Adding Real Time Capabilities
to the UNIX* Operating System

Suzanne M. Daughty
Sol F. Kauy
Steven R. Kusmer
Douglas U. Larson
David C. Lennert
Frank-Peter Schmidt-Lademann

Hewlett-Packard Company

ABSTRACT:

Adapting the Unix operating systems to real-time markets is
a lucrative challenge. By adding a little new functionality
and a lot of performance tuning, Unix systems can support
more demanding real-time applications such as those found on
the factory floor, tapping 1into &a multi-billion dollar
market demanding a portable software environment such as
System U. Most of the needed real-time functionality is
already found in Syustem U and 4.2BSD. Performance tuning is
needsd in the area of response time, especially process
dispatch latency, which on typical Unix systems is measured
in seconds rather than milliseconds. This paper presents
what functionality is needed to adapt Unix systems to real-
time markets, how they may acquire the needed performance,
and how this combination satisfies real customer needs.

HPUX/RT is a Unix implementation with a BSD4.2 Kernel that
implements the SUID and is enhanced with BSD4.2

functionality and HP propriatory services. HPUX/RT was
especially tuned to provide deterministic realtime response
and enhanced with functionality needed for realtime
applications. We will discuss the methods used to achieve

realtime performance in the HPUX/RT operating system,

* Unix is a reqgistered trademark of AT&T in the United
States and other countries,

151

1. Requirements for Reel-Time Systems

The UNIX operating system is found in many marketplaces. 1t
is the operating system for scientific supercomputers ang
FCs . Howewer, one of the final frontiers for the acceptanc,
of UNIX systems is in the real-time marketplace, and for ,
good reason: the real-time customer is the most demandinq
customer there is. The real-time customer's demands fa);
within three categories:

Performance

Real-time applications are primarily measured by thej,
performance. Therefore, real-time customers wil))
expect to squeeze the lest ounce of performance out ¢
a real-time system to meet their needs, and they wi])
sometimes take measurements, their computer wvendo,
never expected. The performance characteristics they
measure are typically in terms of response time

or
throughput. An example of & response time measure ;¢
"How long after the receipt of an interrupt from mys

parallel 10 card can the system run my process whijch
was waiting for that interrupt?" An example of a real.
time throughput measure is "How long will it take fgo,
me to push my two gigabytes of data from my dewice to
the filesystem?". The real challenge is that both
questions will often be asked by the same customer!

Determiniam
Customers experct that & real-time system will react in
a deterministic manner. For example, it is not enough
to have a gnod response most of the time ~- you must
provide gocod responze all of the time. Real-time

customers often build & computer into a system that has
unforgiving constraints, which is usually because the
system is controlling or monitoring other devices or

machinary. As an example, a real-time computer built
into a steel mill whose steel trauels at 30 mph will pe
expected to respond quickly to alarm conditions. If

the computer unexpectedly becomes busy for a whole
second, the steel in the steel mill will have treveled
44 feet, and could possibly be strewn over the stesel
mill floor.

Flexibility

In the end, it is the real-time customers who truly

152

know besnt how e real-time computer can solvue their
applications needs. Customers must be provided with
tools for writing their own drivers and for measuring
system performance. They must be provided with source
code, because they choose to understand in-~depth how a
aystem performs and they might want to tune it for
their application. On the other hand, wvendors of
real-time computers must be humble, because real-time
customers are glad to tell then how to build their
systems|

The remainder of this paper presents e definition of a
real-time system and then explains the real-time features
implemented on the HP 9000 Series B00 computars. The HP 9000
is HF's computer family for ergineering and manufacturing,
and it runs HP-UX, a superset of AT&T SUID Issums 1. The
Series 800 is HP's Precision Architectures computer line
under the HP-UX operating system.

2. What is e Real-Time System?

A real-time system is a system that can respond in =a
deterministic and timely manner to events in the real world.
Events in the real wpr]ld could mean either large amounts of
data that must be processed fast enough to prevent losing
data (data throughput), or discrete events that must be
rrcognized and responded to witin certain time constraints
(response time),

The table 1 presents and categorizes some real-time
applications. 1t 1s important to note, that this list is by
no means comprehensive; its purpose is to show the wvariety
and pervasiveness of real-time applications.

