
ScaFES:
An Open-Source Framework for Explicit Solvers

Combining High-Scalability with User-Friendliness

Martin Flehmig
Technische Universität Dresden

Center for Information Services and
High Performance Computing (ZIH)

martin.flehmig@tu-dresden.de

Kim Feldhoff
Technische Universität Dresden

Center for Information Services and
High Performance Computing (ZIH)

kim.feldhoff@tu-dresden.de

Ulf Markwardt
Technische Universität Dresden

Center for Information Services and
High Performance Computing (ZIH)

ulf.markwardt@tu-dresden.de

Abstract—We present ScaFES, an open-source HPC frame-
work written in C++11 for solving initial boundary value prob-
lems using explicit numerical methods in time on structured grids.
It is designed to be highly-scalable and very user-friendly, i.e. to
exploit all levels of parallelism and provide easy-to-use interfaces.
Besides, the numerical nomenclature is reflected in a nearly one-
to-one mapping.
We describe how the framework works internally by presenting
the core components of ScaFES, which modern C++ technologies
are used, which parallelization methods are employed, and how
the communication can be hidden behind during the update phase
of a time step.
Finally, we show how a multidimensional heat equation problem
discretized via the finite difference method in space and via the
explicit Euler scheme in time can be implemented and solved
using ScaFES in about 60 lines. In order to demonstrate the
excellent performance of ScaFES, we compare ScaFES to PETSc
on the basis of the implemented heat equation example in two
dimensions and present scalability results w.r.t. MPI and OpenMP
achieved on HPC clusters at the ZIH.

I. YET ANOTHER FRAMEWORK?

A wide variety of phenomena like heat transport, fluid
flow, and electrostatics can be described by initial boundary
value problems of the following type: Given a time interval
[tS ; tE ] with 0 ≤ tS < tE , an open, bounded domain Ω ⊂ Rd
with dimension d ∈ N and boundary ∂Ω, a source f : Ω̄ ×
(tS ; tE ]→ Rm, a boundary condition g : ∂Ω×(tS ; tE ]→ Rm,
an initial condition ũ : Ω→ Rm, and differential operator F ,
then the task is to find u : Ω̄ × [tS ; tE ] → Rm such that the
following system of equations is fulfilled:

∂tu+ F (u,∇u, . . .) = f in Ω× (tS ; tE ],

u = g on ∂Ω× (tS ; tE ],

u(·, tS) = ũ in Ω.

Analytical solutions of such problems exist only for rare cases.
Nevertheless, engineers and scientists want to have more and
more detailed approximations of these problems, resulting in
a significantly increase of the memory requirements as well as
the computational time. These computations can only be run
in parallel. There are many software packages available which
can solve these problems numerically using simple methods
like finite difference methods (FDM) or more complex meth-
ods like finite elements or spectral methods (AMDiS [1],

PETSc [2], and DUNE [3]). So, why should it be necessary to
implement yet another framework for solving initial boundary
value problems?

The answer is that the software packages like the ones
mentioned above, can solve these problems by combining
several numerical methods, parallelization approaches and
implementation languages. But they have all been designed
for more general purposes and therefore provide a large and
quite complex infrastructure with a lot of objects, methods
and modules which lead to long learning curves. Roughly
speaking, they are kind of heavyweight. And indeed, for many
initial boundary value problems it is sufficient to use simple
numerical methods like the explicit finite difference method on
a structured grid (e.g. for solving Maxwell’s equations ([4]).

Thus, we designed the framework ScaFES (“Scalable
Framework for Explicit Solvers”) for explicit methods in
time and space on structured grids. Instead of expanding
existing software but writing ScaFES from scratch we had the
opportunity to clearly focus on our design principles. These
are:

• High-scalability, i.e. all levels of parallelism on current
multi- and many-core architectures should be effi-
ciently used.

• User-friendliness, i.e. ScaFES should have easy-to-use
interfaces such that users can implement their numer-
ical methods as usual. In particular, the numerical
nomenclature should be reflected in a nearly one-to-one
mapping and knowledge about parallelization aspects
should not be required. Besides, it should be easy to
build and install on a wide variety of platforms.

As a consequence, ScaFES can be used as a rapid prototyping
tool to evaluate and compare different numerical approaches as
well as to write high quality production code without loosing
scalability and efficiency.

The presented work is organized as follows: In section II,
we will discuss the design concepts of the framework. How a
multidimensional heat equation problem can be solved using
ScaFES will be demonstrated in section III. In section IV, we
will present scalability results achieved on an HPC cluster at
the ZIH for the implemented problem in the three-dimensional

42



case. The paper concludes in section V with a summary of the
results and an outlook on further work related to ScaFES.

II. DESIGN CONCEPTS OF SCAFES

In the following, we describe the design concepts of
ScaFES, i.e. the implementation of the design principles. In
order to fulfill the two principles high-scalability and user-
friendliness we have chosen C++11 [5] as programming lan-
guage. Since C++11 contains modern programming concepts
and features like constructor delegations, class and function
templates as well as STL containers, the framework allows
well structured development without significant performance
losses. The readability and usability of the source code was
improved by using additional features of the Boost C++
libraries [6]. The framework is based on the GNU auto-
tools [7] which are available on almost all Linux based systems
in order to allow the installation of ScaFES on a high-variety
of different systems. This means that the build and installation
process is a combination of the usual calls to configure,
make, and make install.

