
Interactive and Collaborative Ontology Development

Fan Bai, Zoulfa El Jerroudi

bai@interactivesystems.info, eljerroudi@interactivesystems.info

Abstract: Ontology developing and managing usually evolves a series of brain storm-
ing discussions, competitions, proposals, votings and other collaborative activities.
These activities represent the main challenges of a platform, which enables users to
develop and manage ontologies. In this paper we describe requirements for a col-
laborative ontology developing platform, and introduce an approach for collaborative
ontology creation and management based on Ontoverse platform.

1 Requirements for Collaborative Ontology Developing

A typical reason for constructing ontology is to give a common language for sharing and
reusing knowledge about phenomena in the world of interest. Concepts and their rela-
tionships are further described in terms of axioms and constraints that may be expressed
formally. To design and develop ontologies is usually a joint effort reflecting experiences
and viewpoints of several persons who intentionally cooperate to develop it. Chances for
relatively wide acceptance are enhanced if these persons are argeed in the contributions
they made. This helps reduce blind spots in the ontology and enrich its content. However
these co-working requirements increase the complexity of ontologies creation and man-
agement. The following requirements should be considered in the collaborative ontology
working environment:

1. Synchronous/Asynchronous Information Exchange. Information exchange is al-
ways the most important fact in collaborative working. A system which supports
collaborative ontology development should offer functionality so users can commu-
nicate with each other. Consider the distribution of area and time, both synchronous
and asynchronous way of information exchange should be supported.

2. Concurrency Control. When several users are working on the same content, con-
flicts can be occured. A user’s result can be deleted or covered by other users’
modification. The system can manage it in different ways, either to prevent the hap-
pening of the conflicts or tolerate the conflicts and manage them automatically or
manually.

3. Private/Shared Workspace. Users usually prefer to work in a private workspace
to get their own results and share it to others later. It is necessary to separate private
and shared workspace for team members.

174



4. Group Awareness. If a user is working in a collaborative environment, it is always
useful that he knows what other team workers are doing now and to get an overview
about the project work flow. The system should support such awareness which lets
each team member understand the activities of others and recognize changes.

5. History Tracing. Nothing can be done by only one step. To recognize what hap-
pened in each step will give users the awareness of how they get the result. The
system should give users the possibility to find out who did what and when.

6. Version Control. When some mistakes happened, users wish that they can rollback
their result to previous version to start again. The system should contains each
version and offer the possibility to manage them.

These requirements represent the major challenges for systems that support users in creat-
ing ontologies collaboratively.

There are several systems trying to offer an environment in which users can construct
knowledge in structured or semi-structured way. The ontology editor Protégé has two
approaches to support collaborative working with ontologies. One is Co-Protégé [DBC06],
it is a plugin for Protégé which supports users to publish their own resources to a shared
workspace. Another approach is Collaborative Protégé [TN07] which bases on client-
server architecture and allows a client to access ontologies on the server synchronously.
Both support basic communication means, e.g. a chat or a discussion forum are supported.
However they do not support version control, and does not use any locking mechanism to
control concurrency. The Collaborative Protégé does not support private workspace. Other
approaches are using wiki systems, such as OntoWiki [ADR06]. It is possible to create,
delete and edit ontology entities by using form based PHP websites. However since it
based on the HTTP protocol, it can not offer real time group awareness.

Aiming at combining advantages of different exited approaches and providing additional
collaborative features, the Ontoverse1 project provides a platform focusing on the support
of communities consisting of domain experts as well as ontology designers to collabo-
ratively design, create and manage ontologies in an easy, convenient and flexible way.
The community members may discuss, share and exchange rich information objects, meet
people and manage their contacts in a web page forum environment. It also provides a
web-based editor, that enables users to collaboratively work on a shared ontology. The
editor supports a instance message tool, concurrency control and group awareness, it also
supports sub-shared workspace in the near future. It is useful when large number of de-
velopers are working on the same project. Developers can work in several groups and
each group works in one sub-shared workspace. Every time a group commits its result a
new version ontology will be generated in the public workspace. In the following, we will
describe an scenario of how a user works with the Ontoverse collaborative platform.

1The project is funded by the German Federal Ministry of Education and Research (project no. 01C5975).

175



2 Scenario: Collaborative Working in the Ontology ‘Bio2Me‘

A user, called Tim, were invited into an ontology project BIO2ME2 in the Ontoverse plat-
form. He logs in the platform and enter the BIO2ME (Bioinformatics Ontology for Tools
and Methods) project section. He regards all topics about this project and reply some top-
ics that belong to his own domain knowledge. After that, he writes a mail in the platform
to a expert who is working in the same project and tell him that some classes may not
proper. Then he load the editor from the platform shown in Fig.1. Tim selects a sub work
space so called Data, his own domain knowledge. In the instance message tool at the right
side of the Fig.1 he finds that there are several users are working on the ontology already.
Some of them are discussing a class in a instance message tool embedded in the editor.
Tim notices that class NumericMetricData is quite hot since in the left part of the editor
it’s font is larger than others, which means many operations have been done on it.

He want to edit the class Data, an lock icon is shown on before the class hierarchy, which
means no modification can be done. Tim knows that someone else is working on it right
now so he could add changes directly. He decides to skip it and starts to edit the sub
class NumericMetricalData, a lock is automatically set on it so it cannot be edited by
others to avoid conflicts. Some minutes later an exclamatory mark is shown on the class
StructureData so that other users realize, that there are same changes on it and then a
warning message is transferred by instance message tool, where another developer try to
warn the developers that this class is not consistent . After several hours all developers
agree that this is the first version for their domain area and the manager commit it into the
public work space.

