
Model-Based Design of ECU Software –
A Component-Based Approach 

Ulrich Freund, Alexander Burst

ETAS GmbH,
Borsigstraße 14, 
70469 Stuttgart

Germany

Abstract: This paper shows how architecture description languages can be tailored 
to the design of embedded automotive control software. Furthermore, graphical 
modeling means are put in an object oriented programming context using classes, 
attributes and methods. After a survey of typical automotive requirements, an 
example from a vehicle’s body electronics software shows the component based 
architecture. Introducing the concepts of component and connector refinement 
provide means to close the gap between system theoretical modeling and resource 
constraint embedded programming practice, leading to an object-oriented behavior 
description on the one hand and to a common middleware on the other. 

1 Introduction 

Around ninety percent of vehicle innovations are mainly driven by electronics. Hence, 
software- and systems-engineering becomes a crucial discipline which vehicle
manufacturers and their suppliers have to conquer. Automotive software runs on so-
called Electronic Control Units (ECU). Besides a microcontroller and memory, an ECU
consists of power electronics to drive sensors and actuators. The software implementing
control algorithms combines the sensor values and calculates some meaningful actuator 
signals. ECU software- and system-engineering is characterized by the following 
characteristics:

- The software is embedded which means it directly interacts with sensors and
actuators and does not change its purpose during lifetime.

- The software fulfils a dedicated control task, i.e. the performance of the control 
algorithm imposes real-time constraints on the software  to be fulfilled.

- The software is realized as a distributed system. The information of sensors located 
on other ECUs can (and hence will) be used to improve the control algorithm’s
performance. This means that the sensor information has to be sent to several other
ECUs.

67



- The development itself is distributed. As a rule, a vehicle manufacturer employs
several suppliers to deliver the control algorithms and the ECU. Since both the
algorithms as well as the ECUs have to work together, the vehicle manufacturer has 
to do a lot of integration work to get the vehicle on the road.

Since vehicle manufactures traditionally put their focus on production cost rather than on 
development cost, the sensors and actuators along with the bare ECU represent almost
the whole amount of costs for electronics spent. Though software does not have a direct
amount of production cost, it is not for free! The only parameter where software
contributes directly to production cost is by memory size. It is therefore a must for a 
software to be as tiny as possible. Furthermore, there is a direct relationship between the 
amount of production cost for sensors/actuators and the complexity of the control
software in between. 

To meet these constraints several ECU-programming techniques have been identified in
the last twenty years: 

- Establishment of building  blocks and sub blocks. Exchange of information between
building blocks asynchronously by means of messages (ECU global variables)
instead of synchronous procedure calls.

- Call stack minimization due to limited synchronous function calls within a building
block.

- Use of message duplication in case of tentative task interruption. Cyclic tasks with
well chosen cycle time ensure the meeting of hard real-time constraints.

- To save overall vehicle’s weight and wiring harness, bus-systems are preferred for 
the communication between ECUs. 

- In case of bus-interconnected ECUs, cyclic broadcasting mechanisms with collision
resolution (e.g. CAN) are the preferred communication means.

- Explicit and static scheduling of functions within building blocks according to the 
timing requirements keeps track of the memory demands and – more importantly – 
gives the software engineer the chance to intervene. 

Well established analysis and design methods in computer science on the one hand and
control engineering on the other are UML [OM99], SA/RT [WM85] as well as static
data flow graphs [LP95], the latter are better known as control engineering block
diagrams. These methods serve well the analysis phase but clearly lack the design
requirements of ECU software: 

- In UML class diagrams it is not possible to specify communication constraints in
associations.

- Communication between or within an (orthogonal) StateChart [Ha87] is by means
of events – the order of event handling has to be specified elsewhere to ensure
hardware constraints.

68



- The strength of static data flow diagrams, the automatic built schedule of functions
within building blocks and hence invisibility to the user, is their weakness too. To fit 
a building block into an ECU explicit scheduling of functions has to done
elsewhere.

