
6isualizing �oin Point Selections
Using Interaction-	ased vs. State-	ased Notations

Exemplified With �elp of 	usiness Rules

Dominik Stein, Stefan Hanenberg, Rainer Unland

University of Duisburg-Essen, Germany
Institute for Computer Science and Business Information Systems (ICB)

Schützenbahn 70, 45117 Essen
{ dominik.stein, stefan.hanenberg, rainer.unland }@icb.uni-due.de

Abstract\ In Aspect-Oriented Software Development, the selection of join points
is an essential part. Join point selections identify the points in a program (i.e. in its
code, or during its execution) at which aspectual adaptations need to take place. In
order to communicate such selections independent of the underlying aspect-
oriented programming language, it is desirable to visualize join point selections in
an appropriate way. In this paper we focus on the appropriateness of interaction
diagram-based and state diagram-based visualizations of join point queries, exem-
plified with help of two business rule examples. As a result, we discover that even
if join point queries are based on interactions in the base application, state dia-
gram-based representations are needed to appropriately capture the selection se-
mantic of that query.

1 Introduction

Aspect-Oriented Programming (AOP) [KLM+97] has begun to establish itself in indus-
trial software development projects. Moreover, first attempts to use aspect-oriented pro-
gramming to implement business rules have been conducted successfully [CDJ03]: The
modularization means of aspect-orientation allow the encapsulation of individual busi-
ness rules as distinct units, as well as the enforcement of such business rules under well-
defined circumstances.

In particular, it is the applicability constraints of business rules that makes the use of
Aspect-Oriented Software Development (AOSD) [FECA04] an appealing alternative to
conventional programming techniques, such as object-orientation. Applicability con-
straints specify the circumstances to which a business rule applies (e.g. that a customer
needs to buy at least 20 products per yearly quarter to be considered a frequent cus-
tomer), as well as the situations at which the business rule should be evaluated or en-
forced (e.g. whenever the customer has bought a new product). Aspect-orientation pro-
vides a means, commonly referred to as pointcut [KLM+97], that allows the concise
specification of such applicability constraints. Pointcuts (or more generally termed, join
point selections) represent a key artifact in AOSD. Join point selection identify all rele-
vant points in a program (here: points in the dynamic execution of the program) at which
aspectual adaptations (here: business rules) are to be enforced.

94

Implementation experiences in AOSD have shown that for the sake of reusability it is
beneficial to keep the pointcut specification separate from the adaptation specification
(e.g. by defining an advice in an superaspect, whose (abstract) pointcut is detailed in an
subaspect) [HaSc03, HaKi02]: Doing so allows easy application of existing aspects in
different problem domains; query specifications can be refined individually (i.e. without
considering the adaptations they are associated with) to meet new or supplementary
requirements; existing query specifications can be reused to form new ones. Contem-
plating on these facts, we consider it indispensable to have distinct design models that
help us understand and reason about the conditions and constraints under which join
points should be selected – or, in other words, under which circumstances the aspectual
adaptations need to take effect.

One way of visualizing join point selections are «Join Point Designation Diagrams» (or
JPDDs in short, [SHU04]). JPDDs provide means to specify join point selections based
on interaction diagrams (or, to be more precise, based on sequence diagrams). Such
diagrams are very closely related to UML interaction diagrams; however, they have a
different objective: While interaction diagrams in the UML are used to specify the be-
havior of a system (in terms of interacting objects), interaction diagram-based JPDDs
render selection patterns of object interactions (that are meant to initiate some kind of
adaptation). Interaction diagram-based JPDDs have been originally developed for as-
pect-oriented systems whose conceptual view on join point selections is based on object
interactions. However, as it turns out, there are situations where that conceptual model
does not match the intent of a join point selection specification. For example, there are
situations where the conceptual model of a join point selection is state-based – rather
than message-based. In such cases, it is desirable to have a new kind of JPDD that can
cope with such (state-based) conceptual model of join point selection. In this paper, we
develop a new kind of JPDD for representing state-based join point selections. We use it
to visualize the applicability constraint1 of a business rules. We compare that visualiza-
tion to a conventional (interaction-based) one, and point out their differences as well as
their benefits.

