale factor 100.

Query join size (rows) result size (rows) elapsed time (seconds)

Q0 800 000 000 8029 1.178

Q1 800 000 000 138 0.342

Q2 800 000 000 138 0.349

Q3 800 000 000 15 2.785

Q4 800 000 000 15 2.618

Q5 800 000 000 2 2.627

Q6 800 000 000 34 2.755

Q7 5 999 989 709 104 52.394

Q8 5 999 989 709 64 57.664

Q9 5 999 989 709 346 64.447

Q10 800 000 000 10 000 079 649.118

Q11 800 000 000 10 000 225 719.784

Q12 800 000 000 20 020 772 924.670

Q13 5 999 989 709 141 220 077 6 899.464

Q14 5 999 989 709 243 220 024 9 620.591

Table 6: Benchmark result for TPC-H scale factor 1000.

Figure 11 presents the runtime for all queries in logarithmic scale for scale factors 1, 10,

100, and 1000 on the TPC-H benchmark dataset.

By examining the results, there is a clear tendency for queries with smaller result sizes to

run fast and for queries with larger result sizes (at the same input size) to be slower. A

tendency which corresponds to the trade-off described in Section 3.2.

629

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Figure 11: Runtime for Queries 0 to 14 in seconds (logarithmic scale) for scale factors 1, 10, 100,
and 1000 on the TPC-H dataset.

6 Conclusion

During the last decade, data are increasingly stored in a distributed way, hence distributed

query processing has become an important and challenging problem. On the other hand,

the popularity of preference database queries due to their ability to identify sets of highly

interesting objects in large databases makes it necessary to unify these two approaches. To

tackle the problem of high performance Skyline processing in a distributed environment

we integrated preference queries into EXASolution.

This paper provides insight into how Preference Analytics works in EXASolution, a high

performance parallel and distributed engine for data analytics and data warehousing. It

is the first (and by the time of writing also the only) commercial database that features

Skylines natively and at scale. We present novel and expressive operations for preference

construction and describe a distributed Skyline algorithm. Furthermore, a quantitative

performance analysis is provided. Providing Skylines as an in-database analytical tool

enables Preference Analytics, which facilitates focusing the results of advanced analytics

on best-matching objects only, thereby enabling better and more agile decision-making.

630

References

[AK12] A. Arvanitis and G. Koutrika. Towards Preference-Aware Relational Databases. In
Proceedings of ICDE ’12, Washington, DC, USA, April 2012.

[BGZ04] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient Distributed Skylining for Web
Information Systems. In EDBT ’04: Proceedings of the 9th International Conference
on Extending Database Technology, volume 2992 of LNCS, pages 256±273, 2004.

[BKS01] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In ICDE ’01:
Proceedings of the 17th International Conference on Data Engineering, pages 421±
430, Washington, DC, USA, 2001. IEEE Computer Society.

[CCM13] J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline Queries, Front and Back. SIG-
MOD Rec., 42(3):6±18, October 2013.

[CDK06] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust Cardinality and Cost Estimation for
Skyline Operator. In ICDE ’06: Proceedings of the 22nd International Conference on
Data Engineering, page 64, Washington, DC, USA, 2006. IEEE Computer Society.

[CJT+06] C. Y. Chang, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. On High Di-
mensional Skylines. In EDBT ’06: Proceedings of the 10th International Conference
on Extending Database Technology, volume 3896 of LNCS, pages 478±495, 2006.

[DJ10] X. Ding and H. Jin. Efficient and Progressive Algorithms for Distributed Skyline
Queries over Uncertain Data. In 2010 IEEE 30th International Conference on Dis-
tributed Computing Systems, pages 149±158. IEEE, 2010.

[EF09] H. Eder and W. Fang. Evaluation of Skyline Algorithms in PostgreSQL. In IDEAS ’09:
Proceedings of the 2009 International Database Engineering & Applications Sympo-
sium, pages 334±337, New York, NY, USA, 2009. ACM.

[EK14] M. Endres and W. Kießling. High Parallel Skyline Computation over Low-Cardinality
Domains. In ADBIS ’14: Advances in Databases and Information Systems, pages
97±111. Springer, 2014.

[End14] M. Endres. A Survey on Selectivity Estimation for Preference Database Queries. In
T. Robal H.-M. Haav, A. Kalja, editor, Frontiers in Artificial Intelligence and Applica-
tions (FAIA), volume 270, pages 159±172. IOS Press, 2014.

[GRB11] M. Golfarelli, S. Rizzi, and P. Biondi. myOLAP: An Approach to Express and Evaluate
OLAP Preferences. TKDE, 23(7):1050±1064, 2011.

[HLS06] K. Hose, C. Lemke, and K.-U. Sattler. Processing Relaxed Skylines in PDMS Using
Distributed Data Summaries. In Proceedings of CIKM ’06, pages 425±434, New York,
NY, USA, 2006. ACM.