Even worse, all these methods allow a complex design by employing techniques not
suited for a efficient ECU software design (e.g. orthogonal states).

This paper is organized as follows: Section 2 introduces abstraction levels in automotive
control software engineering. A typical architecture description language for automotive
purposes is described in section 3 and used throughout this paper. This language is
further refined by behavioral classes (section 4) and component instances (section 5). 
Section 6 brings separate functions in a vehicle context.

2 Abstraction Levels in Automotive Control Software

Automotive Control Software can be viewed from different levels of abstraction. During
the analysis and design process, new design and implementation information will be
added to an analysis model and then transformed into ECU software [SZ02].

An appropriate modeling language will cope well with all levels of abstraction, acting as 
an information integration tool. Typical abstraction levels are

- the analysis model,

- the design model (functional architecture model),

- the implementation model (physical architecture model)

- and the software itself.

Function Pool

Topology-Pool

Vehicle Database

Define
Vehicle
Function

Define
Vehicle HW-
Topology

Define
Mapping

ECU-Project

Integrate
ECU

Integrate
ECU

Integrate
ECU

Generate Target
Dependent Behavioral
Code for
Elementary Functions

ECU-ProjectECU-Project

Define
Function
Interfaces

Define
Elem. Fct.
Interfaces

Build &Test
Behavior

Define
Function
Interfaces

Define
Elem. Fct.
Interfaces

Build &Test
Behavior

Define
Function
Interfaces

Defíne
Elem. Fct.
Interfaces

Build &Test
Behavior

Behavior

Behavior

Behavior

Figure 1: Two-stage design process 

69



On every level of abstraction, it is possible to simulate the model, to check the properties
of the model and to generate code for an appropriate target, e.g. a PC, an experimental
hardware or a series production ECU. Generally speaking, the modeling language is
capable of linking the information horizontally (e.g. simulation and code-generation) and 
vertically (i.e. between different layers of abstraction). This approach forms the basis for 
the development according to the V-Cycle. However, abstraction levels do not focus on 
the other side of the pie, namely the interaction between the vehicle manufacturer and its
suppliers.

As mentioned above, the vehicle manufacturer is responsible for the overall functionality 
whereas the suppliers deliver the control algorithms and the hardware. It is the task of
the vehicle manufacturer to coordinate the suppliers and let them work as cohesive as 
possible together. Means for identifying and describing vehicle control functions are
necessary; specifying the interfaces is crucial. Currently, the interface description is
more or less the communication matrix of a CAN-Bus, i.e. a list of how to link
application signals with CAN frames. Due to massive integration problems, it is 
common understanding among the vehicle manufactures that the bus system is the wrong
level of abstraction – some higher level means for integration are necessary.

Provided the appropriate means are available the development of a vehicle control
function can be divided in two separate stages. The vehicle project independent
development of functions and their tailoring to dedicated vehicle projects.

The vehicle manufacturer identifies vehicle functions, the interaction of elementary
functions within the function or with other functions. The vehicle manufacturer asks 
suppliers to deliver vehicle functions which might be demonstrated by rapid
development systems or simulation. The quality and performance of the functions might
be assessed – function suppliers might be candidates for future series production
projects.

Driven by the market requirements the vehicle manufacturer eventually decides to start a 
series production project (new vehicle). Instead of reinventing all functions the vehicle
manufacturer asks a dedicated supplier to deliver its function for the project. The vital
step of identifying the functions has been done independently. All elementary functions
are mapped to the ECUs being involved in this project. Needless to say that the
communication of the elementary functions between ECUs determines communication
matrix. The supplier now receives the mapping system, puts its algorithm in the 
elementary functions and generates the code for the given ECU.

Figure 1 shows the different tentative roles of the vehicle manufacturer and the supplier.
The white boxes show the specification and integration activities of the vehicle 
manufacturer whereas the rest of design tasks is normally done by the suppliers. The
upper left parts leading to the function pool are done independently of a vehicle project.
The lower parts are vehicle project dependent.