ScaFES is highly modularized. It consists of the fol-
lowing core components: The class templates Grid<DIM>
and GridSub<DIM> for the representations of structured
grids resp. sub-grids, the class template GridGlobal<DIM>
for the representation of global grids, the class template
DataField<CT,DIM> for the representation of physical
fields, and the class template Problem<PRBLM,CT,DIM>
for the representation of initial boundary value problems. In
the following subsections, we will present these class templates
and their design concepts in detail.

A. Representation of Structured Grids

The considered problems should be discretized using nu-
merical methods which are based on structured grids. In the
following, we refer to a structured grid as a uniform decom-
position of a given domain D ⊂ Rd into d-dimensional hyper-
cuboids. More precise, let D := (s0, e0) × . . . (sd−1, ed−1)
the given domain with sp < ep ∈ R for each direction p ∈
{0, 1, . . . , d−1} and 2 ≤ np ∈ N the number of grid nodes in
each direction p. As the domain D is uniformly decomposed,
the corresponding grid size hp := (ep−sp)/(np−1) is constant
in each direction p. The grid nodes are numbered accordingly
to their positions i = (i0, i1, . . . , id−1) ∈ Nd0 in the grid. Then,
for a given position (i0, i1, . . . , id−1), the corresponding real-
world coordinates x(i0,i1,...,id−1) ∈ Rd are given by

x(i0,i1,...,id−1) = (s0 + i0 · h0, . . . , sd−1 + id−1 · hd−1).

The set of all coordinates x(i0,i1,...,id−1) is denoted by Dh and
the set of the corresponding integer tuples (i0, i1, . . . , id−1)
by G(Dh). Furthermore, the sets GI(Dh) and GB(Dh) are
defined as index sets of all interior resp. boundary nodes of
Dh such that G(Dh) = GI(Dh) ∪ GB(Dh), and the total
number of grid nodes is denoted by N :=

∏d−1
p=0 np. All

quantities are also explained in Fig. 1a. The positions of the
direct neighboring nodes in direction p for a given interior grid
node number i = (i0, i1, . . . , id−1) ∈ GI(Ωh) can be accessed
using the following connectivity mapping c. Fig. 1b illustrates
the mapping in two dimensions.

D

i = (i0, i1)

h0

h1

s = (s0, s1)

e = (e0, e1)Dh

(a)

c(i, 1) = (i0 + 1, i1)

c(i, 3) = (i0, i1 + 1)

c(i, 2) = (i0, i1 − 1)

(i0, i1)c(i, 0) =
(i0 − 1, i1)

(b)

Fig. 1: (a): Two-dimensional grid Dh of a given domain D =
(s0, e0)× (s1, e1) with 5×4 nodes: All inner grid nodes are colored
black, all boundary grid nodes are colored orange. (b): Indices of
direct neighboring nodes of a given grid node with index (i0, i1),
accessed via the connectivity mapping c.

Fig. 2: Two-dimensional (base) grid of 8 × 5 grid nodes with a sub-
grid of 3 × 3 grid nodes colored orange.

c(i; 2 · p) := (i0, i1, . . . , ip−1, ip − 1, ip+1, . . . , id−1),

c(i; 2 · p+ 1) := (i0, i1, . . . , ip−1, ip + 1, ip+1, . . . , id−1).

Due to the regular structure of the grids, the set Dh can be
completely described by the coordinates s = (s0, s1, . . . , sd−1)
and e = (e0, e1, . . . , ed−1) of the domain D together with
the number of grid nodes n = (n0, n1, . . . , nd−1) in each
direction. In ScaFES, the set Dh is represented by the class
template Grid<DIM>. The quantities s, e and n are given as
member variables (see Listing 1). In particular, there is no need
to create huge arrays storing the coordinates and the indices
of all grid nodes. The space dimension d is implemented as
template parameter DIM such that the size of all member
variables is known at compile time.

// Number of nodes: n=(n_0,...,n_{d-1})
ScaFES::Ntuple<int, DIM> mNnodes;
// Coordinates of first node: s=(s_0,...,s_{d-1})
ScaFES::Ntuple<double, DIM> mCoordNodeFirst;
// Coordinates of last node: e=(e_0,...,e_{d-1})
ScaFES::Ntuple<double, DIM> mCoordNodeLast;

Listing 1: Member variables of the class template
ScaFES::Grid<DIM>.

Subsets of the grid Dh of the following type will be referred
to as so-called “sub-grids”:

∆h :=
{
x(i0,i1,...,id−1) ∈ Dh : a ≤ (i0, i1, . . . , id−1) ≤ b

with a, b ∈ Nd0 as the indices of the first resp.

the last node of the subset.
}
.

