GI, the Gesellschaft fiir Informatik, publishes this series

in order

* to make available to a broad public recent findings in
informatics (i.e. computer science and information systems)

* to document conferences that are organized in cooperation
with GI and

* to publish the annual GI Award dissertation.

Broken down into the fields of “Seminars”,“Proceedings”,“Mono-
graphs” and “Dissertation Award”, current topics are dealt with
from the fields of research and development, teaching and further
training in theory and practice. The Editorial Committee uses an
intensive review process in order to ensure the high level of the
contributions.

The volumes are published in German or English

Information: http://www.gi-ev.de/LNI

ISSN 1614-3213
ISBN 3-88579-435-7

Magenheim, Schubert (Eds.): Informatics and Student Assessment, 2004

GI-Edition

Lecture Notes
in Informatics

Johannes Magenheim, Sigrid Schubert (Eds.)

INFORMATICS AND
STUDENT ASSESSMENT

Concepts of Empirical Research and
Standardisation of Measurement in the
Area of Didactics of Informatics

Volume 1

Dagstuhl-Seminar of the
German Informatics Society (GI)
19.-24. September 2004 on Schloss Dagstuhl

Seminars

Johannes Magenheim, Sigrid Schubert (Eds.)

INFORMATICS AND
STUDENT ASSESSMENT

Concepts of Empirical Research and Standardisation of
Measurement in the Area of Didactics of Informatics

GI-Dagstuhl-Seminar

September 19-24, 2004, Schloss Dagstuhl, Germany

German Informatics Society (GI) 2004

GI-Edition — Lecture Notes in Informatics (LNI) — Seminars
Series of the German Informatics Society (GI)

Volume S-1

ISSN 1614-3213
ISBN 3-88579-435-7

Volume Editors

Prof. Dr. Johannes Magenheim
University of Paderborn, Didactics of Informatics
Fiirstenallee 11, D-33102 Paderborn, Germany
e-mail: jsm@uni-paderborn.de

Prof. Dr. Siegrid Schubert
University of Siegen, Didactics of Informatics and E-Learning
Hoélderlinstrasse 3, D-57068 Siegen, Germany
e-mail: schubert@die.informatik.uni-siegen.de

Series Editorial Board

Heinrich C. Mayr, Universitit Klagenfurt, Austria (Chairman, mayr@ifit.uni-klu.ac.at)
Jorg Becker, Universitdt Miinster, Germany

Ulrich Furbach, Universitdt Koblenz, Germany

Axel Lehmann, Universitit der Bundeswehr Miinchen, Germany

Peter Liggesmeyer, Universitdt Potsdam, Germany

Ernst W. Mayr, Technische Universitit Miinchen, Germany

Heinrich Miiller, Universitét Dortmund, Germany

Heinrich Reinermann, Hochschule fiir Verwaltungswissenschaften Speyer, Germany
Karl-Heinz Rédiger, Universitit Bremen, Germany

Sigrid Schubert, Universitéit Siegen, Germany

Dissertations
Dorothea Wagner, Universitit Konstanz, Germany

Seminars
Reinhard Wilhelm, Universitit des Saarlandes, Germany

© Gesellschaft fiir Informatik, Bonn 2004

printed by Koéllen Druck+Verlag GmbH, Bonn

Preface

Mission Statement

The Dagstuhl-Seminar ‘Concepts of Empirical Research and Standardisation of Meas-
urement in the Area of Didactics of Informatics’ is organised in order to make a contri-
bution to the development of didactics of informatics in general and to foster empirical
research in the area of informatics education particularly. It is also intended to link the
discussion of national experts about standards of informatics education to the discussion
of the international scientific community within this area. Connected with the develop-
ment of a theory of didactics of informatics educational standards are regarded as stan-
dardized objectives of qualification in subject related learning processes. They contain
educational objectives of informatics and thus also describe implicitly the contribution of
informatics as a subject in schools to general education.