The next sections presents appropriate means for identifying functions, elementary
functions and interfaces. Furthermore, the modeling of the behavior and its mapping to 
tiny runtime-systems will be described.

70



3 Component Based Modeling of the ECU-Software Architecture 

3.1 Body Electronic Example 

A simplified software controlling a window lifting facility shall demonstrate the 
concepts of architecture modeling and the subsequent refinement steps necessary to run 
the software on an ECU-network.

The control-software evaluates the state of a switch and drives a motor which opens or 
closes the window. Of course, opening and closing has to be stopped when the lower or
upper limit is reached w.r.t. to the vehicles body. An anti-squeeze-function1 is omitted
due to complexity reasons.

The function offers a normal open/close mode, i.e. the button is pressed during the whole
process. A ‘tip-mode’ opens or closes the windows by pressing the switch only for a
very short time. The window opens or closes until either the limit is reached or the 
button is pressed again. Limit detection is based on measuring the window-lifter’s motor
current.

3.2 Architecture Description Languages 

As a general perception, software architecture is often described by means of “box-and-
line” diagrams. Though being very popular they have the big disadvantage that their
correctness can neither be ensured by construction nor later be checked by formal
methods. Architecture Description Languages (ADL) try to keep the advantages of “box-
and-line” diagrams, i.e. their simplicity and understandability even by non-computer-
scientists, and augment them with means to analyze their correctness. According to 
[Ga01], a typical ADL consists of

- Connectors

- Components

- Systems

- Properties

- Style

There exist a lot of activities to tailor architecture description languages to automotive
needs. For example, in 1994 the TITUS-project [Ei97][Mü99] was started by
DaimlerChrysler. This is an interface based approach [Fr00] and resembles in many
cases to the ROOM [SR98][Ru99] methodology, but differs considerably in details
mainly to make an ‘actor-oriented’ approach suitable for ECU-Software. A detailed
comparison between the TITUS- and the ROOM methodology is given in [HRW01].
Projects focussing on similar aspects are the BROOM methodology of BMW [Fu98], the
French AEE research effort [Bo00], and the Forsoft II (Automotive) project [GR00]. The

1
Einklemmschutz in German

71



latter project expresses ADL concepts by means of standard UML and uses the tool
ASCET-SD [ASD01] to bring designs down to ECU software. Last but not least, in
spring 2001 the European research project EAST/EEA2 was started as an ITEA project.
One of the main goals of the EAST/EEA project is to develop a standardized ADL for
automotive software.

3.3 Components and Service Access Points 

The ADL described in this paper is based on the common characteristics of the above
mentioned automotive ADL research efforts. Components are the basic building blocks
of this ADL. They employ a class/parts/instance concept and can therefore compared
with capsules in ROOM. Since instantiation can only be performed when the final
runtime-system is known, component instances to come are described as parts. Systems
and subsystems only consist of parts and connectors and cannot have own behavior
which is different to ROOM.

B a s i c O p e r a t i o n :
M o t o r C o n t r o l
I S A P c :  i r s t d c

s :  i s t d c

D o o r C o m m a n d s

c :  n u l l _ c
s :  D o o r C o m m a n d s

1

L i m i t D e t e c t i o n

c :  n u l l _ c
s : g e n O n O f f _ c

2 P r e s s B u t t o n C u r r e n t

c :  V a l u e F i n i s h e d
s :  n u l l _ c

1

M o t o r C o m m a n d s

c : g e n 3 S t a t e _ c
s :  n u l l _ c

1

A c t u a l C u r r e n t _

c :  n u l l _ c
s : g e n P u t V a l _ c

1

Figure 2: The BasicOperation component with its interfaces 

Components are encapsulated from their environment by means of interfaces. In this 
ADL, interfaces are described by Service Access Points (SAPs) and ports. Interfaces 
describe what services a component offers to its neighbors as well as which services the
component requires from its neighbors. Using a client/server interpretation of
components, a SAP providing services is called server-SAP whereas a SAP requiring a
service is called client-SAP. However, a SAP’s role is associated to the primary
communication role since SAPs can describe a bi-directional communication. Thus, 
every SAP employs a client and a server signal-set complementing each other. This is