Fig. 2 shows a grid and a sub-grid in two dimensions. The
subset ∆h can be described by the base grid Dh and the indices
a and b of the first and last node of the sub-grid. As ∆h is
related to the (base) grid Dh, the sub-grid is represented by a
sub class template named GridSub<DIM> of the (base) class
template Grid<DIM> which itself represents the (base) grid
Dh. The indices a and b are given as member variables (see
Listing 2), the space dimension d is implemented as template
parameter DIM.
Currently, all grids and sub-grids will be traversed lexico-
graphically in C style, i.e. node numbers (i0, i1, . . . , id−1) in

43



// Index of first node: a=(a_0,...,a_{d-1})
ScaFES::Ntuple<int, DIM> mIdxNodeFirstSub;
// Index of last node: b=(b_0,...,b_{d-1})
ScaFES::Ntuple<int, DIM> mIdxNodeLastSub;

Listing 2: Member variables of the class template
ScaFES::GridSub<DIM>.

(0, 0)

g
−1
Dh

gDh

(2, 3)

0 1 k = 8. . . . . . 11

(i0, i1) = (2, 2)

Fig. 3: Correspondents between node numbers in tuple notation
(i0, i1) and in scalar notation k via the mappings gDh and g−1

Dh
of a

two-dimensional grid Dh with 3 × 4 grid nodes. The correspondent
is explicitly shown for the node number (2, 2).

tuple notation of sub-grids correspond to scalar node numbers
k ∈ N0 and vice versa according to the following mappings:

gDh
(i0, i1, . . . , id−1) :=

d−1∑
p=0

(ip − cp) ·
p∏
q=1

nq,

g−1
Dh

(k) =
(
cp +

⌊
k/

p−1∏
p=0

nq

⌋
mod np

)
p=0,...,d−1

with b.c as lower Gaussian bracket and c ∈ Zd as index of the
first node of the base grid Dh. Fig. 3 shows the correspondents
via the mappings gDh

and g−1
Dh

for a two-dimensional grid.

For traversing through grids and sub-grids, the class tem-
plates Grid<DIM> and GridSub<DIM> each have an in-
ternal class named Iterator. These internal classes are
designed like the iterators of the STL. Thus, users do not have
to learn new patterns but can apply the iterators in the same
way. Furthermore, the employment of these iterators has the
advantage that the numbering of the nodes is hidden from the
user and therefore, can be easily changed if necessary (see
Listing 3).

ScaFES::Grid<DIM> gd;
for (ScaFES::Grid<DIM>::iterator it = gd.begin(),

et = gd.end(); it < et; ++it) { // [...]
}

Listing 3: Application of an iterator of the class template
ScaFES::Grid<DIM>.

The index (i0, i1, . . . , id−1) of the current grid node can
be accessed via it.idxNode(), the corresponding scalar
g(i0, i1, . . . , id−1) of the current tuple can be accessed via
it.idxScalarNode().

B. Representation of the (Discretized) Computational Domain

In order to solve initial boundary value problems using
grid-based methods, the computational domain Ω has to be
discretized on a given set of grid nodes, first. Usually, the
number of grid nodes is very huge (> 107). This would result
in a system of equations which would be too large to be solved
in serial. Thus, the discretized computational domain Ωh ⊂

Rd (called “global grid”) has to be decomposed into a given
number q ∈ N of sub-grids Sk with

q−1⋃
k=0

Sk = Ωh

and the corresponding grid partitions Sk have to be distributed
to the appropriate cores of the parallel hardware such that
each core will work on an appropriate subset of all grid nodes,
only. This so-called “domain decomposition approach” [8] fits
to our needs as we have restricted the framework to structured
grids. The communication in terms of messages between
the cores is enabled by the Message Passing Interface
(MPI), Currently, the global grid is partitioned based on
the well-known RCB (“Recursive Coordinates Bisection”)
algorithm [9]. The global grid Ωh is described by the grid
partitions Sk, the number of partitions np, and the relations
between the grid partitions. Due to the regular structure of
the underlying grids, these relations are completely described
by the identifiers and the directions of the direct neighboring
grid partitions.

The type of all nodes j ∈ G(Ωh) of the global grid will be
stored in a vector T ∈ NN in order to distinguish if a node is
a global interior one or a global boundary one:

Tj := 1 for all j ∈ GI(Ωh),

Tj := 2 for all j ∈ GB(Ωh).

Additionally, the type of all nodes related to a grid partition
Sk will be stored in a vector R(k) ∈ NMk with Mk ∈ N as
the number of nodes of the grid partition Sk:

R
(k)
j := 4 for all j ∈ GI(Sk),

R
(k)
j := 8 for all j ∈ GB(Sk).

The values of T and R(k) are chosen as elements of the dual
basis such that the sum can be created and values can be easily
extracted via bitwise operators. Fig. 4 illustrates the different
grid node types on a two-dimensional computational domain
which is discretized and decomposed into four grid partitions.

Global boundary node

Exterior node

S0

S2

Local boundary node =

S3

S1

Global interior node

ΩhΩh

here

Fig. 4: Decomposition of a two-dimensional global grid Ωh with 7×6
grid nodes into four grid partitions Sk. Local and global interior resp.
boundary nodes are identified.