The history of informatics, of informatics education and of didactics of informatics is a
very short one in comparison to other more traditional sciences and subjects. Due to this
legal and educational framework it is necessary to establish a tradition of discussion of
didactical concepts in the area of informatics education in order to develop a subject
related didactical theory. Though there is a strong relation between empirical research
and the development of didactical theory, we unfortunately have to register a lack of
empirical studies in the area of didactics of informatics. To develop concepts of empiri-
cal analysis of learning processes in informatics education and regarding them as results
of realisation of practical aspects of a didactical theory are main issues of the seminar.

Therefore, during the seminar different concepts of empirical research will be presented.
Especially the process of operationalisation of test items related to educational standards
will be discussed. In comparison with research concepts of class room work in other
subject areas empirical research methods in informatics education must direct their atten-
tion additionally to the use of software-tools and integrated development environments.
Empirical analysis of class-room work in informatics must include collaborative proc-
esses within learning groups and individual and collaborative aspects of human-
computer interaction. The intention is to gain more sophisticated empirical instruments
which fit in a special way with the specific demands of the subject area.

Educational Standards of Informatics

This Dagstuhl-Seminar will give reason for the use of educational standards within the
area of informatics education and emphasise the importance of standards for empirical
research. The intellectual techniques of informatics such as problem oriented modelling,
formalisation and abstraction change research and lecture in other subject areas, includ-
ing pedagogics, and support meta-knowledge in order to master complexity.

The educational value of informatics is determined by this method of cognition within
other sciences even apart from informatics systems. To learn about design and construc-
tion of informatics systems as a process of balancing interests between stakeholders
makes people realise that exerting influence on system design and the considered use of
technical systems is an important issue of democratic societies.

Based on the fundamental educational importance of informatics there are recommenda-
tions, national and international curricula and demanding educational concepts concern-
ing informatics education. They include mainly not approved and empirically verified
educational standards, e.g. methodical skills and domain related knowledge. In a wide
range of educational topics in which students’ learning success is scored there is a ten-
dency towards internationally harmonized test methods for the educational outcomes of
institutional learning. At the moment such comparative data are missing for informatics,
especially for the impact of informatics on general education issues. In order to formu-
late educational standards within informatics education comparable teaching-and-
learning-materials must be developed.

The concept of ,,Didactic Systems* ensures such a collection of coordinated teaching-
and-learning-materials, which, as part of a class scenario, may lead to different skills
very flexibly according to the respective target group and enables the integration of sec-
ondary informatics education into international student assessment. Thus, educational
learning processes in informatics will become more transparent and comparable. In the
aftermath of that a certain level of standardisation will contribute to the quality assurance
and sustainability of the general educational impacts of informatics education.

New Research Results

In the last years we observed the consolidation of a new part of informatics, the field of
didactics of informatics through a row of powerful doctoral theses, e.g. from Torsten
Brinda, Ira Diethelm, Berit Holl, Ludger Humbert, Eckhart Modrow, Carsten Schulte,
Marco Thomas, and the postdoctoral thesis of Peter Hubwieser. Therefore, the time is
ready to establish a new level of cooperation to solve open questions and pressing tasks
based on such successful research designs and tools. The invited expert group of the
Dagstuhl-Seminar 2004 was asked to give their experience to the task force “Educational
Standards of Informatics”.

The research by Torsten Brinda shows the way from objectives to educational standards
for the field of object-oriented modelling (OOM). The key idea of this approach is the
identification, structuring and testing of new exercise classes. He developed this exercise
classes as part of his specific concept “Didactic System for OOM”. This concept pro-
vides such exercise classes to enhance the quality of learning. The power of the research
results lies in the connection of a competence level model with informatics cores, sub-
jects and types of exercises. On this basis he deduced competence levels from cognitive
and planning preparation of OOM (level 0) to the advanced OOM and assessment of
models (level 4).