The remainder of this paper is structured as follows: At first (in section 2), we introduce
the sample business rules that represent the "test case" for the remaining paper. The
business rules themselves are implemented with help of AspectJ [Ladd03], which is
currently the most prominent aspect-oriented programming language. Then (in section
3), we introduce the graphical concepts of «Join Point Designation Diagrams» as pre-
sented in [SHU04]. In section 4, we give graphical representations for the applicability
constraints of the business rules from section 2 using the notation introduced in section
3, and we investigate its appropriateness with respect to the conceptual objectives of the
business rules. After identifying various deficiencies, we present novel state diagram-
based modeling means to overcome these shortcomings. Section 5 points to related
work. Section 6, finally, gives a short summary of the outcomes and concludes the paper.

1 Note that in the remainder of the paper we are going to use the (business rule-specific) term applicability
constraints as a synonym for the (more general) term join point selection.

95

2 /he Sample 	usiness Ru les

In the following, we take a closer look at the sample business rules – i.e. at the pointcuts
that outline their applicability constraints – to be considered in this paper. The rules
apply to the domain of an online shop.

	usiness rule �£: Customers who choose credit card payment have to cover an additional
2% service charge; enforce the rule when the product prices are retrieved while a cus-
tomer is purchasing the items in his/her online shopping cart (and the final total amount
needs to be calculated).

pointcut ac1(Customer c):
 if(c.cart.kindOfPayment = "CreditCard")) &&
 call(Float Product.getPrice()) &&
 cflow(execution(void Store.purchaseCart(c)) && args(c));

Pointcut ac1 refers to all invocations of method getPrice on Product objects that
occur in the control flow (cflow(..)) of method purchaseCart, being invoked on
the Store object (i.e. that occur while method purchaseCart of the Store object
is executing). In the pointcut, c refers to the Customer object that has been passed as
an argument (args(c)) to the purchaseCart method. The Customer object c has
a reference to the customer's cart object (it is assumed that each customer has exactly
one online shopping cart). The cart object has an attribute kindOfPayment that
indicates the way the customer likes to settle his/her account. The pointcut checks if the
attribute kindOfPayment is set to "CreditCard". If this is the case, the pointcut "fires"
– meaning that it executes the advice [KLM+97] that is affiliated with it (not shown
here). That advice modifies the return value of method getPrice according to the
business rule.

The applicability constraint of this business rule represents an example of (what we call)
a control flow-based applicability constraint: It evaluates if a particular condition holds,
i.e. whether the customer has chosen to pay by credit card, while some particular task is
being performed, i.e. the purchase of the (contents of the) online shopping cart. We call
these kinds of applicability constraint control flow-based because they relate to the exe-
cution progress of a program, e.g. they reflect on particular tasks that have been started,
but have not completed yet, etc.

	usiness rule �2: Customers that register to the company's bonus program receive a 10%
discount on their first purchase after registration; enforce the rule when the price of a
product is retrieved (so that the customer considers the discounted price rather than the
original price when comparing product prices at different online shops).

pointcut ac2_a(Customer c):
 call(void Store.register2BP(c)) && args(c);

pointcut ac2_b(Customer c):
 if(NewlyRegisteredCustomers.contains(c)) && this(c) &&
 call(Float Product.getPrice());

96

pointcut ac2_c(Customer c):
 execution(void Store.purchaseCart(c)) && args(c);

To realize this business rules, three AspectJ pointcuts are needed. Pointcut ac2_b actu-
ally outlines the applicability constraints of the business rule: It refers to a Customer
object (this(c)) invoking method getPrice on a Product object. The customer
object c needs to be contained in collection NewlyRegisteredCustomers which
holds references to all newly registered customers that haven't purchased any (further)
products yet (that is, since their registration to the bonus program). If this is the case, the
pointcut "fires". Similar to pointcut ac1, pointcut ac2_b is associated with an advice
that modifies the return value of method getPrice according to the business rule.