2 Embedded Architecture Software Technology/Embedded Electronic Architecture

72



indicated in Figure 2 by an s: prefix (for server) or an c: prefix (for client) in front of the 
signal-set name. If a SAP implements only one role the - non-existing - complementing
signal-set is indicated by the null_c signal-set. The primary role of a SAP depends on 
which side of the component the SAP resides: left side for server-SAPs, right side for
client-SAPs.

Figure 2 shows the component doing the basic motor control algorithm for one window.
It provides services for handling the commands of the switch for a door, appropriate
handling if the window reaches the lower limit of the door frame or the upper limit of the 
roof as well as means to use the actual motor current being measured by dedicated
neighbor components. Server-SAPs are drawn on the left side of a component.
Consequently, the required services of the component are shown on the right side which
are requests to drive the motor in the appropriate direction and delivering a maximum
current, measured during a given time. Using SAPs only on the left or right side is one 
further difference to ROOM3 and reflects the data flow thinking of automotive control
engineers.

Whereas SAPs describe the functional interface, ports are used for navigation purposes 
between components. Especially, the number of ports per SAP indicate how many
clients (or servers) can use the provided service. The service itself is the same for all 
ports. From this point of view, ports can be interpreted as instances of a SAP. Every SAP
must have at least one port. Subsequent sections will show how ports relate to the
middleware and SAPs to the behavior of a component.

For example, the DoorCommands SAP of the component BasicOperation has one 
port, indicated by the number at the top of the SAP symbol. The LimitDetection
SAP below the DoorCommands SAP has two ports, one for the upper- and one for the
lower-limit. Both ports will convey the signals of the signal-set genOnOff_c depicted
in

Figure 3.

A port of a client-SAP can be connected to more than one component, but it depends on 
the communication mode whether all connected components will receive a request or 
only dedicated components. Two communication modes are possible:

- peer-to-peer, meaning that the port has to be selected separately or, 

- broadcast, where all connected classes will receive a request. 

The broadcast mode is typically used for signals being used by several clients in the
vehicle, e.g. the vehicle voltage, the clamp-state or the vehicle’s actual velocity. As a 
rule, the peer-to-peer mode is used to drive several devices of the same type, e.g. an 
LED.

3 The ISAP service access point on the top of Figure 2 is only used initialization purposes 

73



Figure 3: Signal-set consisting of the on and off method

3.4 Kinds of components 

Components are elementary in the sense that they do not have further decompositions.
Components can be distinguished into client/server and firmware components. Firmware
components are directly connected to sensors and actuators. Their behavior can be 
described by means of C-code. Since firmware components directly incorporate HW-
drivers, they are bound to specific ECUs. Client/server components are independent
from hardware and can be assigned to arbitrary ECUs in a mapping step described later.
An exception are client/server components next to firmware components performing
adaptations w.r.t. to sensor and actuator peculiarities. All other client/server components
are called monitors.

3.5 Connectors 

In this ADL, services are described by means of methods having as a rule no return
values. Therefore, the methods have the same meaning as ROOM-signals. The
aggregation of all methods (or signals), offered at a server-SAP or being incorporated at
a client-SAP, establishes the signal-set being transferred by a connector. Signal-sets can 
be structured hierarchically using a single inheritance mechanism. A “NULL” signal-set
containing no methods represents the root of the signal-set tree. The functionality of a 
signal-set can be extended by creating a child set and adding new methods.