3. Adding Real-Time Capabilities to UNIX

Given a definition of real~time and some sample real-time
applications, the next question is "How can the UMIX
operating system be augmented to meet the requirements of
real-time a2pplications?". While using System U as a base,
HP-UX answers these questions in two parts: 1) by
incorporating functionality from 4.2 BSD and adding new
functionality from HP, and 2) by doing performance tuning on
the kernel and filesystem. To better understand this
approach, it is helpfull to be familiar wit HP's goals for
adding real-time capability to the UNIX operating system:

153

Table 1: General Real

-Time Applications and Some Examples

General Real-Time
Applications

Examples

process monitoring
and control

i

|

|

|

Idata aquisition
|

|
|lcommunications
|

|

|

|

i

|

|

1

!

|

|

|

]

|

|

[
ltransaction-oriented |
Iprocessing I
| !
| 1
Iflight simulation !
|land control t
| {
|factory automation {
l |
! !
t !
I !
Itransportation |
| !
| !
Idetection systems I
| |
[[
linteractive graphics
!

|

- Any real-time feat

petroleum refinery
paper mill
chocolate factory

pipe-line sampling

data inputs from a chemical reaction
controlling satellites

telephone switching systems

airlines reservation systems
on-line banking
stock quotations system

autopilot
shuttle mission simulator

material tracking
parts production
electronic assembly
machine or instrument control
traffic light system

air traffic control

radar systems
burglar alarm systems

image processing
video games

ures implemented must not prevent

SUID compatibility,

- Whereever possibl
adopted from eit
needed real-time f
new feature.

- Real-time features

- Performance tuning

- Real-time response
response aon the
real-time A-Series

HF-UX on the Series 800

features should be
or 4,.285D0. Only where
exist should HP add a

e, real-time
her System U
eature does not

must be portable.

must be transparent to user process.
must be comparable to real-time
HP 1000 A900 (HP's top-of-the-line

computer.

has met these goals. In addition, HP

154

Rain e il

is lobbying through standards-setting bodies to encourage
their adoption of HP-UX's real-time features as part of an
existing or evolving standard such as SUID or 1EEE P1003.

3.1 Real-Time Features in HP-UX

This section introduces the real-time features of HP-UX on
the Series 800 computers, explains their origin (either
System U, 4,28SD or HP) and also explains how each feature
addresses certain concerns about real-time capabilities of
UNIX systems.

The following features provide real-time capability to HP-
LiX:

Added Functionality
- Priority-based preemptive scheduling
- Process memory locking
- Privilege mechanism to control access to real-time
priorities and memory locking
- Fine timer resolution and time-scheduling capabilities
- Interprocess communication and synchronisation
- Reliable signals
- Shared memory for high bandwidth communication
- Asynchronous [~-/0 for increased throughput
- Synchronous I/0 for increased reliability
- Preallocation of disk space
- Powerfail recovery for increased reliability

Performance Tuning
- Kernel preemption for fast, detrministic response time

- Fast file system 1-0
- Miscallaneous performance improvements

3.2 Added Functionality

3.2.1 Prigrity-Bsaed Pregmptive Scheduling Priority-based

preempt ive scheduling lets the mo=at important process
execute first, so that it can respond to events as soon ac¢
possible. The most important process executes until it

sleeps voluntary or finishes executing, or wuntil a more
important process preempts it. Priority based means that a
more important process can be assigned a priority higher
than other processes, so that the important (high priority)
process will execute before other processes. Preemptive
means that the high priority process can interrupt or
preempt the execution of a lower priority process, instead
of weiting for it to be preempted by the opereting system
when its time slice is completed or it needs to block,

155

The scheduling policy of traditional UNIX systems strives
for fairness to all users and acceptable response time for

terminal users. The kernel dynamicelly adjusts process
priorities, favoring interactive processes with light CpPL
usage at the expense of those using the CPU heavily. Users

are given some control of priorities with the nicel(2) system
call, but the nice wvalue is only one factor in the
scheduling formula. As & result, it is difficult 4
impossible to guarantee that one process has a priority
greater than another process. Therefore, each process in g
traditional UNIX system effectively has to wait its turn, no
matter how important it might be to the real-time

application.

HP-UX presents a solution to this problem by adding & new
range of priorities, called real-time priorities. Priorities
in the real-time range do not fluctuate like priorities in
the normal range, and any procass with a priority in the
raal-time range is favored over any process with & priority
in the normal range, including those making system calls and
even system processes, Important as real-time processes
are, interrupt processing 1is given priority over them. |¢
several real-time processes have the same priority, they are
timesliced.