Pointcut ac2_a and pointcut ac2_c are needed to maintain the list of all newly regis-
tered customers (i.e. the collection NewlyRegisteredCustomers). Pointcut
ac2_a refers to all invocations of method register2BP on the Store object. The
pointcut exposes the Customer object c being passed to the method as an argument
(see pointcut signature), so that the affiliated advice can append it to the collection of
NewlyRegisteredCustomers. Pointcut ac2_c refers to all executions of method
purchaseCart of the Store object. This time, the Customer object c being passed
to the method is exposed so that the affiliated advice can remove it from the collection
NewlyRegisteredCustomers2.

The applicability constraint of business rule #2 exemplifies a state-based applicability
constraint: It evaluates if the current customer is among the "newly registered" ones. We
call these kinds of applicability constraint state-based because they relate to a particular
object and attribute value setting that the system must be in. In the example, a collection
object (NewlyRegisteredCustomers) has been used to capture the state informa-
tion, and identify the state, that we are interested in. Of course, other implementations
would have been possible, e.g. providing and setting a flag for each customer object,
comparing date and time of the customer's subscription to the bonus program and of
his/her last purchase, etc.

The aforementioned business rules are partially inspired by [CDJ03]. The way we im-
plemented them is slightly different, though: In [CDJ03], aspects are used to merely
"glue" the business rules, being encapsulated in distinct classes, to the right places in the
target application. Hence, while the events at which the business rules need to be en-
forced (e.g. whenever the customer has bought a new product) are being identified by the
pointcuts in the aspects, the conditions to which the business rules apply (e.g. that a
customer needs to buy at least 20 products per quarter to be considered a frequent cus-
tomer) are checked using if-statements in the business rule classes. In contrast to this, we
chose to aggregate both specifications into the pointcut declarations in the aspects. To do
so, we make use of AspectJ's if-pointcut designator, which has been introduced to As-

2 It should be mentioned that the Customer object c should be removed after the execution of operation
purchaseCart – so that the discount is granted even if operation getPrice is called during that execu-
tion, too. For reasons of simplicity, we are going to neglect this detail in the rest of the paper.

97

pectJ since version 1.0alpha1. As a result, the applicability constraints of business rules
are neatly located in just one place rather than being spread across different software
artifacts.

3 Overview to �PDDs

«Join Point Designation Diagrams» (JPDDs) [SHU04] represent a modeling means to
visualize selection queries over software artifacts in general, and join point selections in
aspect-orientation in particular. They provide a couple of abstractions to specify selec-
tion constraints on classes, objects, attributes, methods, relationships, messages, etc. (see
Fig. 1). In particular, they allow developers to specify "incomplete", or partial, charac-
teristics of the elements to select: For example, wildcards (*) can be used to require that
element names need to begin with certain characters (illustrated by class name pattern
"Con*" in Fig. 1, left part, which makes use of a wildcard to refer to all class names
beginning with "Con"). Other wildcards (..) can be used to abstract over an arbitrary
set of method parameters in a method signature (demonstrated by signature pattern
"run" in Fig. 1, left part, which refers to all operations named "run" that have at least
three parameters: the first one needs to be of type Integer; the last one needs to be of
type String; in-between (no matter where exactly) there must be a parameter of type
Real). Indirect relationship symbols may be used to require a path between elements
rather than a direct link (exemplified by the relationship between class pattern "C" and

�¶c� I \ ConI

{not} att1 : String
att2 : Integer [2!..100]

set*(val : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
valn : String)

Operations

Attributes

class name pattern

expected features

multiplicity range
restriction

exact multiplicity
restriction

signature patterns

boolean restriction

identifier

D

{not}

explicit multiplicity restriction

C

A

*!

boolean restriction

AC

D

B

association name pattern

C

[0..*]

existence of path
along call graph

someOp*(..)