Figure 4 shows the signal-set DoorCommands. Its parent is the null_c signal-set set 
having no methods whereas the DoorCommands signal-set consists of the methods
off(), open(), close(), tipopen(), tipclose() and 
stop().

Figure 4: The DoorCommands signal-set

74



A connector employs two signal-sets having their roles indicated at the connected SAPs 
by the prefixes s: or c:. It is mandatory that a server signal-set of a component’s SAP has 
its counterpart as client signal-set at the connected SAP of the neighbored component
and vice-versa.

PCFValueClass :
ActualCurrent

OutSAPIF

c: genPutVal_c
s: null_c

0+

PSF3StateClass :
MotorDriver

inSAP

c: null_c
s: gen3State_c

1

BlockDetection :
LimitDetector
ISAP c: irstd c

s: istd c

LimitDetection

c: genOnOff_c
s: null_c

2

ActualCurrent

c: null_c
s: genPutVal_c

1

PressButtonCurrent

c: null_c
s: ValueFinished

1

DoorCommands

c: null_c
s: DoorCommands

1

BasicOperation :
MotorControl
ISAP c: irstd c

s: istd c

DoorCommands

c: null_c
s: DoorCommands

1

LimitDetection

c: null_c
s: genOnOff_c

2 PressButtonCurrent

c: ValueFinished
s: null_c

1

MotorCommands

c: gen3State_c
s: null_c

1

ActualCurrent_

c: null_c
s: genPutVal_c

1

DoorCommands

c: null_c
s: DoorCommands

2

Figure 5: Inner View of the Window Lifting subsystem.

During the refinement phase, the methods have to be described by graphical or textual
models (which are translated to C-code later on). This is achieved by behavioral
modeling tools (BMT) or pure C-Code. In simple applications the whole functionality
can be expressed within the methods, whereas in more complex designs they act as glue
for the input vector of a finite-state-machine.

3.6 Systems 

Systems serves the need for hierarchy. They can include components or further systems
as parts and offer services at SAPs. Systems use services of other sub-systems or 
components. Since the SAP of a system represents the SAP of a component, the
connection between the system’s SAP and the component’s SAP is called binding.
Connected SAPs between subsystems are called bindings too.

The top level system describes the entire structure of the application. Since in 
automotive software resources are always allocated statically and dynamic instantiation
is not used, all connectors are already resolved at compile time.

The example (sub-)system in Figure 5 shows the interface to the outside world in the
upper left corner, i.e. the commands of the door-switch. The ‘half-rounded’ component
on the left is used for sensing the motor’s current whereas the rightmost component is
used to drive the motor directly. The elementary components in the middle are the basic
motor control and the limit detector. The door command signals are evaluated by both

75



elementary components. The same holds for the actual motor current. The measured
maximum current is sent from the basic motor control component to the limit detecting
component.

3.7 OSEK-based Remote Procedure Call 

Using an event driven style, communication between components is asynchronous and
explicit. To have control over the timing behavior of two components residing on remote
ECUs, it is necessary for the designer to be aware of the traffic a remote procedure call 
will generate. For example, a getValue() procedure call has to be modeled with no 
return value. Whereas in the classical remote procedure call (RPC) world calling a
getValue method of a (tentative stateless) server and expecting the result at a later
(unspecified) point in time, the getValue()method in the OSEK4-based RPC world 
(or ORPC for short) can only set a flag at the server. The server will then notice the set
flag and calls the putValue(real result) method of the client. The result will be 
sent as the actual parameter of the method, thus using the secondary roles of the SAPs’ 
complementary signal-set.

This none-stateless interpretation of a remote procedure call under automotive
constraints, hence OSEK-based Remote Procedure Call, not only makes the timing
implications explicit to the designer but furthermore encourages a clear design based on 
pure interfaces. Components support this design approach.

4 Means of Behavioral Modeling 

The behavior of a vehicle control function describes the functionality of the system. The
system behavior will be measured against the performance criteria. During the analysis
and design phase, the performance criteria of a control algorithm has to be checked by
means of analysis, simulation and experiments.