Volker Claus describes how to educate students to be future successful applicants of
informatics with a learning and teaching method called “Basic Reciptique”. This method
is the core of a new kind of didactics of Informatics, the “Service Didactics” of informat-
ics Application. As an expert of theoretical informatics he illustrates the connection
between the skills and the essential knowledge for this specific target group. The new
“Service Didactics” could guarantee an efficient and serious informatics application
strategy for other sciences. He recommends experiments in the virtual laboratory as a
technique of interdisciplinary learning of informatics and other sciences.

Ira Diethelm, Leif Geiger, Christian Schneider, Albert Ziindorf present two papers con-
cerning the problems of measuring modelling activities. The first paper ‘Measurement of
Modelling Abilities’ discusses the difficulties of measuring modelling abilities within
empirical examinations. Besides a description of diverse aspects of the subject area,
especially the challenge to operationalize cognitive processes at different levels of ab-
straction of a model, the authors provide us with a specific solution for grading model-
ling abilities of 3rd term students. Their second paper ‘Automatic Time Measurement for
UML Modeling Activities’ outlines the current state-of-the-art in automatic time meas-
urement in CASE tools and what may be achieved in the near future. This is done with
respect to empirical studies for learning and teaching processes.

Ludger Humbert, Hermann Puhlmann analysed kinds of phenomena of informatics, such
with direct, such with indirect and such without connection to an informatics system but
with informatical structure or informatical reasoning. They discuss the conclusions of
these properties for a phenomena-driven approach in informatics education and the phe-
nomenon-based test items. The relation between modelling skills and different tech-
niques of formalization was described together with examples of appropriate test items.
These last findings were summarized to design conclusions of test items to determine the
degrees of literacy in informatics.

Dietmar Johlen’s paper “Learning Process’ Evaluation in Vocational Schools for the IT
Sector’s Training Occupations” presents the concept of learning areas for the IT sector’s
training occupations. The scenario-approach is introduced, which represents a methodi-
cal-didactic reference system for the development and execution of instruction. From
this starting point the evaluation of learning process in vocational training, especially in
regard to the advancement of competencies were discussed. The author stresses that the
scenario-approach puts the concept of learning fields in precise terms and that this ap-
proach is also an appropriate research environment for the evaluation of learning proc-
esses.

The empirical studies by Peter Micheuz show the results of a project in informatics edu-
cation of learners at the age between 10 and 12 years in comprehensive secondary
schools in Carinthia/Austria. The learners are in the beginning highly motivated to mas-
ter the fourth cultural technique, but the enthusiasm of all learners (girls as well as boys)
decreases significantly after one year. In teamwork a minimal standard curriculum was
established and a pool of exercises. The project confirms two well-known facts; first the
preparations for informatics lessons are extraordinarily intensive and second the teachers
prefer to work with materials they prepared themselves.

Eckhart Modrow’s paper ‘The Contribution of Computer Science to Technical Literacy’
deals with the idea of general education and how informatics at school may foster stu-
dents’ appreciation of technical systems, especially informatics systems. The author
stresses the importance of that issue in regard to students’ occupational choice. For the
discussion of educational standards and for the selection of content in the area of didac-
tics of informatics it is also very important to analyse the contribution of informatics to
technology related topics and its relation to general education. The paper also examines
how the term “technical general education” may be substantiated and discusses on the
basis of some examples the consequences for the class room work in informatics.

Olaf Scheel describes the use of learning objects in an interactive computer-based learn-
ing environment for Blended Learning called Informatics Learning Lab (ILL). Students
should use learning objects in a self-organized learning process in this open collaborative
learning environment. The paper focuses on the construction of the learning objects and
examines the coding types and levels of abstraction of the learning objects’ media. An
empirical research design is presented that should give reason for the design of problem
based learning scenarios and analyses the effects of interactive animations in order to
achieve software engineering related objectives.