CII
signature pattern

op2()

activated control flow

someOp*(..)
op1()

CI

activating control flow

Classifier Constraints

Association Constraints

Message Constraints

existence of path
along associations

C

AC

[0..*]

association role
name pattern

aRole

object name pattern

Fig. 1. Specifying selection constraints with «Join Point Designation Diagrams» (cf. [SHU04])

98

class pattern "AC" in Fig. 1, top right part, which denotes that a class named "AC" must
be reachable from a class named "C" in order to meet the selection criteria – irrelevant of
how many classes need to be passed during the traversal3; further examples for indirect
relationships in call graphs will be investigated in the next sections); etc.

In JPDDs, elements can be given an identifier, which are prepended by a question mark
(?) and entangled in angle brackets (< >) – see the class identifier <?c> in Fig. 1, left
part, for example. Such identifiers can be used in general to refer to a selected element.
This is particularly useful to identify those elements in the JPDD that are to be exposed
by the JPDD for further processing (in which case they are listed in a parameter box in
the lower right corner of a JPDD).

By default, JPDDs render minimum requirements that must be satisfied by an element in
order to be selected. For example, class pattern <?c> in Fig. 1, left part, selects all
classes that possess (at least one) matching attribute or operation for each attribute pat-
tern or operation pattern, respectively, given in the class pattern. However, selection
criteria may be negated, too – as done with attribute "att1" in Fig. 1, left part, which
causes every class possessing such a (matching) attribute not to be selected. At last,
multiplicities of attributes (and association ends) may be constrained either to meet
concrete values, or not to exceed or under-run some maximum or minimum bound, re-
spectively. The lower multiplicity bound of attribute "att2" Fig. 1, left part, for exam-
ple, must equate "2"; its upper bound, however, may match any number up to "100".

JPDDs are based on the graphical elements of the Unified Modeling Language (UML)
[OMG03], i.e. they share their symbols as well as their abstract syntax (i.e. its meta-
model). However, their semantics differ considerably: In contrast to conventional UML
diagrams, JPDDs are not meant for designing and constructing new software entities
such as classes, associations, messages, etc. Instead, they reflect on existing entities and
allow to express situations and conditions upon which actions of any kind need to be
taken. By doing so, JPDDs complement the existing modeling facilities of the UML with
a novel means to express application constraints visuallÞ – rather than textually, as can
be done help of tagged values or constraints written in the Object Constraint Language
(OCL) [WaKl98].

4 Representing Applicabil ity Constraints

In the following, we present and investigate the ways in which the business rules from
section 2 can be represented with help of the notational means outlined in 3.

4.1 Control Flow-	ased Applicab ility Constraints

We start out with the control-flow based applicability constraint that business rule #1
applies to.

3 The precise number of hops can be restricted by the multiplicity tag being attached to the relationship.

99

Fig. 2 outlines a graphical representation of the applicability constraints of business rule
#1. In its left part, the JPDD outlines the point in (run)time to which the business rule
applies. JPDD pointcut_ac1 identifies this point with identifier ?jp and returns it in
its parameter box (see bottom right corner). ?jp refers to a method call to an object of
Product, invoking a method named getPrice that takes no parameter and returns a
value of type Float. That method call needs to occur in the control flow () of a
method call to an object of Store, invoking a method named purchaseCart that
takes one argument of type Customer. That argument is given an identifier ?c, which
is exposed in the parameter box of the JPDD for further processing. The identifier ?c is
furthermore used in the right part of the JPDD, which outlines the object and attribute
value conditions to which the business rule applies: The identifier is used to require that
the Customer object being passed as an argument to the purchaseCart method call
(identified by ?c) must maintain a relationship to a Cart object. That Cart object
must possess an attribute kindOfPayment whose value equates to "CreditCard".