In ScaFES, global grids are represented by the sub class
template GridGlobal<DIM> derived from the class tem-
plate Grid<DIM>. The grid partitions Sk, the identifiers
of the neighboring partitions and its directions are stored
as member variables (see Listing 4). The direction of the

44



// All grid partitions: S_k for k=0,1,...,d-1
std::vector< GridSub<DIM> > mPartition;
// Identifiers of all neighbours of all partitions.
std::vector< std::vector<int> > mvNeighbourId;
// Directions of all neighbours of all partitions.
std::vector< std::vector<int> > mvNeighbourDir;

Listing 4: Member variables of the class template
ScaFES::GridGlobal<DIM>.

neighbors of a given grid partition Sk is described for all
p ∈ {0, 1, 2, . . . , d− 1} by the following variable:

n(k, 2 · p) := left neighbor of k in direction p,
n(k, 2 · p+ 1) := right neighbor of k in direction p.

C. Representation of Physical Fields

Let v : Ω → Rm a given vector-valued physical field and
vh : Ω → Rm the corresponding approximation of v. The
approximation vh to v on the domain Ω can be alternatively
described by the matrix V ∈ RN,m which contains the function
values of the discrete function vh at all grid nodes xj ∈ Ωh:

Vj,q :=
[
vh(xj)

]
q

∀j ∈ {0, 1, 2, . . . , N − 1},
∀q ∈ {0, 1, 2, . . . ,m− 1}.

The global matrix V is partitioned into sub-matrices V (k)

accordingly to the domain decomposition approach, i.e. given
the grid partition Sk, the matrix V (k) works on the nodes of
this grid partition and is mapped to the corresponding MPI
process. An index of the global matrix V is mapped onto the
grid partition Sk via

hk := gΩh
◦ g−1

Sk
.

Thus, the following equalities hold for all elements j ∈
{0, 1, 2, . . . , Nk}, for all components l ∈ {0, 1, 2, . . . ,m− 1},
and for all grid partitions k ∈ {0, 1, 2, . . . , q − 1} (see also
Fig. 5):

V
(k)
j,l = Vhk(j),l , Vj,l = V

(k)

h1−
k (j),l

.

The sub-matrix V (k) is represented by the class template

g−1
Ωh

g−1
Sk

gSk

gΩh

i = (i0, . . . , id−1)

hk(j)

j

V
(k) on Sk

V on Ωh

Ωh

Sk

Fig. 5: Mappings of element j of the (local) vector V (k) related to
grid partition Sk to element hk(j) of the (global) vector V related
to grid global Ωh and vice versa.

DataField<CT,DIM>. The template parameter CT can be
replaced by the ScaFES type ScaFES::Ntuple<CT,MM>
in order to handle the above vector-valued physical fields
or by basic data types like double in order to handle

MPI

process 0 process 1

Fig. 6: Synchronization of a function value at the boundary of both
grid partitions The corresponding grid nodes at the boundary of each
partition are colored red resp. green, ghost grid nodes are colored
orange.

real-valued physical fields, too. The function values at all
grid nodes are stored continuously in memory. These values
can be easily set and accessed just by passing the positions
of the grid nodes (see Listing 5). There are two variants
for each access method: According to the class template
std::vector<CT>, the method operator() returns the
addressed component, directly, whereas the method at()
performs an additional range check. For enabling access to

ScaFES::DataField<double,3> V;
ScaFES::Ntuple<int,3> idxNode(0); V(idxNode) = 0;
int i(0), j(0), k(0); V(i,j,k) = 0;

Listing 5: Possibilities to set the elements of a three-dimensional
vector to zero at the first node of a grid.

function values on a different grid partition, the function values
at additional grid nodes (“halos”) are stored (see Fig. 6). This
speeds up the computations as one does not have to fetch the
necessary values again and again. Send and receive buffers
are provided for the halos in order to exchange the function
values between the grid partitions. The communication is
implemented asynchronously. As the structures of the send
and receive buffers do not change over time, the Boost.MPI
skeleton concept [10] is used. Within this concept, the contents
are separated from the structures and thus, the contents have
to be exchanged only once, resulting in an improved MPI
communication [11]. The class template consists of several
grids and sub-grids like the grid partition Sk represented by
mIdxSetNormal or the sub-grids of all ghost grid nodes
represented by mIdxSetGhost (see Fig.??). This has the
advantage that the function values at these grid nodes can
be easily accessed using the corresponding grid iterators.
In particular, the elements of the sub-matrix V (k) can be
traversed accordingly to the demands of the communication
using the iterators of the member variables mIdxSetComm
and mIdxSetGhost. The data exchange is done if and only
if there are at least two grid partitions and the stencil width of
the data field is not equal to zero.

D. Representation of Initial Boundary Value Problems

As we consider time-dependent problems, we have to
discretize the time interval [tS , tE ]. Let nτ ∈ N the number of
time steps. Then, for a given time step l ∈ {0, 1, 2, . . . , nτ−1},
we get the time tl = tS + l · τ for a time step size
τ := (tE − tS)/(nτ − 1). We denote the set of all times tl
by τh. Let uh : Ω × [tS ; tE ] → R be an approximation of u.

