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Abstract: Local energy markets (LEM) allow prosumers and consumers to trade energy directly 
between one another and offer flexibility services to the grid. The benefits and challenges of such 
LEM need to be identified, and agent-based modeling (ABM) is a useful method to conduct simu-
lation experiments that compare different market structures and clearing mechanisms. Machine 
learning (ML) and data-driven methods when integrated with ABM show great potential for con-
structing new distributed, agent-level knowledge. In this paper, we discuss the requirements for 
coupling ML methods and ABM. We also provide an overview of published literature on the 
common methods of integration of ML and data-driven methods in ABM and discuss how these 
requirements are commonly addressed. 
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1 Introduction 

The widespread adoption of renewable energy supply technologies and the availability 
of data from smart meters and other monitoring systems allows the development of local 
energy markets (LEM), also referred to as peer-to-peer markets or direct energy markets. 
LEM aim to offer multiple benefits: implementation of prosumers’ preferences: for in-
stance for renewable energy or lower CO2 emissions; reduction in energy costs; reduc-
tion in costs for grid investment; and flexible and efficient locally managed energy sup-
ply [Fa14, So18]. Price signals that indicate scarcity and excess of fluctuating energy 
supply could incentivize prosumers to act beneficially for the energy system. A number 
of projects use demonstration and/or modeling to analyze the benefits and drawbacks of 
LEM and their design [BOR17, Mo18, Me18, RKF16, RM13, So18, Zh18]. ABM is 
found to be particularly suitable to evaluate the design of LEMs because it allows the 
representation of aspects such as learning effects in repeated interactions, asymmetric 
information, imperfect competition, or strategic interaction and collusion in a more real-
istic way [RKF16, Se07].  
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As agent-based models (ABM) are data intensive, automating or semi-automating the 
process of capturing system knowledge using ML and other data-driven methods is a 
growing field of research. This is especially true for LEM when agents interact with the 
dynamic energy system and time constraints need to be considered in forecasting market 
prices, energy consumption and generation as well in the bidding process. 

ML algorithms can be classified into three broad categories: supervised learning, unsu-
pervised learning and reinforcement learning [Al10]. Supervised learning algorithms are 
used to develop a predictive model based on both input and output data. Some examples 
of supervised learning algorithms are k-Nearest neighbors, support vector machines, 
decision trees, neural networks, etc. Unsupervised learning algorithms are used to group 
and interpret data based only on input data. Common unsupervised learning algorithms 
are k-means clustering, hierarchical clustering, DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) clustering, etc. Reinforcement learning (RL) is a goal 
directed approach where an agent learns the optimal behavior through repeated trial-and-
error interactions with the environment without human involvement. Examples of RL 
algorithms are Q-learning, genetic algorithms, Erev-Roth reinforcement learning, learn-
ing classifier systems, etc.  

ML can be coupled with ABM in a number of different ways (see figure 1). One possi-
bility is to use ML in forecasting external input data for the ABM, which can then sub-
sequently be used to inform agent behavior [FPV16, Pi16a, Pi16b, Sa16]. This is shown 
in the top half of figure 1, where ML is used to forecast aspects such as production, load 
and market price and provide these inputs to the agent. The second possibility is to use 
ML algorithms to implement the learning behavior of agents when they place bids on the 
market [KUP03, MGW18, Pe13]. This is shown in the bottom half of figure 1 where the 
learning behavior of agents could be either rule-based (the predefined strategies in figure 
1) or through using RL algorithms.  

It is also possible to use supervised learning techniques (as an alternative to RL) in a 
two-step approach to allow agents to place bids. Fischer [Fi18] describes this approach 
for financial markets where supervised learning is first used to build a predictive model 
using historical data, and then the forecasts from this predictive model are fed into a 
trading module to derive the trading action, e.g. buy or sell when the forecasted market 
price passes a certain threshold. There are a number of limitations in using supervised 
learning to directly place bids, which are discussed by Fisher [Fi18]. First, the optimiza-
tion objective in the predictive model, i.e., the minimization of the forecast error, is not 
necessarily in line with the ultimate goal of the agent, e.g., the maximization of profits. 
Second, in most cases, only the forecast itself is used as an input, and additional valuable 
information that could be obtained from the feature space is discarded [Fi18, Mo98]. 
Finally, in the context of ABM with a large number of agents that interact dynamically, 
it is desirable to use lean algorithms that are computationally efficient. The use of RL as 
an alternative to supervised learning allows the forecast and the subsequent selection of a 
strategy to be carried out in one single step and both to be optimized in line with the 
objective of the agent [Fi18]. Therefore, RL and novel implementations of RL such as 
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multi-agent RL and deep reinforcement learning (deep RL) are popular solutions to 
implement learning behavior in agents. 