Looking at Fig. 2 we can assess that the sequence diagram notation proves to be feasible
to express control flow-based applicability constraints. The message arrows indicate in
what order which tasks are processed, and which task invokes another; the activation
bars of each of the participating objects signify what tasks are completed and what are
still being executed. By looking at these means, it is easy to recognize that the business
rule applies to all invocations of getPrice while purchaseCart is executing. Fur-
thermore, we can tell from the object diagram being attached to the sequence diagram
that the kind of payment must be chosen to be "by credit card" at this point4. Hence, the
combination of sequence diagram-based and object diagram-based JPDDs can be con-
sidered suitable to express applicability constraints that require some condition to hold
while some task is being accomplished. The sequence diagram helps the reader to per-
ceive what (inter)actions occur, in what order, and what further (inter)actions they in-

4 Not to mention the general abstraction mechanisms of JPDDs that permit to disregard all irrelevant informa-
tion, such as what interactions occur between the invocations of purchaseCart and getPrice, or what
else attributes there may be in Cart objects and what values they may have, etc.

purchaseCart
(<?c>* : Customer)

I \ I I \ Store I \ I

<?jp> :
getPrice() : Float

I \ Product

 ?jp
 ?c

pointcutÚac1

«execution»

�¶c�I \
Customer

I \ Cart

kindOfPayment
= "CreditCard"

Operations

Attributes

cart

Fig. 2. Modeling the applicability constraints of business rule #1

100

duce; while the object diagram is capable to render a particular object and attribute value
setting that must be met.

Although the sequence/object diagram notation is generally feasible to express control
flow-based applicability constraints, there is a subtlety worth mentioning with this par-
ticular example: The condition specified in the object diagram-part of Fig. 2 renders an
invariant that is supposed to hold at any point in the sequence diagram-part. This is no
problem as long as the preferred kind of payment is chosen before the cart is actually
purchased (i.e. before task purchaseCart is started). However, what if it is part of the
purchaseCart task to let the customer choose or confirm his/her preferred kind of
settlement?

In that case (i.e. if the condition may change during the execution of the task of interest),
the description of the task and of the condition must be separated: Fig. 3, for example,
outlines how the condition that must hold (i.e. the object diagram-part of Fig. 2) and the
task that is being executed (i.e. the sequence diagram-part of Fig. 2) are segregated into
two distinct JPDDs. Afterwards, they are re-joined using an annotated relationship,
which indicates at what point (@ jp) in the sequence diagram-based JPDD the con-
straints of the object diagram-based JPDD should apply5. Hence, with help of that rela-
tionship, we require that the condition (i.e. that kindOfPayment must equate to
"CreditCard") must be met at the method calls to operation getPrice only – rather
than throughout the entire sequence specification6.

5 As such, the @ annotation can be seen as an extension to the confinement relationship that has been expli-
cated in [SHU05].
6 It should be mentioned that this complies to the AspectJ semantics of pointcut pointcut ac1 outlined in
section 0.

purchaseCart
(<?c>* : Customer)

I \ I I \ Store I \ I

<?jp> :
getPrice() : Float

I \ Product

 ?jp
 ?c

isCCPayment

«execution»

�¶c�I \
Customer

I \ Cart

kindOfPayment
= "CreditCard"

Operations

Attributes

cart

pointcutÚac1

 ?c

@ ?jp

Fig. 3. Coping with possibly different object and attribute value settings over time

101

The conclusion that can be drawn so far is that the sequence/object diagram notation of
JPDDs can be seen capable to render control flow-based applicability constraints. Spe-
cial care must be taken, if the condition that needs to hold during the execution of a task
may vary during that task.

4.2 State-	ased Applicability Co nstraints

After having investigated the graphical representation means for control flow-based
applicability constraints, we are no going to take a closer look at the state-based applica-
bility constraints of business rule #2.

4.2.1 Discussing the Inappropriateness of Sequence Diagram-Based Visualizations

Fig. 4 shows graphical representations of the pointcuts needed to enforce business rule
#2. JPDD pointcut_ac2_a refers to all method calls to objects of Store that in-
voke operation register2BP taking one argument of type Customer. These method
calls – together with the corresponding arguments passed – are exposed by the JPDD

<?jp> :
getPrice() : Float

�¶c�I \
Customer

I \ Product

 ?jp
 ?c

pointcutÚac2Úb

I \ NewlyRe-
gisteredCustomers

�¶c�I \
Customer

<?jp> : register2BP
(<?c>* : Customer)

I \ I I \ Store

 ?jp
 ?c

pointcutÚac2Úa

<?jp> : purchaseCart
(<?c>* : Customer)