Processes with real-time priorities are favored not only for
receiving CFU time, but also are favored for swapping and
for file system access. Real-time processes are the last to
be swapped out (except for locked processes), and the first
to be swapped in. File system requests for real=«time
processes go to the head of the disk request queue. All of
this preferential treatment gives real-time processes very
good response, but at the expense of the rest of the system.

Real-time priorities are set by the user either
programmaticelly with HP's new rtprio(2) system call, or
interactively with the rtpriof(l) command. By default,
processes are time-shared and continue to be executed
according to the normal scheduling policy. Aside Ffrom

setting &a process to a real-time priority, the rtprio(2)
system call and rtprio(1) command can be used to read the
priority of a real-time process and change the priority of a
real-time process to be timeshared.

3.2.2 Progess Memory Locking A second important feature in
a real~time system is the ability to lock a process in
memory so that it can execute without waiting to be paged in
or swapped in from disk. In the UHIX and HP-UX operating
systems, processes are not normally locked in memory; they
are swapped and/or paged in from disk as needed.

156

HP-UX has adopted a sclution to this problem from System U,
The plock(2) system call allows & process to lock its
executable code andsor its data in memory to avoid
unexpected swapping and paging. Also, a process can lock
additional data or stack space with the datalock (3C)
subroutine, and lock shared memory segments as needed with
the shmctl1(2) system call.

3.2.3 Cgontroling Access to Real-Time Capabilities Because
the priority scheduling and mamory locking featuras of HP-UX
are quite powerfull, it is desirable to allow only certain
users to access them. 1f, for example, all users had acces
to these capabilities, they could potentially set all of
their processes to a high real-time priority and try locking
them in memory, which would defeat the purpose of the real-
time system. Or a novice user ‘could assign real-time
priority of 0 to &a process that happens to execute an
infinite loop, thus locking up the entire system.

To prevent scenarios such as these. HP-UX created a feature
called privilege groups. Privilege groups enable certain
users (other than just the superuser) to access the
powerfull real-time priority and memory locking features of
HP-UX. A privilege group is a group to which the superuser

assigns privileges. Existing privileges are real-time
priority assignment (RTPRIO), memory locking (MLOCK) and a
third not real-time related privilege (CHOWN). The
superuzer assigns one or more of these privileges to one or
more groups with HP's setprivgrp(2) systemcall or

setprivgrp(l) command, and assigns certain users to become
members of these groups with the 4.2850-based setgroups(2)
systemcall.

3.2.4 Fine Jimer Reso}lution and Time-Schedyling Another
important feature in real-time operating systems is fine
timer resolution and time-scheduling capabilities. For high

resolution clock based applications, both repetitive and
nonrepetitive, it is important to be able to execute &
process or subroutine at a precise time. For example, a
real-time application might require various sensor readings
at 20 millisecond intervals.

Standard features in System U that deal with time, such as
alarm(2) which has a resolution of one second, and cron(1)
and at(l) which have a resolution of a minute, are not

precise enough for many real-tima applications. Therefore,
HP-UX has adopted a solution from 4.2B8SDO, known as interval
timers. Each process can enable its own interval timer to
interrupt itself once or at repeated intervals, with
whatever precision the wunderlying hardware and operating
system can support. The interval 1s defined in wunits of

157

seconds and microseconds to keep the timer interfacs
portable despite the system dependant resolution. For HP-UX
on the Series B800, the system clock resolution for

scheduling alarms is 10 milliseconds for measuring time 1
microsecond.

3.2.5 Interprocess gommupjgation and Synchronjzation A
real-time operating system must provide interprocess
communication and synchronization facilities. Interprocess
communication and synchronization is important because

real-time applications often involve several asynchronous
processes that need to exchange information.

Pipes and signals are common interprocess communication
facilities in the UNIX operating system. A pipe s
essentially an 1/0 channel through which data is passed with
the read(2) and write(2) system calls. An aduvantage of
using a pipe is that it provides synchronization by blocking
reader processes when the channel is empty end blocking
writer processes when the channel is full. The disedvantage
of wusing pipes are 1) they require the communicating
processes to have a common ancestor process that sets up the
channel, and 2) they are often slow because the kernel! has
to copy the data from the writer process to the system
buffer cache and then back again to the address space of the
reader process. HMany UNIX systems including HP-UX support
named pipes, which overcome the first problem, but still
have the performance penalty of copying data.