Since vehicles are safety critical systems, it is wise to use system theoretic modeling
means like finite state machines or control engineering block diagrams to design control
algorithms. To bring the design down to an ECU, a more software oriented modeling is
crucial, e.g. to make use of a class/instance concept while keeping the advantages of a 
graphical behavior description. A tool providing this dedicated automotive control
software view is ASCET-SD. 

4 OSEK means “Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug” and is a 
standard for automotive embedded operating systems

76



Figure 6: Data-Flow graph method for the maximum current detection 

4.1 Using Behavioral Classes as Component Refinement 

Component refinement means to add behavior to the components. The component’s
interfaces have to match the input- and output signals of the control algorithm. The
class/part/instance concept of the above described ADL can only be kept during the step 
of component refinement by using the class/part/instance concept for behavioral 
modeling too. Furthermore, the method-like signals of the ADL’s signal-set should have
a direct counterpart in the control-algorithm. Thus, the behavioral class concept
described below forms the conceptual basis for component refinement.

4.2 Behavioral Classes

A behavioral class captures control algorithms by means of methods and attributes.
Inheritance and associations are omitted. Inheritance is covered by means of variants of a
component. A behavioral class is a prototype and can have multiple instances 
somewhere in the control algorithm. It may use other classes by means of aggregation.

Within an aggregate of an object, the communication is done by means of synchronous
method calls, i.e. by calling a method of the aggregated class. In a behavioral class the 
execution sequence of statements is given by the order of the statements. A method is a
collection of statements realizing Boolean and arithmethic expressions as well as method
calls to aggregated objects. Control structures like loops and selections constitute a 
powerful programming language.

Whereas textual description languages focus on statements, graphical descriptions
emphasize the system theoretic aspects. Hence, the methods are described by either a 
finite state machine or a data flow graph. The methods of the SAP DoorCommands are 
shown in Figure 7. If one of these methods is called, the appropriate the enumeration
type SwitchState will be set to the appropriate value. The method names have the
form /1/off for the off() method. The number in front of the name shows the
sequence number. A method calculating the maximum measured current within a given

77



time is depicted in Figure 6. It is named calcPressButtonCurrent and realizes a 
sequence of three graphical statements.

Figure 7: Data flow graph of the DoorCommands methods 

Figure 8 shows how the enumeration attribute SwitchState is evaluated by the finite
state machine diagram of the method trigger. The method
calcPressButtonCurrent is in invoked in a refined diagram of the hierarchical
state MotorDown.

4.3 Mapping of Signal-Sets to Methods of Behavioral Classes

The methods of a behavioral class correspond to the signals in a signal-set. Since a 
component maintains its signal-sets by means of service access points, the behavioral 
class has to implement all signal-sets in the context of a SAP. Method templates can be
generated out of a component description of this ADL.

5 Means of Runtime-System Modeling 

As stated in the introduction, automotive control software is tailor-made to a series
production vehicle. Whereas the hardware consists of interconnected ECUs nowadays an 
ECU will employ tiny operating systems. An assessment of the runtime properties of an
automotive control function requires its resource allocation scheme which can only be 

78



evaluated on instance level. A component instance combines middleware aspects with
instances of behavioral classes. The latter can be derived by means of component
refinement whereas the former is the result of connector refinement described in the next
section.

Figure 8: State Transition Diagram of an (Extended) Finite State Machine Behavioral Class

Figure 9: DriverMotorControl component instance with its surrounding middleware 

5.1 Connector-Refinement 

As mentioned above, the interfaces of a component are described by means of SAPs and 
ports. Methods of a signal-set employed at a SAP form the template for the methods of a
behavioral class thus being the conceptual basis for component refinement. Ports are a 
template for the IPC-buffers of the middleware and therefore establish the conceptual 
basis for connector refinement.