I \ I I \ Store

 ?jp
 ?c

pointcutÚac2Úc

Fig. 4. Modeling the pointcuts needed to enforce business rule #2 (using
separate diagrams)

102

using identifier ?jp and ?c. Similar to that, JPDD pointcut_ac2_c selects and
exposes all method calls (?jp) to objects of Store that invoke operation purchase-
Cart taking an argument (?c) of type Customer. JPDD pointcut_ac2_b, finally,
designates all method calls from Customer objects to Product objects that invoke
method getPrice, taking no argument and returning a value of type Float (see right
part of the JPDD). The method calls – together with their respective sender objects – are
exposed using identifier ?jp and ?c. Identifier ?c is furthermore used to require that
the sender objects must be contained in the collection NewlyRegisteredCusto-
mers (see left part of the JPDD).

The graphical representation of the applicability constraints of business rule #2 – or
rather, of the pointcuts used to implement them – shown Fig. 4 cannot be considered
satisfactory: We see three distinct diagrams, and nothing indicates that they are related to
each other or that they share a common objective. At best, we can guess from JPDD
pointcut_ac2_b that the business rules should be enforced if a customer is among
the "newly registered" customers. However, we cannot tell under which circumstances
such customers are to be considered "newly registered", and when they are not.

To overcome these deficiencies, the separate JPDDs from Fig. 4 are merged into a single
and consolidated JPDD in Fig. 5. The JPDD selects (and exposes) all method calls (?jp)
from Customer objects to Product objects invoking method getPrice (which
takes no argument and return a value of type Float). These method calls need to occur
after the invocation of operation register2BP on Store objects. However, they
must not occur after a method call to operation purchaseCart of Store objects (i.e.
there must not be such method call between the invocation of register2BP and the

pointcutÚac2

 ?jp
 ?c

register2BP
(<?c>* : Customer)

I \ I I \ Store

<?jp> :
getPrice() : Float

�¶c�I \
Customer

I \ Product

[0..*]

{not}purchaseCart
(<?c>* : Customer)

Fig. 5. Modeling the applicability constraints
of business rule #2 in a consolidated diagram

103

method call to select (?jp)). Finally, the argument (?c) passed to both the regis-
ter2BP method call and the purchaseCart method call must coincide with the
sender object (?c) of the method call of interest (?jp).

Fig. 5 improves over Fig. 4 in that it emphasizes the (chronological) order of the indi-
vidual method calls (register2BP, purchaseCart, and getPrice) so that their
relation to each other is made well perceivable. Furthermore, we can tell from the dia-
gram that the business rule is to apply (i.e. at each method call to getPrice) only, if a
customer has registered to the bonus program (i.e. has called register2BP), but has-
n't purchased (any items using) his/her online shopping cart yet (i.e. hasn't called pur-
chaseCart). Hence, unlike to Fig. 4, we have all the information at hand that is neces-
sary to understand the applicability constraint of the business rule.

Nevertheless, the visual representation given in Fig. 5 does not appropriately reflect on
the business rule-specific interpretation of that information. That is, it is not the method
calls being invoked on the Store objects that are of interest. Rather, it is what these
method calls mean to the Customer object being passed as argument (i.e. that s/he is
considered to be in state "newly registered", or not). In Fig. 5, however, these semantic
implications of the method calls are not shown.

4.2.2 Investigating a State Diagram-Based Solution

Fig. 6 outlines the applicability constraints of business rule #2 using a state-based nota-
tion. The state diagram describes the possible states that Customer objects may have –
seen from the perspective of the business rule. The state being of particular interest to
that rule is state ?newlyRegistered. This (business rule-specific) state is primarily
characterized by its incoming and outgoing transitions: Method call register2BP
from Fig. 5 denotes the incoming transition, while method call purchaseCart from
Fig. 5 denotes the outgoing transition. While the Customer object (?c) is in state
?newlyRegistered, any product price information s/he is requesting is supposed to

pointcutÚac2

�¶c�I \ Customer

<?newly
Registered>

*
*

Store.register2BP(<?c>*)

Store.purchaseCart(<?c>*)

<?jp> :
Product.getPrice()

 ?jp
 ?c

Fig. 6. Modeling the applicability constraints of business rule
#2 in a state-based diagram

104

be selected (and exposed) by the JPDD for further processing (i.e. for the modification
according to the business rule).