45



// Program parameters.
ScaFES::Parameters mParams;
// Global grid.
ScaFES::GridGlobal<DIM> mGG;
// Grid of all nodes.
ScaFES::Grid<DIM> mIdxSetAll;
// sub grid of all normal nodes.
ScaFES::GridSub<DIM> mIdxSetNormal;
// Sub grid of all boundary nodes.
std::vector< ScaFES::GridSub<DIM> > mIdxSetBorder;
// Grid of all ghost nodes.
std::vector< ScaFES::GridSub<DIM> > mIdxSetGhost;
// Grid of all nodes to be communicated.
std::vector< ScaFES::GridSub<DIM> > mIdxSetComm;
// Number of ghost layers.
int mNghostLayers;
// Pointer to the memory of the vector.
CT* mElemData;
// Buffers for sending and receiving.
std::vector<ScaFES::Buffer<CT>> mValuesToExchange;
// Output file for writing vectors.
ScaFES::DataFile<CT, DIM> mOutput;

Listing 6: Member variables of the class template
ScaFES::DataField<CT,DIM>.

Then, defining the matrices

U
(l)
j,q := [uh(xj , tl)]q, F

(l)
j,q := [f(xj , tl)]q,

G
(l)
j,q := [g(xj , tl)]q, Ũj,q := [ũ(xj)]q

for all xj ∈ Ωh and for all tl ∈ τh, and using a numerical
method like finite differences in space leads to the following
system of equations for all time steps l:

U
(l+1)
j =

(
A(U (l))

)
j
− F (l)

j ∀j ∈ GI(Ωh),

U
(l+1)
j = G

(l)
j ∀j ∈ GB(Ωh),

U
(0)
j = Ũj ∀j ∈ G(Ωh)

The matrix A ∈ RN,N results from the discretization in
space. A depends on the current iterate U (l). If the differential
operator F in the initial boundary value problem is a linear
one, then A depends linear on U (l), too. The discretization
of the underlying problems using a numerical method like
the finite difference method very often results in a sparse
system matrix A, i.e. only the values at direct neighboring
nodes are needed for the computation of the new iterate at
an interior grid node. In fact, the matrix A will never be set
up, but the matrix vector product AU (l) will be computed
in each time step. All equations are independent from each
other. Thus, the computation of the new iterate U (l+1) can
be done completely in parallel. In particular, one can reorder
the system of equations such that the communication and
the computations can be done concurrently on each grid
partition Sk:

• Compute U (k;0)
j = Ũ

(k)
j at all grid nodes j ∈ G.

• Perform for all time steps l ∈ {0, 1, 2, . . . , nτ − 1}:
◦ Compute iterate U (k;l+1)

j at all (partitions related)
boundary nodes j ∈ GB(Sk),

◦ Copy values U
(k;l+1)
j at all boundary nodes

GB(Sk) to the send buffers.

◦ Exchange values of the send buffers with all
directly neighboring grid partitions using non-
blocking sends and receives

◦ Compute iterate U (k;l+1)
j at all (partitions related)

interior nodes j ∈ GI(Sk),
◦ Wait until all communication calls have been

finished.
◦ Copy values from the receive buffers to halos of

current iterate U (k;l+1).
◦ Swap old iterate U (k;l) and new iterate U (k+1;l).

Initial boundary value problems are represented by the
class template Problem<PRBLM,CT,DIM>. The class tem-
plate makes use of the so called “curiously recurring template
pattern” [12]. As a consequence, the user has to implement an
own class inherited by this class template. This derived class
has to contain the methods given in Listing 8. The template
parameter CT represents the data type of all involved data fields
and DIM represents the space dimension d. The old and new
iterate at each time step are stored in the two member variables
mVectOld and mVectNew. The type of all nodes (interior,
boundary) of the grid partition is stored in a member variable
named mNodeType. (see Listing 7). Matrices like G(l) can be
added to the problem using the method addDataField().
This method requires the name of the physical field, its stencil
width, and a flag if the field is an unknown one or not. The
stencil width directly corresponds to the number of ghost layers
at the boundary of a grid partition (see Fig. 6). Amongst other,

// Program parameters.
ScaFES::Parameters mParams;
// Global grid.
ScaFES::GridGlobal<DIM> mGG;
// Type of grid nodes.
ScaFES::DataField<short int, DIM> mNodeType;
// Old iterate Uˆ{(k,l)} at grid partition S_k.
std::vector< ScaFES::DataField<CT, DIM> > mVectOld;
// New iterate Uˆ{(k+1,l)} at grid partition S_k.
std::vector< ScaFES::DataField<CT, DIM> > mVectNew;

Listing 7: Member variables of the class template
ScaFES:Problem<PRBLM,CT,DIM>.

there are access methods named gridsize() and tau()
for the grid sizes hp and the time step size τ . Known data
fields can be accessed using the method knownDf(). The
above algorithm over all time steps is implemented in the
method iterate(), and the mapping c is implemented in
the method connect(). In order to control program runs, the
most important parameters can be read in from the command
line. This has the advantage that one does not have to compile
a program again if the program should be executed with
a different parameter set. Furthermore, shell scripts can be
easily created for parametrized test runs (like weak or strong
scalability tests). The class Parameter represents a set of
command line parameters.