79



5.2 IPC-Buffers 

Asynchronous communication between tasks in a real-time operating system is realized
by the mailbox principle5. Since automotive control systems have a static structure, the 
mailbox has dedicated entries for each communication connection realizing a connector
in a typical architecture description language. Figure 9 shows an example associating the
behavioral class instance DriverMotorControl with several mailbox-entries (IPC-
buffers) on both sides of the component instance. IPC-buffers being read from are shown
on the left side whereas IPC-buffers being written to are shown on the right side. The
behavioral class instance in the middle has connections from its methods to the IPC-
buffers. These connections are called stub-routines and may contain operators. Typical
operations are endian conversions or ‘method number’-interpretation described in the
next section. Therefore, all graphical elements of Figure 9 not belonging to the
behavioral class instance constitute the middleware contribution of the component. The 
ensemble of middleware contribution and behavioral class instance is called a Module in
ASCET-SD. On ECU level the IPC-buffers are typically realized as global variable
which might be duplicated in case of a tentative interruption by a higher priority task.

Figure 10: DoorCommands stub-routine

5.3 Stub-Routines 

Reading from and writing to mailbox entries is performed by so-called stub-routines. It
is their task to read values from the input mailbox entry and call the method of a
behavioral class, interpreting the just read values as actual parameters for the methods of 
the behavioral class. In a signal-set, every method has an associated number starting with
0 for the first method. Depending on the type of the runtime-system, tentative formal

5 The mailbox might be organized as a queue.

80



parameters of a method can either be stored in separate IPC-buffers or concatenated to
the bits reserved for the method number.

The stub-routine for the DoorCommands signal-set in the lower left part of Figure 9 is 
depicted in more detail in Figure 10. The stub-routine inputStub reads the method
number out of the IPC-buffer DriverDoorCommand and calls the appropriate
method of the instance DriverMotorControl. Remember that the methods of the
DoorCommands signal-set do not have formal parameters.

As written in section 3, the LimitDetection SAP of the component
DriverMotorControl has two instances in form of ports. Whereas Figure 2 shows
only the number of employed ports at the top of the SAP symbol the corresponding IPC-
buffers are made explicit on the middleware level. The middleware contribution of the
LimitDetection SAP is shown in detail in Figure 11. 

Figure 11: IPC-buffers of the LimitDetection SAP 

To summarize, a component instance consists of :

- An instance of a behavioral class 

- Mailbox-entries related to the SAPs of a component

- Stub-routines

From an ECU-centric point of view, the ensemble of all mailbox-entries and stub-
routines defines its middleware and hence is part of the runtime-system. The middleware
of an ECU, i.e. mailbox-entries and stub-routines, can be automatically generated by
using the system model built in the above described ADL. Furthermore, the instantiation 
process is performed automatically too.

5.4 Scheduling of Component Instances 

Scheduling elements are implemented as void/void C-functions being called from OS-
tasks. The order of the scheduling elements within an OS-task determines its priority
within the task. The calling sequence stub-routine/method-call of a behavioral-class
instance will be implemented in a void/void C-function and thus forms a scheduling
element. Hence, the activation time of the OS-task determines, via its associated 
scheduling elements, the timing behavior of the control algorithm realized by behavioral
classes.

81



6 The Vehicle Perspective: ECU-Networks

The above sections have described how a typical architecture description language can
form the backbone of component- and connector refinement. The result of the
refinement steps is a list of component instances per automotive control function. The
ensemble of all component instances to be used in a vehicle determines the software
architecture. In an allocation step, the component instances are mapped to ECUs, i.e.
forming a deployment diagram. After this mapping, some signals have to be exchanged
via a PDU6 (e.g. a CAN-Frame) of the ECU-network. All PDUs are defined w.r.t. the
vehicle. Mapping of every connector to a single PDU is not feasible in an automotive
environment because of resource- and timing constraints. Hence, it is common sense to 
map several signals of connectors to a single PDU provided that they own the same
timing properties. Addressing is not an issue because the CAN-bus uses broadcasting 
mechanisms. The list of signal-sets to be transmitted over the communication medium is
given by the distribution of the components to the ECUs. The communication system
can be validated by means rate-monotonic-analysis and simulation. Furthermore, the
communication software can be configured automatically out of a component
instance/ECU mapping description.