A pignal is essentially a software interrupt sent to a
process by the kernel or by a user process. A process can
install a handler for almost any signal, and the' handler
will execute when the signal is received. Signals can be a
good event or alarm machanism because one process can send a
signal to inform another process that an event occured, and
then the other process can immediately entar its handler to
respond to- the event. The disadvantages of using signals
are 1) they pass little or.no data (not even who the sender
process is), and 2) they are traditionally unreliable when
sent repeatedly or when a process tries to wait for a
signal. HP-UX has therefore adopted e reliable signal
interface from 4.,2B5D, in addition to the System U signal
interface. The 4,.28SD signal interface solves the
reliability problems of the system VU interface, but is more
complicated to use. The 4.2BSD signal interface introduces
blocking of signals in similar manner as interrupts can be
masked on the hardware level. :

HP-UX has adopted three IPC (Inter Process Communication)

facilities from System (VH
shared memory, semaphgres and messages. These facilities

158

allow communication and synchronization between arbitrary

unrelated processes., An elaborate semaphore facility allows
solutions to both simple and complex synchronization
problems. A message passing facility allows transfer of
arbitrary data structures, along with the ab:ility to

prioritize messages. The most important [IPC facility for
real-time applications is the shared memory facility. Two
or more processes can attach the same segment of memory to
their data space and read from and write to it., Shared
memory can be locked into physical memory.

3.2.6 Asynchronous /0 Asynchronous 1,0 is 10 that
overlaps with process execution or other [/70, typically
resulting in increased throughput. Both the UNIX and HP-UX
operating systems implement system asynchronous [/0 to
certain drivers, but HP-UX allows you to communicate with
some drivers that do system asynchronous 170, so you can
take adwantage of their asynchronous ability,

HP-UX implements system asynchronous facilities for
terminals, pipes, named pipes and sockets., The asynchronous
1/} facilities that HP-UX provides for terminals are:

The norblocking 10 facility: Before launching an 170
request, &a user process can set a flag to
inform the driver that the driver should cause
the 170 request to return immediately if thes
request can not be satisfied without blocking
the user process. The request may return
partially satisfied.

The SIGID facility: Before launching an [/0 requsst, a user
process can set a flag to enable the driver to
send the SIGIO signal to the process when the
data has arrived in the drivers input buffer.

The select(2) facility: A user process can call select(2) to
check if an [1/0 request should be issued to
one or more devices. The driver sets a bit in
a user supplied bit mask for each file
descriptor that the user asked about and on
which 170 can be performed.

The FIONREAD facility: Before launching a read(2) request, a
user can ask the driver to tell it how many
characters in the drivers input buffer are
available for reading.

These facilities can be used individually or together. For

example. suppose you want to read from several terminals and
you are not sure, which terminal will send you data or when

159

to expect this data, if any. You do not want to launch a
series of read(2) requests to each terminal, because you
might end up missing data from one or more terminals as you
try to read from some terminal that will never send you
data. Instead, you could enable the SIGIO facility for each
terminal so that each can inform you when data has arrived
in its input buffer. When SIGIO is sent, you could call
select(2) to find out which terminal(s) are ready for
reading.

3.2.7 Synchronous 1780 A real-time application sometimes
prefers to do synchronous [/0 operations to make sure that
its 170 request actually completed. In synchronous 1[1-0, a
process initiates an 170 request and then suspends until the
170 request completes. The file system normally does
asynchronous writes, which means that a write(2) returns
when the data has been only written to the buffer cache, not

to the disk. The data is written from the buffer cache to
the disk later, while the process continues to execute.
Although this asynchronous disk write increases your

process's throughput, the disadwvantage is that you cannot be
sure that your data has actually been written to the disk.
Therefore, HP-UX provides a flag called O_SYNCIO that lets
you perform &a synchronous disk write. This ensures, that
your data actually was written to disk.

3.2.8 Summary of Real-Time Funclionalily Added to HP-UX
Table 2 summarizes the functionality that was added to HP-
ux. It presents the system call associated with the
particular feature and the origin of the system call (either
System U, 4.28BSD or HP).

3.3 Performance Tuning

The performance tuning that HP has implemented in HP-UX on
the Series B00 computers is as important as the' added real-
time functionality. The following features, kernel
preemtion, fast file system 10, &and miscallaneous
performance improvements comprise the main part of HP's
performance tuning efforts.

