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Abstract: The immune system of our body matured over millions of years and has
proven its functionality. In our research we are going to transfer techniques of a bi-
ological immune system to a computer based environment. Our goal is to design a
self-protecting middleware which isn’t vulnerable to malicious messages. First off this
paper proposes an artificial immune system with negative and positive selection and
evaluates optimal parameter settings. Our tests showed that the detection rate of un-
known malicious messages can reach up to 99.6%. Further on we propose techniques
to minimize the memory space needed for storing the antibodies and to speedup the
time needed for detecting malicious messages. We obtained a space minimization by
30% and gained a speedup of 30 with execution time optimization.

1 Introduction

To secure computer systems, current protection applications have to be aware of signa-
tures from viruses or worms that occurred previously. Due to that restriction they cannot
recognize or handle brand new intruders that are not already stored in a database. Com-
puter immunology opens up new ways and methods to recognize new intrusions like our
biological immune system does and fits well into the research fields of organic computing
[MS04] that explore self-organization techniques to achieve computing systems that are
self-configuring, self-optimizing, self-healing, and self-protecting. In our organic ubig-
uitous middleware research [TBPUOS] we investigate self-protection techniques to cope
with intentionally or unintentionally malicious peers or services. The biologically inspired
technique of computer immunology extracts ideas from our human immune system to de-
velop an artificial counterpart [ATO5]. Thus the following approach is a first protection
step within a self-protecting system. The goal is to develop an immune system which
is permissive to good-natured middleware services and messages but can detect appear-
ing malicious events. This immune system is implemented in our organic middleware to
evaluate its self-protection behavior in a real environment.

Our previously published investigations [PSTUO6b] applied only negative selection to
search for anomalies or intrusive messages and in [PSTUO6a] we describe the integration
in the organic middleware OCpu. The contribution of this paper is the comparative evalu-
ation of positive and negative selection mechanisms, the combination of both, and also a
proposal of storage optimization techniques for the binary receptors to increase memory
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and performance efficiency.

The next section confronts the biological with the artificial immune system and shows the
different preferences and their effectiveness. Subsequently we optimize the system as well
for memory requirements as also for execution time minimization. In the end we mention
related research and end up with conclusions and future work.

2 Ideas from biological immune system for its artificial counterpart

A look at the functionality of the biological immune system shows that the basic require-
ment of such a system is to distinguish between harmless objects called selfs and harmful
objects called nonselfs [HF00]. Matching works due to different protein patterns on the
surface of the unknown objects and the antibodies. All mammals have a thymus which is
aware of all selfs known in the body. Antibodies are continuously created with random
protein surfaces and get singled out with negative selection. If such a cell is activated in
the thymus it will be destroyed [HF0O] otherwise it will be released to the body to protect
it against a specific type of intruder. The opposite process called positive selection is also
used in the body [SBEO4] which focuses a T-cell receptor to recognize peptides bound to
molecules of the major histocompatibility complex (MHC). It works similar to the nega-
tive selection process but in difference it singles out all protein surfaces which can bind
to selfs in the thymus. Those receptors which do not bind are destroyed. The biological
immune system is extremely distributed besides the centralized work of the thymus.

The working domain in our middleware-based immune system is not proteins but binary
messages. The goal in the artificial immune system is also to distinguish between foreign
nonself messages and messages which are tolerated in the system because they belong to
self. This system should also be distributed to prevent the middleware from ending up
unprotected if one central detection node in the system gets disabled or unreachable. To
avoid this we abided by the highly distributed biological paradigm. Instead of storing the
huge amount of information about all selfs on every node we want to filter out messages
with comparison to short bit strings. Thus we first developed antibodies analogous to the
r-chunk method [SBEO4]. The antibodies are represented by a short bit string of length
r which embodies the receptor. Additionally they have a specific offset where they start
their comparison to the messages. Before the antibodies get released to the system they
are perambulated with the negative selection process. The opponent of the antibodies is
the group of so-called probodies'. They are designed the same way as the antibodies but
in difference are generated with the use of the positive selection mechanism.

Instead of waiting for all newly created antibodies and probodies until they perambulated
the human thymus we preferred to generate them in a structured way (see 3.2). This works
because the middleware is aware of all its self messages and thus it can create all receptor
patterns not used by any self message at a specific offset.

IWe coined the word probody because there is no handy notion in immunology for the item that is required
in our artificial immune system.
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3 The design of the artificial immune system

With the approach described in the previous section we have different values which have to
be considered or adjusted to optimize the detection of nonselfs in a decentralized system:
(1) the length of the self messages, (2) the structured generation of the receptors, (3) the
amount of different offsets or groups, and (4) the amount of antibodies and probodies
distributed in the system. To evaluate the immune system approach we implemented the
artificial immune system into our middleware OCp and we separated the key components
from the system and built a simulation environment for faster evaluations.

3.1 The length of the messages

Instead of fiddling around with messages of different and unknown length we transformed
all the messages appearing in the system to a unified length by using a hash algorithm.
Now the optimal length of the resulting hash value has to be determined and the most
appropriate hash algorithm has to be chosen.