7 Summary 

To enhance the productivity in embedded automotive control software design, a clear
software architecture is indispensable. A typical ADL forms the backbone of a vehicle’s
software architecture. Components are refined by means of behavioral classes whereas
connectors are realized by well established ECU-programming means. Hence, an
appropriate refined ADL constitutes the conceptual basis for model-based design of
distributed ECU-software.

References

[ASD01] ASCET-SD User's Guide Version 4.2; ETAS GmbH; Stuttgart; 2001. 

[Bo00] Boutin, S.: Architecture Implementation Language (AIL); 1er Forum AEE;
Guyancourt; March 2000;
http://aee.inria.fr/forum/14032000/SB_Renault.pdf.

[Ei97] Eisenmann, J. et al.: Entwurf und Implementierung von 
Fahrzeugsteuerungsfunktionen auf Basis der TITUS Client Server 
Architektur; VDI Berichte (1374); pp. 309 – 425; 1997; (in German).

[Fr00] Freund, U. et. al.: Interface Based Design of Distributed Embedded
Automotive Software - The TITUS Approach. VDI-Berichte (1547); pp. 105
– 123; 2000. 

6
Protocol Data Unit

82



[Fu98] Fuchs, M. et al.: BMW-ROOM An Object Oriented Method for ASCET-
SD; SAE Paper 98MF19; Detroit; 1998. 

[Ga01] Garlan, D.: Software Architecture; in Wiley Encyclopedia of Software 
Engineering,; J. Marciniak (Ed.); John Wiley & Sons, 2001. 

[GR00] Gebhard, B.; Rappl, M.: Requirements Management for Automotive
Systems Development; SAE 2000-01-0716; Detroit; 2000. 

[Ha87] Harel, D.: StateCharts: A Visual Formalism for Complex Systems; Science 
of Computer Programming  8(3); pp. 231- 247; 1987. 

[HRW01] Hemprich, M.; Reiser, M.O.; Weber, M.: Die TITUS-Modellierungsnotation 
und ihre Zuordnung zu UML/RT; OBJEKTspektrum 2/2001; pp. 32 ff.;
2001. (in German).

[LP95] Lee, E.A.; Parkes, T.: Dataflow Process Networks; Proceedings of the IEEE; 
vol. 83; no. 5; pp. 773-801; 1995.

[Mü99] Müller, A.: Client/Server-Architektur für Steuerungsfunktionen im KFZ;
it+ti Volume 41; Issue 5; pp. 41 ff.  Oldenbourg-Verlag; 1999; (in German).

[OM99] OMG: UML Unified Modeling Language Specification. Version 1.3; 1999;
http://www.omg.org.

[Ru99] B. Rumpe et al.: UML + ROOM as a Standard ADL; Proc. ICECCS'99 5th
Int. IEEE Conf. on Engineering Complex Computer Systems; pp. 43 - 53; F. 
Titsworths (eds.); IEEE Computer Society, Los Alamitos; 1999. 

[SR98] Selic, B.; Rumbaugh, J.: Using UML For Modeling Complex Real-Time
Systems; 1998; http://www.rational.com/media/whitepapers/umlrt.pdf.

[SZ02] Schäuffele, J.; Zurawka, T.: Automotive Software Engineering – Current
Situation, Perspectives and Challenges; Automotive Electronics I/2001; pp. 
10 - 21Vieweg-Verlag; Wiesbaden; 2002; (in German).

[WM85] Ward, P.; Mellor, S.: Structured Development for Real-Time Systems.
Prentice-Hall, 1985. 

83