 

Figure 1: Possible use of ML and data-driven methods in ABM of energy markets 

This paper aims to provide an overview of published literature on the common methods 
of integration of ML and data-driven methods in ABM of energy markets. While there 
are a number of published reviews on the use of ML for forecasting, e.g. [HF16] or on 
RL methods to improve decision making in agents, e.g. [WV08], there is no comprehen-
sive overview on how different ML and data-driven methods can help improve ABM of 
LEM and the specific requirements for their integration.. In this paper, published journal 
articles (from year 2000 onwards) on integration of RL methods in ABM of energy mar-
kets are selected and presented in Section 1. In Section 2, we discuss the requirements of 
developing ML and data-driven methods for integration with ABM making reference to 
this selected literature. The conclusions are presented in the final section. 

2 Brief summary of published literature on machine learning used 
in agent-based models of energy markets 

Recent literature on ABM of energy markets includes the use of ML and other data 
based approaches to improve models and represent complexity in simulations. Selected 
journal articles on ABM of energy markets that include ML and data based methods are 
presented in table 1. For each reference, if ML is used in forecasting certain values, the 
subject of forecast, for example electricity market price, renewable generation, load, etc., 
is identified and noted in the second column of table 1. The type of ML algorithm used 
to derive or calculate the subject of forecast is noted in the third column of table 1. If RL 
is used, the kind of learning algorithm is identified and noted in the last column. The 
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objective of RL algorithms in the selected references is to place bids on the market. Most 
references describe either the use of ML for forecasting, or RL for agents’ bids on the 
market, however some references mention both cases. Even if forecasts are used as input 
data to the learning algorithm or to model agent behavior, the details of the forecasted 
data and the methods used for forecasting might not be specified in the article. In this 
case, the comment ‘not specified’ is noted in the relevant column.  

2.1 Forecasting to inform decision-making 

The bidding behavior of agents in the context of electricity or energy markets is often 
informed by the forecasted values of a number of inputs such as the forecasted load, 
generation and market price. Short-term forecasting methods are the most relevant when 
considering wholesale day-ahead or intra-day energy markets. Supervised learning 
methods and statistical methods are the most commonly used ML methods in forecasting 
[HF16]. In addition to forecasting based on historical weather, load and market price, the 
introduction of smart meters in many markets also provides a valuable source of more 
detailed data for forecasting loads [De11, Wa18]. In some cases unsupervised methods 
such as clustering are applied along with supervised learning algorithms or statistical 
methods to provide forecasts [Au18, FPV16, MW18].  

A number of articles have reviewed ML methods for forecasting; however, these reviews 
do not consider the use of these forecasts for ABM or simulations. Table 1 includes 
some published articles where forecasting methods have been specifically developed for 
integration in ABM of energy markets. However, only few articles elaborate on the 
methods they use to derive the parameters that are used to inform the bidding behavior 
of agents. Since this is a new area of research, there is scope for further research on se-
lection of ML algorithms for the particular case for forecasting as an input to ABM.  

2.2 Multi-agent reinforcement learning for intelligent bidding 

As discussed in the previous section, RL is a popular solution to implement learning 
behavior in agents. Although the agents can be endowed with behaviors designed in 
advance, they often need to learn new behaviors online such that the performance of the 
agent or of the whole multi-agent system gradually improves [Bu10, SW99, SV00]. In 
the case of electricity or energy markets, since the environment changes over time, a 
hardwired or pre-defined behavior of agents is inappropriate. The articles in table 1 ap-
ply a variety of RL algorithms with single or multiple agents to conduct experiments of 
different types of electricity market simulations. A broad spectrum of RL algorithms 
exist, e.g., model-free methods based on the online estimation of value functions, model-
based methods (typically called dynamic programming), and model-learning methods 
that estimate a model, and then learn using model-based techniques [Bo10]. In the se-
lected literature, mainly model free approaches have been applied, for example Q-

574 Ashreeta Prasanna, Sascha Holzhauer, Friedrich Krebs



learning and SARSA e.g. [Bo18, BEC18, EKS17, KUP03, PRD18, Pe13, Ya18] but 
some authors have also used model-based techniques, e.g. [BO01, VI08, Zh16].  