3.3.1 Kerne] Preamption for Fester Response limg An
important requirement for real-time systems is a quick and
deterministic response time. One of the main concerns about
the real-time capability of UNIX systems is that a process
can execute in kernel mode for long periods of time (more
than 1 second) without allowing & higher priority process to
preempt it, Instead, the process keeps executing in kernel
mode until it blocks or finishes, while the high priority
process must wait. A process executing in user mode gets
preempted much more quickly.

160

Table 2: Raal-Time Functionality in HP-UX

I
i
| Associated
|

Real-Time Function system call Origin
|
IPriority based preemptive rtprio(2) HP
Ischeduling
|
IMemory locking .« plock(2) System U
|
IPrivilege groups getprivgrp(2) HP and
! setprivgrp(2) 4.28SD
|
IFine timer and setitimer(2) 4.2B5S0
ltime scheduling gettimeofday(2)
!
IReliable signals sigvector(2) 4.28BSD

i
{
|
|
I
I
i
I
|
I
|
|
|
|
{
!
I
| sigblock (2) 1
| sigpause(2) I
| |
i

|

f

|

|

|

{

!

|

|

|

I

i

I

|

i

i

{

IShared Memory shmget (2) System U
| shmctl(2)

| shmop(2)

|

tOther IPC facilities pipe(2) System U

' msg{getictllop?
| sem{getictlliop?
‘ .

IAsynchronous 1/0 ioctl (2) flags HP end
! - select (2) 4.2BSD
|

ISynchronous 1,0 fecntl(2) with HP

| 0. SYNCIO

|

IPreallocating disk space prealloc(2) HP
|IPowerfeil recovery signal(2) with HP and

| SIGPWR System U
' .

HP-UX on the Series B0OO solues this problem by implementing
a preemptable kernel. At certein safe pleces in the kernel
called preemption points or preemption regions, HP-UX keeps
kernel structures at a consistent stata, so that a higher
priority reel-time process can get control of the CPU at

that point.
Impjomentation of Kernel Preemptign
Two types of preemption have been implemented: there i¥s tha

synchronous method which ellows preemption at a specific
point during kernel execution, and &a asynchronous method

161

which allows preemption anywhere during & region of kernel

evecution. Ihen a higher priority real-time process hecomes
runnable, kernel preemption is requested by setting the
reqkpreempt flag and generating & hardware supported
interrupt. The now pending preemption request is serviced

immediately if the running process is in user mode or in &
preemptable kernel region, or at the first point when
either:
a. the KPREEMPTPOINT() macro is executed which tests the
reqkpreempt flag to allow a synchronous preemption,
b. the spl leuvel drops to splpreemptok() which allows the

pending preemption interrupt and thereby a
asynchronous preemption,

C. wuser mode is entered (one case where the spl level
drops to splpreemptok()), or

d. swtch() is called which always transfers to the

highest priority runnable process.

The reqkpreempt flag and the preemption interrupt are both
cleared by swtch() whenever it switches to a new (highest
priority) process, In total, spproximately 180 synchronous
preemption points and 20 asynchronous preemption regions
were added to the HP-UX kernel.

Limitations

There is one overriding limitation on what kernel preemption
can accomplish: Kernel preemption can only preempt an
operation which is being executed within a process context.
It cannot preempt interrupt processing code and allow a
procmess to mxecute because UNIX doms not support this type

of operation. Therefore, all interrupt processing is
implicitly considered to be of Hhigher priority than any
(realtime) process. Interrupt requests mainly come from the

[0 system but additionally the UNIX system allows non [/0
cade to be executed in an interrupt processing context. This
facility, called the <callout queue, causes a kernel
procedure to be executed at a specific time offset. The
procedure is invoked from &a interrupt processing context
during clock interrupt processing. To minimize callout
queue execution overhead, in HP-UX a seperate system process
was created to provide a preemptable process context in
which to execute some lengthy callout queue code like
gathering statistics and recalculating timesharing
priorities.

Measur mprovement
In order to tell how long the kernel executes without

blocking or preempting, and whmre in the kernel these long
execution paths are, the kernel was instrumented to collect

162

timing meausurements. Timing meausurements are taken by
sampling the time at kernel entry and exit and also whenever
the kernel changed between preemptable ard rion preempable
state. The time intervals during which the kernel executes
iIn non preemptable state are logged together with the pc
stack traces of the start and the end of the interval. The
time spent in the interrupt context is also logged.