E. Summarizing Used Parallelization Techniques

In the end of this section, we summarize the three used
parallelization techniques.
On top, we adopt a domain decomposition approach by di-
viding the global grid into several grid partitions which are

46



template<typename T>
void updateInner(

std::vector<ScaFES::DataField<T,DIM>>& v1,
std::vector<ScaFES::DataField<T,DIM>> const& v0,
ScaFES::Ntuple<int,DIM> const& idxNode,
int const& timestep

);
template<typename T>
void updateBorder(

std::vector<ScaFES::DataField<T,DIM>>& v1,
std::vector<ScaFES::DataField<T,DIM>> const& v0,
ScaFES::Ntuple<int,DIM> const& idxNode,
int const& timestep

);

Listing 8: Methods which must be implemented by user in the derived
problem class.

mapped via a one-to-one relation onto a given number of
MPI processes such that each MPI process computes a portion
of the global problem (cp. subsection II-B). This technique
addresses distributed as well as shared memory systems. On
the node level, we use OpenMP work sharing constructs in
order to parallelize the traversing and computation of values
of physical fields on one grid partition. On the core level, we
vectorize small loops using the compiler SIMD vectorization.
Nowadays, modern compilers like the GCC or ICC can SIMD-
vectorize many loops automatically if these loops are written
in an appropriate way. Thus, we decided to support this
automatical compiler vectorization and prepared the loops in
the framework. i.e. we used for- instead of do-while-loops,
removed dependencies between involved elements within the
loops e.g.
The user can choose between a pure MPI, a pure OpenMP
and a mixed mode parallelization to adopt and benefit from
the underlying hardware architecture like a cluster system with
shared memory nodes and distributed memory across nodes or
a full shared memory system.

III. SOLVING A d-DIMENSIONAL HEAT EQUATION
PROBLEM

In order to show how an initial boundary value problem
can be solved using ScaFES, we consider the d-dimensional
heat equation on the d-dimensional unit hypercube for arbitrary
d ∈ N. Given the time interval [0; 1], the domain Ω := (0, 1)d,
the source f : Ω̄ × (0; 1] → R, f(x, t) := 0, the boundary
condition g : ∂Ω × (0; 1] → R, g(x, t) := 0, and the initial
condition ũ : Ω→ R, ũ(x) :=

∏d−1
i=0 xi · (xi− 0.5)2 · (1−xi),

then the task is to find u : Ω̄ × [0; 1] → R such that the
following system of equations is fulfilled:

∂tu−∆u = f in Ω× (0; 1],

u = g on ∂Ω× (0; 1],

u(·, tS) = ũ in Ω.

We discretized this system of equations in space using the
finite difference method with the standard centered stencil (7-
point stencil in 3D, e.g.) and in time using the explicit Euler
scheme. Therefore, we defined

U
(l)
j := u(xj , tl), F

(l)
j := f(xj , tl),

G
(l)
j := g(xj , tl), Ũj := ũ(xj).

Fig. 7: Strong scaling w.r.t. MPI of the considered three-dimensional
heat equation problem on ZIH cluster Taurus.

Fig. 8: Weak scaling w.r.t. MPI of the considered three-dimensional
heat equation problem on ZIH cluster Taurus.

for all xj ∈ Ωh, and for all tl ∈ τh. The resulting system of
equations reads for all time steps l ∈ {0, 1, . . . , nτ}:

U
(l+1)
j = τ ·

d−1∑
p=0

(
− 2 · U (l)

j + U
(l)
c(j;2·p)) + U

(l)
c(j;2·p+1))

)
/h2

p

− τ · F (l)
j + U

(l)
j ∀j ∈ GI(Ωh),

U
(l+1)
j = G

(l)
j ∀j ∈ GB(Ωh),

U
(0)
j = Ũj ∀j ∈ G(Ωh).

The implementation of this problem is given in Listing 9. We
emphasize that this implementation is not bound to a certain
storage data type and a certain space dimension due to the
employment of the class template parameters CT and DIM.

IV. PERFORMANCE RESULTS

In the last section, we demonstrated that ScaFES is very
user-friendly. Users do not need any knowledge about par-
allelization techniques but can concentrate on the implemen-
tation of the numerical algorithms. But what is the price to
pay for this rapid and simple prototyping? Does a ScaFES
application really scale and can it compete against applications
which are using one of the more general and heavyweight
software packages mentioned in section I? In order to figure
it out, we performed different scaling tests w.r.t. MPI and
OpenMP and compared ScaFES to PETSc, representing a
state-of-the-art software package.
To show the scalability of ScaFES, we used the implementation