In our system we have s self messages. Antibodies and probodies always compare them-
self to the hashed incoming messages at r contiguous bits starting at a specific offset o.
We regard different sections within the set of all hashed self messages, where a section is
defined as the part a receptor should compare to. The sections of all hashed self messages
with the same offset and same length form a group (see figure 1). Every group consists of
s subsets of the hashed messages and every subset has a length of r bits. The usage u of
a group is defined as the percentage of different bit patterns in that group compared to all
possible bit patterns of length . w is essential for the amount of receptors which can be
created in that group. The amount of possible antibodies at a given offset is (1 — u) - 27
whereas the amount of possible probodies is u - 2". It is evident that a shorter length of
the receptors results in fewer possible antibodies or probodies and a longer receptor would
result in a bigger amount which can cover more nonselfs or selfs. The latter also uses more
space to distribute them in the system which may result in more overhead (see section 4.2
for optimizations in that aspect).

We needed an algorithm that produces messages of fixed length and chose the hashing
algorithm of MD5 which produces strings of 128 bits in length. Naturally duplicates are
inevitable due to the usage of a hash function but this is necessary to reach a fixed length
for all messages. In case the MDS5 algorithm produces too many duplicates another hash
algorithm with more than 128 bits should be chosen. That issue will not be discussed any
further in this paper because it is only a parameter for scalability.

3.2 The structured generation of the receptors

Because the system is aware of all the harmless self messages it is able to analyze the
binary distribution within the different groups. Our algorithm produces all possible an-
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Figure 1: Example how a section of selfs builds
a group Figure 2: Recognition probability of antibodies

tibodies and probodies by starting with the smallest receptor length of one bit. It subse-
quently checks all possible bit patterns with this receptor length at every offset if they are
suitable for either an antibody or a probody. This is repeated while the receptor length
increases. Because there is no upper bound for the receptor length the loop can be exited
when enough receptors were created (e.g. when all receptors with the optimal receptor
length were created).

For determining the optimal length of the receptors we set up different simulator configura-
tions with different amounts of self messages and tested the detection ability of antibodies
with different receptor lengths. The detection rate of the different types of antibodies is
shown in figure 2 where always the maximum amount of antibodies were created for every
receptor length. This experiment demonstrates that it is not efficient to choose receptors
with a fixed or even a random length. Instead it shows that an optimal value has always to
be adjusted due to the amount of self messages known in the system. With mathematical
calculations it can be shown that the best detection can be reached when a receptor length
of about logs s is used [PSTUO6D]. This knowledge is helpful to generate as few receptors
as possible but with a maximum detection rate.

3.3 The amount of offsets

In our research we tested different kinds of offsets within the messages used to match the
antibodies with a hashed message to detect malicious objects. The easiest way is to define
only a single offset and generate antibodies with receptors of length r which compare
to the message only at this specific offset. But this is exactly the same as if the hashed
messages would have the same size as the receptors and the whole incoming messages
always compare to the antibody. This would result in a very bad detection of nonselfs as
the usage of this group corresponds to the probability for not recognizing the nonselfs.

In contrast in another test environment we designed the antibodies to use all possible off-
sets. This results in fully overlapping groups and thus less messages can be generated
that don’t match any antibody. As expected our tests showed that the more we over-
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Figure 3: Mean detection rate of nonselfs when using different amounts of antibodies, different
amounts of sets of probodies, and a combination of antibodies and probodies

lapped the groups the better the detection of nonself messages worked out when always
the same amount of antibodies was created. When using all possible offsets (from offset
0 to messagelength — r) the best detection was observed. In difference we do not use
every possible offset for the probodies but only offsets with omodr = 0. Other offsets
would result in unintentionally redundant and unnecessary parts of probodies.

3.4 The amount of antibodies and probodies distributed in the system

Indeed the more antibodies and probodies are located at a node in the system the more
we achieve an optimal detection rate. Our goal is not to detect all intrusive messages
but a suitable amount with as few time and space effort as possible. Due to this aspect
we set up simulation environments to test the detection rates with different amounts of
antibodies and probodies. The simulation environment consists of 1000 self messages
and we always ran different tests to achieve average values which are shown in figure 3.
The first chart shows the amount of negative selected antibodies and their detection rate.
When using 5000 antibodies — with a receptor length of only nine bits compared to the
length of the hashed self messages — we reached a detection rate of 99.6%. Comparing
messages to antibodies differs from comparing to probodies. As soon as one antibody
matches a pattern, the message is treated as nonself. The probodies are always generated
in sets. A set of probodies consists of probodies that cover all self messages at a specific
offset and receptor length. In other words, one probody from each self message will be
chosen and put into the set. To identify a self at least one probody out of every probody
group has to match the message. In our test those sets contained about 250 probodies.
When comparing a message to the probodies it is treated as self if every available set of
probodies matches. In the second chart in figure 3 the detection rate reaches up to 98.6%
when comparing to five probody sets. The problem about the comparison to probodies is
that always every probody from every set has to be compared to the message which takes
time for computation. A combination of both detection mechanisms result in an improved
detection rate and simultaneously less receptors to be stored. These results were shown in
the last chart in figure 3.
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A small example also demonstrates the benefit of using antibodies in combination with
probodies when in sum always an amount of 1250 receptors is used. The results in table 1
show that the detection rate is better when only antibodies are used compared to the exclu-
sive use of probodies. However the best results were gained when using 1000 antibodies
and one set of probodies. This is explainable because antibodies are spread to every off-
sets whereas five sets of probodies can only compare at five different offsets. An increase
of antibodies or probodies always improves the detection rate but this test should demon-
strate the different power of both techniques. Although the usage of probodies improves
the detection rate there is always also a little drawback in execution time because every
probody has to be checked for matching and thus has to be weighted up depending on the
system. However, in the normal test case of non-malicious items all antibodies have to be
checked, too, only in the case of matching an antibody to the pattern of a malicious item
the test could be aborted and execution time saved.