To determine the improvement made in real-time dispatch
time, two sets of measurements were taken. One set with
kernel preemption enabled and one set with it disabled under
the same workload. The workload consisted of tests which
validate the correct working of all kernel functions.

The raw results consist of a stream of times. Each time
represents an interval when the kernel was non preemptable.
As one way of summarizing the results, a distribution was
computed which represents the percentage of total kernel
execution time that was spent in non preemptable codepaths
of less than x milliseconds. Figure 1 shows this
distribution for both preemption on and preemption off.

100 4
90 1
80 A
70
60 1
=04
40 -
30 4

With Kernel Preemption

Without Kernel Preemption

Peroceat Kernel Execution Time

0- H H H H - H : H :
0 2 4 6 8 10 12 14 16 18 20
Time (millisecends) ‘

Figure 1

Table 3 shows that HP-UX kernel preemption has provided
significant improvements in real-time process dispatch time.
In the worst case observed, the improvement was well over 50
fold. In the case where preemption is off the longest non-
preemptable code paths are typically large data copies
during process creation (fork), process overlay (exec), or
user /0 operations. In the cases where preemption is on,
the current longest code paths are now in the terminal
driver.)

163

Table 3: Non-preemptable Kernel Time

i
*
1
|

Preemption Off Preemption On Improvement
I
I90% kernel 40 ms 1.4 ms x28
199% kernel 129 ms 3.4 ms x327
Imax kernel 1127 ms 14.6 ms x77

]
d

These results represent the status of HP's preemption tuning
activities as of this writing; work is currently underway to
further reduce these times. Future work will entail further
improvements to real-time performance via increased kernel
semaphoring in order to address more stringent application
needs.

3.3.2 Fpast Eile Sustem]/0° The traditional UNIX filesystemn
does not meet the performance and reliability requirements
of real-time systems for the following reasons:

- Data blocks are often scattered randomly throughout the
disk, resulting in large seek times for sequential
reeds.

- The Data blocksize of 512 or 1024 can be inefficient
for large read and write requests.

- There is only one copy of the superblock containing all
vital data about the file system structure on the disk.
1f it gets corrupted all data on the filesystem is
lost.

The HP-UX file system has adopted its solution from the
McKusick or 4.28BSD file system. Two important features in
the HP-UX file system are the implementation of cylinder
groups, which reduce file seek time and add raliability, and
the addition of two block sizes for increased speed Wwithout
wasting space. Cylinder groups together with allocation
algorithems provide locality for related data and spread
unrelated data resulting in short seek times. Eech cylinder
group has a copy of the wvital superblock information for
reliability. The HP-UX file system uses a hybrid block size
to deal with the time and space tradeoff of big versus small
size blocks. There is a blocksize of 4K or BK and a fragment
size of 1/8, 174, 172 or the same siza as the block size.
Large file 170 requests are allocated and accessed a block
at a time, while smaller requests are alloceted and accesed
a fragment at a time.

3.3.3 HMiscellaneoys Performance Improuements HP-UX on
series 800 is tuned for both real-time response and
throughput. Benchmarks representing various workloads (for

real-time and other enviroments) were run to track and
improve the performance of specific paths in the @perating

164

system. Other measures such as time from interrupt to drive:
were measured with & logic analyzer interface to the
hardware. This systematic aproach to performance tuning led
to very significant results, with many performance measures
improving by & factor of two or more during product
development. Also this approach led to justifiable returns,
including support for two-hand clock replacement algorithm
and conversion of various kernel data structures from linear
lists to hashed lists.

4. Conclusion

The functionality additions and performance improvements
described in this paper form the foundation by which HP is
enabling its wversion of the UNIX operating system to
succeasfully enter the real-time marketplace. The features
decribed are rather simple to implement, and in fact, most
of them are already in System U or 4.2BSD. HP is working
with the IEEE P1003 committee and the real-time subcommittee
to help form a common standard by which any vendor can gain
the needed functionality.

Refergnces

1. David C. Lennert; "Decreasing Realtime Process Dispatch
Latency Through Kernel Preemption"; USEM]X Conference
Proceedings, Summer 1984, pages 405-413

2. Suzanne 1M Doughty, Sol F. Kawvy, Steve R. Kusmer, Douglas
U. Larson; "Unix for Real Time"; UniForum Conference
Proceedings, Winter 1987, page 219-230

165

.
it
B SN

L
.

»

B N

.
t i . "
W
.
JE
T
’ s
Q
’e
N wt
.
.

166