In addition to the learning approach, another consideration is the definition of an appro-
priate formal goal for the learning. The articles in table 1 mainly focus on cases where 
agents act non-cooperatively to maximize their own interests. Mguni et al. find that 
while the lack of coordination produces stable outcomes or Nash equilibria, these are 
vastly suboptimal from a system perspective [Du08, Mg19]. Therefore, they propose an 
incentive-design method that modifies agents’ rewards in a non-cooperative ABM that 
results in independent, self-interested agents choosing actions that produce optimal sys-
tem outcomes in strategic settings. 

Experience sharing, for instance agents exchanging information using communication, 
skilled agents serving as teachers for the learner, or the learner watching and imitating 
the skilled, can help agents with similar tasks learn faster and reach better performance 
[Bu10]. However, in the selected studies, there is no direct information exchange be-
tween agents, and the information flow is mainly directed from the market to the agents. 
Most of the studies consider the case of agents competing to maximize their own profits 
under different levels of market competition, however, Zhang et al. [Zh17] consider the 
case of optimal consensus control. Therefore, in the context of providing flexibility and 
encouraging consumption of electricity produced locally, it might be relevant to consider 
cases where the agents (prosumers and consumers) pursue cooperative strategies rather 
than purely competing strategies.  

Reference 
Forecast: sub-
ject 

Forecasting algo-
rithm/   Derivation 
method 

Learning algorithm 

Faia et al., 2016 
[FPV16] 

Electricity price 
in contracts 

Hybrid (k-means 
and fuzzy logic) 

Not specified 

Aliabadi et al., 
2017 [EKS17] 

Locational mar-
ginal price at 
each node 

DC- Optimal power 
flow problem 

Q-learning 

Pinto et al., 2016 
[Pi16b] 

Electricity mar-
ket price 

Support Vector 
Machines 

Not specified 

Kutschinski et al., 
2003 [KUP03] 

- Not specified Q-learning 

Azadeh et al., 
2010 [ASM10] 

- Not specified 
Ant colony optimiza-
tion 

Zhang et al., 2017 - Not specified Adaptive dynamic 
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[Zh17] programming 

Mengelkamp at 
al., 2018 
[MGW18] 

Load 
Standard profiles 
with error function 

Erev-Roth reinforce-
ment learning 

Bunn & Oliveira, 
2001 [BO01] 

- Not specified Defined strategies 

Visudhiphan & 
Ilic, 2008 [VI08] 

- Not specified Defined strategies 

Zhou et al., 
2011[ZZW11] 

Load, electricity 
price 

Simulation model, 
polynomial cost 
function (producer) 

Erev-Roth reinforce-
ment learning 

Yu et al., 2019 
[Yu19] 

- Not specified 
Experience-weighted 
attraction learning 

Viehmann et al, 
2018 [VLM18] 

- Not specified Q-learning 

Peters et al., 2013 
[Pe13] 

- Not specified 
State-Action-Reward-
State-Action 
(SARSA) 

Yang et al., 2018 
[Ya18] 

Load k-means clustering Q-learning 

Patyn et al., 2018 
[PRD18] 

- Not specified 

Fitted Q-iteration 
with: a multilayer 
perceptron, a convo-
lutional neural net-
work and a long 
short-term memory 
neural network 

Boukas et al., 
2018 [BEC18] 

- Not specified 
Q-learning, Q-
function with a Neu-
ral Network 

Boukas et al., 
2018 [Bo18] 

- Not specified 
Q-learning, Deep Q-
Network 

Chen et al., 2019 
[CLS19] 

Electricity mar-
ket price 

Extreme Machine 
Learning 

Not specified 
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Tab. 1: A selection of published articles which use ML and data based methods in ABM of energy 
markets. 