47



1 #include "ScaFES.hpp"
2 % template<typename CT, std::size_t DIM> // Source f.
3 inline void funcF(CT& fx, ScaFES::Ntuple<CT,DIM> const& x, CT const& t) {
4 fx = 0.0;
5 }
6 template<typename CT, std::size_t DIM> // Boundary condition g.
7 inline void funcG(CT& fx, ScaFES::Ntuple<CT,DIM> const& x, CT const& t) {
8 fx = 0.0;
9 }

10 template<typename CT, std::size_t DIM> // Initial condition \tilde{u}.
11 inline void funcUt(CT& fx, ScaFES::Ntuple<CT,DIM> const& x, CT const& t) {
12 fx = 1.0;
13 for (std::size_t pp = 0; pp < DIM; ++pp) {
14 fx *= (x[pp] * (x[pp] - 0.5) * (x[pp] - 0.5) * (1.0 - x[pp]));
15 }
16 template<typename CT, std::size_t DIM> // Own problem class.
17 class HeatEqnFDM : public ScaFES::Problem<HeatEqnFDM<CT,DIM>, CT, DIM> {
18 public:
19 HeatEqnFDM(ScaFES::Parameters const& cl,
20 ScaFES::GridGlobal<DIM> const& gg)
21 : ScaFES::Problem<HeatEqnFDM<CT,DIM>, CT, DIM>(cl, gg) {
22 this->addDataField("F", 0, funcF<CT,DIM>, true);
23 this->addDataField("G", 0, funcG<CT,DIM>, true);
24 this->addDataField("U", 1, funcUt<CT,DIM>, false);
25 }
26 template<typename TT> // Method must be implemented!
27 void updateInner(std::vector<ScaFES::DataField<TT,DIM>>& vNew,
28 std::vector<ScaFES::DataField<TT,DIM>> const& vOld,
29 ScaFES::Ntuple<int,DIM> const& idxNode,
30 int const& timestep) {
31 vNew[0](idxNode) = vOld[0](idxNode)
32 - this->tau() * this->knownDf(0, idxNode);
33 for (std::size_t pp = 0; pp < DIM; ++pp) {
34 vNew[0](idxNode) += this->tau() * (
35 -2.0 * vOld[0](idxNode)
36 + vOld[0](this->connect(idxNode, 2*pp))
37 + vOld[0](this->connect(idxNode, 2*pp+1)) )
38 / (this->gridsize(pp) * this->gridsize(pp));
39 }
40 }
41 template<typename TT> // Method must be implemented!
42 void updateBorder(std::vector<ScaFES::DataField<TT,DIM>>& vNew,
43 std::vector<ScaFES::DataField<TT,DIM>>const& vOld,
44 ScaFES::Ntuple<int,DIM> const& idxNode,
45 int const& timestep) {
46 vNew[0](idxNode) = this->knownDf(1, idxNode);
47 }
48 };
49 int main(int argc, char *argv[]) { // Main program.
50 ScaFES::Parameters pp(argc, argv); // Read in command line options.
51 ScaFES::GridGlobal<3> gg(pp); // Create grid partitions.
52 HeatEqnFDM<double,3> prblm(pp, gg); // Create 3D heat eqn. problem.
53 prblm.iterate(); // Iterate over all time steps.
54 return 0;
55 }

Listing 9: Source code in ScaFES for solving the three-dimensional heat equation on the three-
dimensional unitcube.

of the three-dimensional heat equation problem as shown in
section III as test case with purely MPI parallelization. The
strong and weak scaling tests w.r.t. MPI were performed on
island 1 of the HPC system Taurus at ZIH which is based
on Intel R© Sandy Bridge multi-core chips with 16 cores
per shared-memory node and a total of 4320 cores [13].
The application was compiled with GCC 4.8.0 and highest
optimization level. All measurements refer to computing 20
time steps, the computational domains were partitioned in
the third dimension, the times for initialization and output
of simulation results are not considered. We discretized the

computational domain using 128× 128× 8192 nodes as fixed
workload for the strong scaling test and used a fixed grid of
128×128×8 nodes per process for the weak scaling test. The
results in Fig. 7 and in Fig. 8 show that the application indeed
scales weakly and strongly.
The strong scaling tests w.r.t. OpenMP were performed on the
HPC cluster Atlas at ZIH as this cluster possesses 64 cores
per shared-memory node [14]. We used the implementation
of the corresponding two-dimensional heat equation problem
as test case. The application was compiled with GCC 4.7.1
and highest optimization level. Again, all measurements refer

48



Fig. 9: Strong scaling w.r.t. OpenMP of a two-dimensional heat
equation problem on ZIH cluster Atlas.

Fig. 10: Comparison of ScaFES with PETSc for a two-dimensional
heat equation problem on ZIH cluster Atlas.

to computing 20 time steps, the computational domains were
partitioned in the second dimension. The times for initial-
ization and output of simulation results are not considered.
We discretized the computational domain using 4096 × 4096
nodes as fixed workload. The results in Fig. 9 show that the
application scales strongly w.r.t. OpenMP, too.
We have seen that ScaFES indeed is a high-scaling framework.
But will it be as fast as one of the other existing frameworks?
Therefore, we implemented the above heat equation problem
in two dimensions in PETSc 3.4.3, too. The performance test
was again run on the ZIH cluster Atlas. Fig. 10 shows that
implementation in ScaFES is not only comparable to PETSc,
but outperfoms it for the considered example, for 64 processes
by a factor of approximately 7.
All source codes, scripts and results of the performance tests

are provided at tu-dresden.de/zih/scafes such that
the presented results can be reproduced by interested people.