[HV12] K. Hose and A. Vlachou. A Survey of Skyline Processing in Highly Distributed Envi-
ronments. The VLDB Journal, 21(3):359±384, June 2012.

[KEW11] W. Kießling, M. Endres, and F. Wenzel. The Preference SQL System - An Overview.
Bulletin of the Technical Commitee on Data Engineering, IEEE, 34(2):11±18, 2011.

[Kie02] W. Kießling. Foundations of Preferences in Database Systems. In Proceedings of
VLDB ’02, pages 311±322, Hong Kong, China, 2002. VLDB Endowment.

[KMZG13] S. Klenk, S. Mandl, S. Zentgraf, and M. Golombek. Advanced Analytics mit der
analytischen In-Memory Datenbank EXASolution. In GI-Jahrestagung, 2013.

631

[LEMK13] J. J. Levandoski, A. Eldawy, M. F. Mokbel, and M. E. Khalefa. Flexible and Extensible
Preference Evaluation in Database Systems. ACM Trans. Database Syst., 38(3):17:1±
17:43, September 2013.

[LTL06] H. Li, Q. Tan, and W.-C. Lee. Efficient Progressive Processing of Skyline Queries in
Peer-to-Peer Systems. In Proceedings of the 1st International Conference on Scalable
Information Systems, pages 26±es, New York, NY USA, May 2006. ACM.

[LVDN14] S. Liknes, A. Vlachou, C. Doulkeridis, and K. Nørvåg. APSkyline: Improved Skyline
Computation for Multicore Architectures. In Proc. of DASFAA ’14, LNCS, 2014.

[LYLC06] E. Lo, K. Y. Yip, K.-I. Lin, and D. W. Cheung. Progressive Skylining Over Web-
accessible Databases. IEEE TKDE, 57(2):122±147, May 2006.

[PKP+09] S. Park, T. Kim, J. Park, J. Kim, and H. Im. Parallel Skyline Computation on Multicore
Architectures. In ICDE ’09: Proceedings of the 2009 IEEE International Conference
on Data Engineering, pages 760±771, Washington, DC, USA, 2009. IEEE.

[RJVDN09] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvåg. AGiDS: A Grid-Based
Strategy for Distributed Skyline Query Processing. In Globe ’09: Proceedings of the
2nd International Conference on Data Management in Grid and Peer-to-Peer Systems,
Globe ’09, pages 12±23, Berlin, Heidelberg, 2009. Springer-Verlag.

[SHZ+10] S. Sun, Z. Huang, H. Zhong, D. Dai, H. Liu, and J. Li. Efficient Monitoring of Skyline
Queries over Distributed Data Streams. Knowl. Inf. Syst., 25(3):575±606, 2010.

[SKP11] K. Stefanidis, G. Koutrika, and E. Pitoura. A Survey on Representation, Composition
and Application of Preferences in Database Systems. ACM TODS, 36(4), 2011.

[SLB10] J. Selke, C. Lofi, and W.-T. Balke. Highly Scalable Multiprocessing Algorithms for
Preference-Based Database Retrieval. In DASFAA ’10: 15th International Conference
on Database Systems for Advanced Applications, volume 5982 of LNCS, pages 246±
260, Tsukuba, Japan, 04/2010 2010. Springer.

[TBPY13] G. Trimponias, I. Bartolini, D. Papadias, and Y. Yang. Skyline Processing on Dis-
tributed Vertical Decompositions. IEEE Transactions on Knowledge and Data Engi-
neering, 25(4):850±862, 2013.

[VDK08] A. Vlachou, C. Doulkeridis, and Y. Kotidis. Angle-based Space Partitioning for Effi-
cient Parallel Skyline Computation. In SIGMOD ’08: Proceedings of the 34th SIG-
MOD International Conference on Management of data, SIGMOD ’08, pages 227±
238, New York, NY, USA, 2008. ACM.

[VP10] G Valkanas and A N Papadopoulos. Efficient and Adaptive Distributed Skyline Com-
putation. Lecture Notes in Computer Science, pages 1±18, April 2010.

[WVO+09] S. Wang, Q. H. Vu, B. C. Ooi, A. K. H. Tung, and L. Xu. Skyframe: A Framework for
Skyline Query Processing in Peer-to-Peer Systems. VLDB J., 18(1):345±362, 2009.

[WZF+06] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. E. Abbadi. Parallelizing
Skyline Queries for Scalable Distribution. In EDBT ’06: Proceedings of the 10th
International Conference on Extending Database Technology, volume 3896 of LNCS,
pages 112±130. Springer, 2006.

[XC10] Y.-Y. Xiao and Y.-G. Chen. Efficient Distributed Skyline Queries for Mobile Applica-
tions. Journal of Computer Science and Technology, 25(3):523±536, 2010.

[YSZ09] L. Zhu Y., S., and Zhou. Distributed Skyline Retrieval with Low Bandwith Consump-
tion. TKDE, 2009.

632