3 Requirements for the integration of machine learning and data-
driven methods in multi-agent systems 

3.1 Computational efficiency 

Low computational demands mean lower costs, which increases the likelihood of auto-
mated bidding agents based on ML algorithms being deployed at prosumer’s premises. 
In the selected literature, performance comparisons which include computational effi-
ciency between different variations on algorithms which use the same RL approach are 
presented. For example, Patyn et al. [PRD18] use model-free RL to model the a heat 
pump agent which shifts loads in a day-ahead market to minimize daily electricity costs. 
They approximate the Q-function by three different neural architectures, a multilayer 
perceptron (MLP), a convolutional neural network (CNN) and a long short-term memory 
neural network (LSTM), and find that all architectures outperform a trivial thermostat 
controller and shift loads successfully after 20-25 days. In their modeled case, they do 
not find a significant difference in the performance of the MLP and the LSTM, both of 
which outperform the CNN model. However, they find that the MLP requires far less 
computation time. Pinto et al. [Pi16b] compare a support vector machines (SVM) based 
approach with artificial neural networks (ANN) to forecast the electricity market price. 
They show SVM methods provide similar results but take half the time of ANN. Finally, 
Mengelkamp et al. [MGW18] find the computational time for RL based strategies to be 
twice as high compared to bidding with random prices or with a selected fixed price. 
However, the computational time of their implementation of different variations of RL 
strategies differ by only 6%. Thus, they do not consider computational time as a criterion 
for selecting a particular strategy. 

Deep RL or the use of deep neural networks within RL for value function approxima-
tions has also been shown to be successful in is in scaling up prior work in RL to high-
dimensional problems. By means of representation learning, they can deal efficiently 
with the curse of dimensionality, unlike tabular and traditional non-parametric methods 
[Ar17, BCV13]. A relevant future research direction would be to compare the perfor-
mance of dynamic programming approaches with deep RL approaches, since these are 
state of the art RL algorithms. The availability of open source implementations of differ-
ent reinforcement algorithms (discussed in section 3.2) allows for the definition of 
standard benchmarks for testing new algorithms and evaluating new techniques in a 
standardized manner. 
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3.2 Learning curve or difficulty of implementation of machine learning methods 

The learning curve in implementing ML methods is an important consideration because 
ABM developers cannot focus exclusively on the implementation of these methods but 
also need to consider other aspects of modeling such as interactions between agents and 
the mechanics of market clearing. Therefore, the availability of standard libraries, exam-
ples and detailed documentation are a consideration when selecting the method for im-
plementation. While most publications do not mention the details and the use of standard 
libraries used in their implementation of ML algorithms, a wide selection of open source 
libraries are available in common programming languages to implement supervised, 
unsupervised, and RL algorithms.  

Some common libraries in Python to implement RL are OpenAI Gym or Universe, 
RLLib, Coach, TensorForce, Keras-RL, PyBrain, RLPy [Ge13, In19, Op19, Pl16, Ra19, 
Re19, Sc10]. Libraries implemented in Java for RL are BURLAP, RL4J, RL-Glue 
[Ch19a, Sk19, TW09] and packages for R are ReinforcementLearning and MDPtoolbox 
[CH19b, PF19].  

MATLAB also offers a number of libraries to implement ML algorithms, Pinto et al. 
[Pi16b] use it to develop their SVM approach to forecast market prices and Mengelkamp 
et al. [MGW18] use it to implement RL algorithms. Chen & Su [CS18] implement their 
RL algorithm in Python, and Lamperti et al. [La18] also use Python to implement their 
model calibration approach.  

In addition to standardized frameworks for implementation, another consideration with 
respect to the difficulty of implementation is the definition of an appropriate formal goal 
for the learning multi-agent system. As discussed in Section 2.2, a common approach is 
to apply single-agent Q-learning to the multi-agent case where the learned Q-functions 
only depend on the current agent’s action without being aware of the other agents. 
Busoniu et al. [Bu10], find that one important research direction is understanding the 
conditions under which single-agent RL works in mixed stochastic games, especially 
given the preference towards using single-agent techniques for multi-agent systems in 
practice. 

3.3 Flexibility or adaptability of the machine learning algorithms in a multi-
agent system 

ML models can have different learning rates with different datasets, and need to be tuned 
so that they can optimally solve the ML problem. The measures used to tune a model are 
called hyperparameters. In the context of ML providing input data to an agent in an 
ABM, it is important that the hyperparameters can be easily set and adjusted to allow 
selection between accuracy and computational time, for example. In the Multi-Agent 
System for Competitive Electricity Markets (MASCEM) platform developed by Santos 
et al., the management of the system to adapt its execution time to the purpose of the 
simulation is performed by means of a fuzzy process [Sa16]. Standard libraries in Py-
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thon, for example scikit-learn, allow hyperparameter optimization using several methods 
like grid search, random search and Bayesian optimization. These methods could be 
integrated in the architecture of the ABM platform to enable adaptability of the ML 
algorithms. 