Markus Schneider presents a matrix of measurable quantities which connects fundamen-
tal concepts of informatics, complexity levels of the exercises (low, intermediate, high)
and the test results of students (female and male separately) in higher informatics educa-
tion (first academic year). He discovered important results. Various program styles
should be learned in the order of increasing syntactic complexity. Lectures are not suit-
able for the support of the students’ self-activity. Female students start their first aca-
demic year with the handicap of missing knowledge on program languages and applica-
tion strategies. Adequate study scenarios are to be developed in future work.

Carsten Schulte describes how to measure the effectiveness of learning-processes in
informatics that rely on the use of programming environments. The paper deals with
empirical research concepts which examine the influence of media on learning proc-
esses, especially in the area of informatics. According to the thesis that media may not
influence learning under any conditions, the emphasis shifts from searching the best
media to the search of effective learning environments. The conclusion to be drawn from
this paradigm shift is with regard to empirical studies to supplement empirical pre-post
design by instruments which enable to analyse human computer interaction with the
software tools.

The research by Andreas Schwill shows that educational standards of informatics need a
clear definition of the expressions “idea” and “term”. He analyses works of Plato, Des-
cartes, Locke, Leibniz, Hume and Kant. He describes the impact of the properties of
ideas for the process of education, e.g. the influence of basic ideas on more complex
ideas. From this he deduces the specific role of “idea” and “term” in the process of cog-
nition, e.g. terms are structuring the subject area of cognition and ideas are controlling
the process of cognition. This article complements his publications on “Fundamental
Ideas of Informatics” (e.g. algorithmizing, structured decomposition, language).

Through the publication of these new research results, we hope to intensify the dialog
among the German researchers and the international community in didactics of informat-
ics, to promote educational standards of informatics and their integration into the Pro-
gramme for International Student Assessment (PISA).

We hope that many readers in the informatics community will benefit from these contri-
butions.

Johannes Magenheim and Sigrid Schubert

Paderborn and Siegen, August 2004.

Content

Thorsten Brinda
Preparing Educational Standards in the Field of Object-Oriented Modelling

Volker Claus
Service Didactics / Dienstleistungsdidaktik

Ira Diethelm, Leif Geiger, Christian Schneider, Albert Ziindorf
Automatic Time Measurement for UML Modeling Activities

Ira Diethelm, Leif Geiger, Christian Schneider, Albert Ziindorf
Measurement of modeling abilities

Ludger Humbert, Hermann Puhlmann
Essential Ingredients of Literacy in Informatics

Dietmar Johlen
Learning Process’ Evaluation in Vocational Schools for the IT Sector’s Training
Occupations

Peter Micheuz
Informatics and Standards at an Early Stage

Eckhart Modrow
The Contribution of Computer Science to Technical Literacy

Olaf Scheel
Creating Proper Media Objects for Computer Supported Learning-Environments

Markus Schneider
An Empirical Study of Introductory Lectures in Informatics Based on Fundamen-
tal Concepts

Carsten Schulte
Empirical Studies as a tool to Improve Teaching Concepts

Andreas Schwill
Philosophical Aspects of Fundamental Ideas: Ideas and Concepts

Participants with not published lectures:
Gotz Bieber
Peter Hubwieser

11

23

39

51

65

77

87

103

111

123

135

145

Preparing Educational Standards in the Field of Object-
Oriented Modelling

Torsten Brinda

Didactics of Informatics and E-Learning
University of Siegen
Holderlinstr. 3
57068 Siegen, Germany
brinda@die.informatik.uni-siegen.de