3 Ontoverse: Editor for Collaborative Ontology Editing

In order to support such collaborative environment, both backend and frontend support
is needed. In the platform described above a loosely coupled agent system based on the
TupleSpaces approach and a visualization based on the Java applet technology are used,
both are described in this section. The visualization of the ontology editor is supported
by an application based on the Java Applet technology. It supports several collaborative
features, such as concurrency control, group awareness and instance message tool, etc.
Cooperated with the web forum in the Ontoverse platform, it supports a collaborative
environment for ontology edition and management.

Concurrency Control: In the editor we use a locking mechanism to support concurrency
control. Locking mechanism will prevent the happening of the conflicts. There are two
mode of locking. One is called automatic locking, that a lock will be set on the resource
automatically if a user start to modify it and the lock will be released automatically when
the user finished. Another one is called manual locking, that a user set a lock on a resource
manually and the lock will be stay still unless the user release it manually again. If a
lock is set on a resource, all modification functionality will be blocked and the ontology

2This ontology describes bio-informatical knowledge created by the Ontoverse project.

176



Figure 1: class editor of the Ontoverse ontology editor with some ontology-awareness features

resource can be read only. Locked resource will be marked a lock icon on the hierarchy
tree interface, which shows in the Fig.1.

Group Awareness: The editor supports Group Awareness by immediately showing ontol-
ogy resources, which have been created or edited or deleted by other users, in the user’s
editor interface. Once other users modified a resource, it will be shown in the hierarchy
tree interface with a collaborative icon marked on it. The icon will be vanished when the
user select the resource to see detail information. Notice that it is not necessary for a user
to see every modification made on the ontology. Right now we use a simple mechanism
that only the resources which the user see in the tree interface before will be marked an
icon on it. Another possible alternative approach is let users define their own interesting
area, and only resources in this area will show group awareness.

Synchronous/Asynchronous Information Exchange: An Instance Message Tool is also
supported in the editor, usually it works with another awareness functionality called High-
lighting, which supports users to capture other users’ attention by setting an flashing ex-
clamatory mark icon on a particular resource. Users can also find out who are working
with them now in the instance message tool. Asynchronous collaborative information are
not yet implemented though some of them are already stored in the application model such
as modification history.

Ontology management & Version Control: SWAT&SQLSpaceses [MWH+07] are the
backend of the Ontoverse. The main aim of this backend was to be as flexible as possi-
ble to integrate several features in a loosely coupled way into one main component, that
provides the basic functionality of ontology management. The basic architectural idea is
to use a blackboard [EHRLR80] system, which publishes relevant information in a space

177



accessible by several agents or processing units using read and write operations. It is
implemented using the TupleSpaces approach, incorporated by Java and originating from
Gelernter’s Linda language [Gel85] in the Ontoverse project. SQLSpaceses is a implemen-
tation of TupleSpace and SWAT (SemanticWeb Application Toolkit) is a agent based on
it. There are three main spaces in SWAT, ontology spaces (for each ontology one space)
the actual ontological data is stored in form of RDF triples. The session space contains
all process-related data like log events, modification events, lock events, etc, command
space acts as a coordination channel for all participating agents. Version control will be
combined with another functionality that enable users working on different group in one
large ontology. Users can check out several sub-spaces from the main space and working
in one of them. It is quite similar to the working group environment that several groups
are working on the same large project and each group is working on certain sub project.
Version control will help users to check out and check in the sub-spaces from main space.
This will be implemented soon.

4 Summary and Outlook

In this paper we described an environment in which ontology developers and experts are
working together in a synchronous and asynchronous way. With the help of forum and user
management in web interface it offers a platform for all ontology developers and experts to
exchange their minds and experiences. The embed ontology editor based on a Java applet
supports several collaborative features to help ontology developers work closely together,
such as concurrency control and group awareness. To support these activities a backend of
SQLSpaces and SWAT is used. However which collaborative features should be supported
and how to support them is always a big challenge for system designers.

Based on these results further work goes in the following two directions: First, how to
give functionality to help users finding the edition history is still not finished right now.
History tracing helps users to understand the procedure of the ontology developing and
is quite important for a collaborative environment. Second, the sub-shared workspaces
are not supported in the graphic user interface yet, and a fully version control mechanism
based on it is not completely defined. We aim to complete these functionalities in the near
future.

References

[ADR06] Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki - A Tool for So-
cial, Semantic Collaboration. In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris
Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, In-
ternational Semantic Web Conference, volume 4273 of Lecture Notes in Computer
Science, pages 736–749. Springer, 2006.

[DBC06] Alicia Diaz, Guillermo Baldo, and Gerome Canals. Co-Protégé: Collaborative Ontol-
ogy Building with Divergences. In DEXA ’06: Proceedings of the 17th International

178



Conference on Database and Expert Systems Applications, pages 156–160, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[EHRLR80] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy. The
Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncer-
tainty. ACM Comput. Surv., 12(2):213–253, 1980.

[Gel85] David Gelernter. Generative communication in Linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985.

[MWH+07] Nils Malzahn, Stefan Weinbrenner, Peter Hüsken, Jürgen Ziegler, and H. Ulrich
Hoppe. Collaborative Ontology Development - Distributed Architecture and Visu-
alization. In Proceedings of the German E-Science Conference. Max Planck Digital
Library, 2007. Open-Archive-Publikation.

[TN07] Tania Tudorache and Natasha Noy. Collaborative Protege. In Workshop on Social
and Collaborative Construction of Structured Knowledge (CKC 2007) at WWW 2007,
Banff, Canada, 2007.

179