In the context of RL algorithms, the algorithms can be tuned by choosing the learning 
rate, selecting the resolution of the value function, choosing how often to update the 
representation of the value function, and making tradeoffs between exploring to improve 
the learning model and exploring to improve the learning policy [AS02]. The conse-
quences of these choices are greatly influenced by which RL approach is selected and 
the specific details of how the algorithm is implemented. Atkeson and Santamaria 
[AS02] find that there are fewer parameter choices to make in model-based RL. The 
(hyper) parameter values in RL also influence whether convergence is achieved and how 
quickly it is achieved.  

3.4 Robustness 

The agent’s perception of the environment may vary, and therefore the robustness of an 
ML algorithm is an important consideration. Multi-agent RL is inherently robust because 
if one or more agents fail in a multi-agent system, the remaining agents can take over 
some of their tasks [Bu10]. Other properties of multi-agent RL are stability and adapta-
tion: an opponent-independent algorithm converges to a strategy that is part of an equi-
librium solution regardless of what the other agents are doing while an opponent-aware 
algorithm learns models of the other agents and reacts to them using some form of best 
response. Algorithms focused on stability (convergence) only are typically unaware and 
independent of the other learning agents [Bu10]. Common methods to measure robust-
ness are convergence time and change in output/convergence values across multiple 
runs. In Rosen & Madlener [RM13], tests which consider the speed of convergence are 
used to quantify robustness of the algorithm. In Viehmann et al. [VLM18] each model is 
run multiple times with varying seeds to check for multiple stable outcomes and robust-
ness of results. Peters et al. [Pe13] consider noise injection, to alleviate overfitting and 
improve generalization in supervised settings.  

None of the selected articles compares the robustness of different algorithms. However, 
a general understanding is that ABM with agents that are unaware or do not directly 
interact with the other agents converge more easily, while in other cases reward func-
tions or other criteria need to be specifically defined in order to achieve convergence. 
For example, Zhou et al. [ZWL18] use step length control and learning process involve-
ment to facilitate convergence and also define a last-defense mechanism (ending the 
simulation after a pre-defined finite number of iterations, regardless if convergence is 
achieved or not) to handle divergence. 
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4 Conclusions 

In this paper, we provide an overview of published literature on the common methods of 
integration of ML and data-driven methods in ABM of energy markets. We discuss some 
important requirements for this integration and present the methods used in published 
articles to address these requirements. 

Since the integration of ML methods in ABM is a relatively new area of research, there 
are few articles which discuss the methods of such integration and the benefits it can 
offer. The purpose of our contribution is to provide a first (to the best of our knowledge) 
review of such novel approaches which may serve as a starting point for future research 
efforts. 

Further case studies are required for a clear comparison considering the highlighted 
dimensions as well as additional dimensions. As discussed in section 2.1, further re-
search on the selection of suitable and efficient ML algorithms specifically to provide 
inputs for ABM and simulations is necessary. In addition, a formalized architecture and 
a common module which can use data inputs, e.g. weather related and load related pa-
rameters such as temperature-humidity index, wind chill index, etc. used for the forecast-
ing algorithms would improve the efficiency and modularity of integrating ML with the 
ABM.  

With respect to implementing learning behavior in agents, a number of future research 
areas have been identified: comparison of the robustness of different algorithms, the 
suitability and selection of RL algorithms specific to the use case of bidding on markets, 
and identification of algorithms which can better represent cooperative strategies, and 
conversely, non-cooperative agent strategies. Finally, it is also relevant to conduct exper-
iments where the agents (prosumers and consumers) pursue cooperative strategies rather 
than purely competing strategies. In the reviewed literature, it is difficult to compare the 
efficiency of different RL algorithms because they have been implemented in different 
types of ABM, with different assumptions and market dynamics. Experiments that com-
pare different RL approaches but with the same market assumptions would be valuable, 
as they would help in benchmarking the different algorithms and provide the possibility 
to identify which algorithms are more suited for or efficient in specific market designs. 

In summary, ML can be used in ABM, for example to forecast input parameters which 
agents can use in their decision making, and, for the learning as the simulation goes 
along (i.e. for RL). There is scope for further research and definition of standardized test 
cases on all types of coupling, as well as definition of standardized methods to evaluate 
new techniques. Numerous open source libraries and frameworks allow such implemen-
tation to be feasible and efficient. 
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