V. CONCLUSIONS AND OUTLOOK

We described the principal design aspects of the HPC
framework for explicit solvers on structured grids named
ScaFES and showed its good scalability. By presenting an
implementation example, we illustrated the user-friendly in-
terfaces. The development resp. design of ScaFES was driven
by the ambitions to create a high quality and scalable software
tool, which is easy to use and is portable to various platforms
and architectures. The underlying parallelization is encapsu-
lated and hidden from the user. The user has to implement
serial code, only. The parallelization and communication is

managed by ScaFES. Because of its user-friendliness, ScaFES
can be used as a rapid prototyping tool to evaluate and compare
numerical methods as well as to write high quality production
code without loosing scalability and efficiency.
Load balancing is normally a key aspect of adaptive mesh
methods. If it should be necessary, one could achieve load
balancing by introducing a cost function to the domain de-
composition algorithm.

ACKNOWLEDGMENTS

ScaFES is funded by the Federal Ministry of Education
and Research (BMBF) within the project HPC-FliS under the
support code 01 IH 11 009.

REFERENCES

[1] S. Vey and A. Voigt, “AMDiS: adaptive multidimensional simulations,”
Computing and Visualization in Science, vol. 10, no. 1, pp. 57–67, 2007.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
Management of Parallelism in Object Oriented Numerical Software
Libraries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,
and O. Sander, “A generic grid interface for parallel and adaptive
scientific computing. Part I: abstract framework.” Computing, vol. 82,
no. 2-3, pp. 103–119, 2008.

[4] K. Yee, “Numerical solution of inital boundary value problems involv-
ing maxwell’s equations in isotropic media,” IEEE Transactions on
Antennas and Propagation, vol. 14, pp. 302–307, May 1966.

[5] ISO, ISO/IEC 14882:2011 Information technology – Programming
languages – C++. Geneva, Switzerland: International Organization for
Standardization, Feb. 2012, last checked on 2013-11-14 (07:30 CET).
[Online]. Available: http://www.iso.org/iso/iso catalogue/catalogue tc/
catalogue detail.htm?csnumber=50372

[6] B. Dawes, D. Abrahams, and R. Rivera, “Boost C++ Libraries
Homepage,” last checked on 2013-11-02 (07:12 CET). [Online].
Available: http://www.boost.org

[7] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor, “The Goat
Book,” 2000, last checked on 2013-10-18 (16:12 CET). [Online].
Available: http://sources.redhat.com/autobook/

[8] G. Hager and G. Wellein, Introduction to High Performance Computing
for Scientists and Engineers, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 2010.

[9] M. J. Berger and S. H. Bokhari, “A Partitioning Strategy for
Nonuniform Problems on Multiprocessors.” IEEE Trans. Computers,
vol. 36, no. 5, pp. 570–580, 1987, last checked on 2013-11-08 (12:30
CET). [Online]. Available: http://dblp.uni-trier.de/db/journals/tc/tc36.
html#BergerB87

[10] M. Gauckler and D. Egloff, “The Meat and Bones of Message Passing,”
Sep. 2006, last checked 2013-10-28 (15:44 CET). [Online]. Available:
http://daveabrahams.com/files/2010/09/meat and bones of mpi.pdf

[11] M. Flehmig, “Framework zur effizienten parallelen Berechnung ex-
pliziter orts- und zeitdiskreter Verfahren,” Diploma Thesis, Center
For Information Services And High Performance Computing At TU
Dresden, 12 2011.

[12] J. O. Coplien, “Curiously Recurring Template Patterns,” C++ Report,
1995.

[13] Center For Information Services And High Performance Computing
At TU Dresden, “HPC Web-Compendium: Cluster Taurus,” last
checked 2013-11-14 (13:22 CET). [Online]. Available: https://doc.zih.
tu-dresden.de/hpc-wiki/bin/view/Compendium/HardwareTaurus

[14] ——, “HPC Web-Compendium: Cluster Atlas,” last checked 2013-
10-28 (15:30 CET). [Online]. Available: https://doc.zih.tu-dresden.de/
hpc-wiki/bin/view/Compendium/HardwareAtlas

[15] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A Limited Memory Algorithm
for Bound Constrained Optimization,” SIAM Journal on Scientific
Computing, vol. 16, no. 5, pp. 1190–1208, 1995.

49

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.boost.org
http://sources.redhat.com/autobook/
http://dblp.uni-trier.de/db/journals/tc/tc36.html#BergerB87
http://dblp.uni-trier.de/db/journals/tc/tc36.html#BergerB87
http://daveabrahams.com/files/2010/09/meat_and_bones_of_mpi.pdf
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HardwareTaurus
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HardwareTaurus
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HardwareAtlas
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HardwareAtlas