amount of antibodies 1250 1000 750 500 250 0
sets of probodies 0 1 2 3 4 5
detection rate 87.03% | 94.12% | 93,90% | 91,63% | 84,26% | 79,87%

Table 1: Performance of the detection rate when using both antibodies and probodies but always a
sum of about 1250 receptors.

4 Optimizations
4.1 Optimizing memory requirements by merging receptors

We propose a technique for memory requirement minimization which doesn’t advance the
detection probability but minimizes the amount of receptors to be stored in the system.
Two receptors with the same offset can be replaced by one receptor with a wildcard if they
differ at only one position on the receptors. Also receptors with wildcards can be merged
together when two receptors have the same wildcard positions and differ at exactly one
further position.

In our tests we were always able to eliminate about 30% of the receptors by merging them
together. Unfortunately in our test cases we never were able to produce receptors with
three or more wildcards because this is very difficult when the group usage exceeds some
specific value.

4.2 Optimizing execution time

When storing n receptors of length 7 in an array the comparison against an incoming
message would result in a time complexity of O(n-r). Because many receptors correspond
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to other receptors in specific parts of their pattern, we decided to store them in a binary
tree. The comparison starts at the root of the tree and follows the way down according to
the binary pattern. If there is a complete way down to the bottom of the tree one receptor
stored in that tree matched the compared pattern. For each offset a perfect binary tree
of depth r has to be created (without a root node because a receptor can start with both
boolean values).

Because every tree has to be perfect and every node consists of one boolean value a mem-
ory usage of (2"t1 — 2) bits is necessary for all possible o offsets. If an antibody tree
matches at one specific path the message is treated as malicious and if all probody trees
match the message is treated as good-natured. This comparison results in a time complex-
ity of O(o - ) and because in general o < n this approach is much faster than comparing
all antibodies with a complexity of O(n - r). Further more o and r are fixed for a group of
trees which results in O(1) for comparing incoming messages to all stored antibodies. In
our tests the tree comparison resulted in a 30 times faster comparison than using the linear
comparison algorithm.

5 Related work

Non-immunological detection systems are mostly signature based or at least they use the
information gained from previously detected anomalies. For example current virus scan-
ners contain signatures from known viruses and scan files for a match with those signa-
tures. But there are also approaches which can detect unknown or new intrusions because
of not comparing to known patterns but the other way round — using the negative or positive
selection [SBEO4, HDOS].

Hofmeyr and Forrest developed an architecture for an artificial immune system to detect
intrusions in a network [HF0O]. They also modeled their immune system on the biological
immune system described in section 2. The antibodies and the messages in their system
consist of bit strings with a fixed length and the system compares the messages appearing
in the network to all created antibodies. If r contiguous bits are identical the message is
treated as nonself otherwise the message is accepted by the immune system. The number
r has to be adjusted in their system to tune the detection probability and can have values
from one bit to the entire length of the messages. Our approach follows a similar way
to design the antibodies but shows up the basic correlation between the amount of self-
messages and the length of the receptors needed to get an optimal detection probability in
any domain.

At the Deakin University of Australia they also investigated positive and negative selection
processes for anomaly detection. They used co-evolutionary genetic algorithms for learn-
ing the patterns and used negative selection to generate synthetic samples of the anomaly
class. They simulated two tests where the first one contained no anomalies and the second
possessed a few anomalous examples. Their evaluations showed that feeding the system
with synthetic anomalies increased the detection rate [HDOS]. In contrast we are generat-
ing the receptors in a structured way and thus we don’t need an evolutionary algorithm to
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learn the self patterns or generate the synthetic nonselfs.

6 Conclusions and future work

The tests showed that the detection rate was very good (up to 99.6% in some test cases)
when choosing a suitable receptor length and an appropriate amount of antibodies. When
adding some sets of probodies the detection rate still reached a high detection rate but
with far less receptors to be stored. We also looked closer at the speed of detecting selfs
and non-selfs and found a way to speed up the comparison enormously by arranging all
receptors in a binary tree.

The Organic Computing Middleware for Ubiquitous Environments OCp [TBPUOS] is a
message oriented middleware based on a peer-to-peer system. As for now we imple-
mented the generation and distribution of the antibodies and probodies in the middleware
environment. The next step will be an automated adaption of the antibodies and probodies
if the self set changes in the middleware due to changes in the configuration.
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