The state diagram-style notation used in Fig. 6, finally, draws the reader's attention to the
appropriate facts. Method calls register2BP and purchaseCart are considered
state transitions of a Customer object rather than (plain) invocations on a Store ob-
ject. As such, their implications on the (business rule-specific) state of Customer ob-
jects become explicit. Likewise, the method calls at which the business rule need to be
enforced (getPrice) are rendered with respect to the state of the Customer object.
At last, it is easily perceivable under which conditions the Customer objects enter the
state that the business rule applies to, and under which conditions they leave that state
again.

As a conclusion, we can state that the sequence diagram-style of conventional JPDDs to
render behavior is not sufficient to render state-based applicability constraints. A new –
state diagram-based – notation is therefore necessary to allow developers to emphasize
the relevance of state transitions and states to the applicability constraints of business
rules.

5 Related Work

The work described in this paper is closely related to other aspect-oriented modeling
approaches such as Theme/UML [BaCl05], AODM [SHU02], or aspect-oriented soft-
ware development with use cases [JaNg05]. All of these approaches provide dedicated
means to designate sets of join points to which aspectual adaptations are to be applied. In
contrast to the work presented here, though, the approaches make use of textual nota-
tions only – often they simply employ AspectJ's proper pointcut language. Hence, no
visualization means are provided that could help developers to understand where, when,
and under what circumstances the aspectual adaptations actually take effect. JPDDs, and
the extensions to them described in this paper, should be easily combined with those
approaches – simply by replacing the textual declarations with their graphical counter-
parts in terms of JPDDs.

Furthermore, the state diagram-style extensions to JPDDs presented in this paper relate
to state diagram-based aspect-oriented modeling approaches, such as [EAB02] and
[MBAE04]. In contrast to JPDDs, though, such approaches focus on the representation
of the overall aspect functionality. That is, they provide means to describe both the as-
pectual adaptations as well as the circumstances under which these adaptations need to
take effect in a single diagram. No support is given to reason about the join point queries
(i.e. the applicability constraints of those aspectual adaptations) in isolation.

Finally, as JPDDs have been presented in this paper to describe applicability constraints
of business rules, JPDDs need to be related to other graphical means that represent con-
straints – such as Constraint Diagrams [Kent97], for example. Such Constraint Diagrams
are based on Venn Diagrams, and are capable to visualize invariants based on objects
and object states. In contrast to JPDDs, Constraint Diagrams lack graphical facilities to

105

reflect on control flow, or on the sequence of tasks – which is indispensable for the visu-
alization of control flow-based applicability constraints such as those presented in sec-
tion 4.1. Furthermore, they are not designed to represent queries. Consequently, they do
not provide means to identify (select and expose) program elements to which the busi-
ness rules apply.

6 Discussion and Conclusion

In this paper, we have investigated two variants, i.e. interaction diagram-based and state
diagram-based notations, to represent join point selections. We did so by visualizing the
applicability constraints of two sample business rules, which have been implemented
using AspectJ pointcuts. We started out with visualizing both applicability constraints
using an interaction diagram-based representation. We observed that while in the one
case the interaction diagram-based representation proved to be suitable to render the
essential information, in the other case it failed to capture the key objective of the appli-
cability constraints (or join point selections) – even though both applicability constraints
were based on the interaction, or communication, between entities of the base applica-
tion (i.e. the system to which the business rules were applied to).

We referred to the former kind of applicability constraints (/join point selections) as
control flow-based applicability constraints. Such constraints are characterized by the
fact that some condition must hold while some task is being accomplished (another term
for such constraints could be process- or progress-based applicability constraint). To the
latter kind of applicability constraints (/join point selections), we referred to as state-
based applicability constraints. These constraints (merely) required that the system is in
a particular state (for the business rule to take effect).

We observe that the "state" which the latter kind of applicability constraint is referring to
is business rule-specific – rather than inherent to the base application. That means that
particular interactions, or messages, in the base applications may signify state transitions
from the perspective of the applicability constraint and the objects it refers to (whereas
this is not necessarily the case from the base application's perspective). While on pro-
gramming level, an implementation quirk (such as setting object flags, or gathering the
respective objects in an extra collection; see section 0) may be considered a reasonable
workaround to capture the missing (business rule-specific) state information, modelers
require dedicated means to render that state information appropriately for the communi-
cation with others. This paper has outlined an approach to do so.

References

[BaCl05] Baniassad, E., Clarke, S., Aspect-Oriented Analysis and Design - The Theme Ap-
proach, Addison-Wesley, 2005

[CDJ03] Cibrán, M.A., D’Hondt, M., Jonckers, V., Aspect-Oriented Programming for Con-
necting Business Rules, in: Witold Abramowicz, Gary Klein (eds.), Proc. of BIS
2003, Colorado Springs, USA

106

[EAB02] Elrad, T., Aldawud, O., Bader, A., Aspect-Oriented Modeling: Bridging the Gap
Between Design and Implementation, in: Proc. of GPCE'02 (Pittsburgh, PA, October
2002), LNCS 2487, pp. 189-201

[FECA04] Filman, R., Elrad, T., Clarke, S., Aksit, M., Aspect-Oriented Software Development,
Addison-Wesley, 2004

[HaSc03] Hanenberg, S., Schmidmeier, A., AspectJ Idioms for Aspect-Oriented Software Con-
struction, in: Proc. of EuroPLoP'03, June, 25-29, 2003, Irsee, Germany, pp. 617-644

[HaKi02] Hannemann, J.; Kiczales, G.: Design pattern implementation in Java and AspectJ.
Proc. of OOPSLA 2002, November 4-8, 2002, Seattle, Washington, USA. SIGPLAN
Notices 37(11), ACM, S. 161-173.

[JaNg05] Jacobson, I., Ng, P.W., Aspect-Oriented Software Development with Use Cases,
Addison-Wesley Longman, 2005

[Kent97] Kent, S., Constraint Diagrams: Visualizing Assertions in Object-Oriented Models, in:
Proc. of OOPSLA 1997 (Atlanta, Georgia, Oct. 1997), ACM pp. 327-341

[KLM+97] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.-M.;
Irwing, J.: Aspect-Oriented Programming. In Aksit, B; Matsuoka, V., (Hrsg.): Proc. of
ECOOP 1997, LNCS 1241, Springer, 1997, S. 220-242.

[Ladd03] Laddad, R., Aspectj in Action: Practical Aspect-Oriented Programming, Manning
Publications, Greenwich, 2003

[MBAE04] Mahoney, M., Bader, A., Aldawud, O., Elrad, T., Using Aspects to Abstract and
Modularize Statecharts, in: Workshop on Aspect-Oriented Modeling, UML '04 (Lis-
bon, Portugal, October 2004)

[OMG03] OMG, Unified Modeling Language Specification, Version 1.5, 2003 (OMG Docu-
ment formal/03-03-01)

[SHU02] Stein, D.; Hanenberg, S.; Unland, R.: A UML-based aspect-oriented design notation
for AspectJ, In: Kiczales, G. (Hrsg.): Proc. of AOSD 2002, Enschede, The Nether-
lands, April 22-26, ACM, 2002, S. 106 - 112.

[SHU04] Stein, D., Hanenberg, St., Unland, R., Query Models, in: Proc. of UML 2004, October
2004, Lisbon, Portugal, LNCS 3273, pp. 98-112

[SHU05] Stein, D., Hanenberg, S., Unland, R., On Relationships between Query Models, In:
Hartman, A., Proc. of ECMDA-FA 2005, Nuremberg, Germany, November 7-10th,
2005, LNCS, to appear.

[WaKl98] Warmer, J., Kleppe, A., The Object Constraint Language: Precise Modelling with
UML, Addison-Wesley, 1998

107