Abstract: In Germany the results of the international PISA study disclosed a de-
mand for an increase in the quality and an improvement in the comparability of
educational results. In the subjects German, maths and first language (i.e. English)
this demand already resulted in the development and publication of first educa-
tional standards. With the aim to prepare educational standards for the Informatics
field of object-oriented-modelling (OOM) at first characteristics of such standards
were analysed. It was justified that learning subjects from the OOM field fulfil cur-
rent learning objectives of Informatics education. To prepare a competence level
model for OOM, an important component of educational standards, a method was
presented for selecting, abstracting, analysing and structuring exercises, which has
effectively been applied to more than 320 exercises and also successfully been
tested in Informatics education. Especially by the structuring step of exercises ac-
cording to their dimensions Informatics core, subject and exercise type, a good ba-
sis for the justification of a competence level model is given. The results of this
analysis were finally combined with the PISA competence level for maths to an
outline of a corresponding model for OOM.

1 Motivation

The results of the international PISA- and the additional PISA-E-study showed that in
Germany and its federal states the performance of the learners in secondary schools
varies more than in any other participating country. While in the upper performance
ranges Germany can keep up with most of the OECD countries, in the lower ranges the
German learners considerably fall behind the participants of other countries [Ba02]. This
was interpreted as a hint of a lack of minimum standards, which must be achieved in the
education of e.g. reading and mathematical competence. While the German educational
system so far was only controlled by the input, e.g. curricula and examination guidelines,
nowadays a shift towards output orientation, e.g. towards the performance of schools and
above all towards the performance of learners, can be observed.

As a consequence the German Ministry of Education and Research commissioned Ger-

11

man educational researchers to investigate the development, implementation and conse-
quences of national educational standards to increase the quality of school education, the
comparability of secondary school qualifications and the perviousness of the educational
system. First results were published in 2003 [GMERO03a] and influenced the work of the
Standing Committee of the German Federal Ministers of Education and Cultural Affairs,
which passed first educational standards for 10th grade in the subjects German, maths
and first language in its resolution from December 4th, 2003 [CMECO03a, b]. In the fu-
ture the fulfilment of such standards will regularly be checked. Since the further devel-
opment of the German system for secondary education by the introduction of nationwide
educational standards is a wide-ranging intervention in a well-established school system,
all subjects and its didactics, teachers and teacher educators as well as the school ad-
ministrations need to be involved in this process.

In the subject Informatics the development of nationwide educational standards is im-
peded by the fact that in contrast to almost all other subjects still no binding basic educa-
tion exists for all learners. Existing educational recommendations, curricula, educational
concepts and lesson examples moreover show that there still exists no generally accepted
consensus about the competences learners should acquire and the exercise classes learn-
ers should be able to manage.

This paper concentrates upon the development of educational standards in one important
field of Informatics education, namely object-oriented modelling (OOM). The important
role of OOM within secondary Informatics education was shown in [Br0O4a]. It was
shown and justified, how the components of a so called didactic system (for OOM in this
case), a compound of traditional and new components of the learning process with so
called exercise classes, exploration modules and knowledge structures as main constitu-
ents, can be applied to prepare educational standards in the OOM field.

2 Method of research

With the aim to prepare educational standards for the field of object-oriented modelling,
general components and quality criteria of educational standards are analysed on the
basis of publications. Essential components in this context are the educational objectives
to be reached, a step-by-step model of the competences to be reached by the learners as
well as exercises and testing methods to verify the reaching of certain competence levels.
The connection with the aims of a general, secondary Informatics education is realized
by the linking with publications from the field of didactics of Informatics and with ge-
neral educational guidelines. For the preparation of a competence level model a method
for the analysis of Informatics exercises and for the development of so-called exercise
classes, which was developed and successfully tested by the author, is applied. As a part
of this method exercises become classified due to the dimensions Informatics core, sub-
ject and exercise type. Identified values of these dimensions are used to identify different
levels of demands. Afterwards the results from this analysis are combined with the PISA
competence level for maths, which due to analogies seems very appropriate as a basis for
the Informatics field of modelling.

12

3 Components and characteristics and of educational standards

Educational standards take up general educational objectives. They lay down, which
competences children and young persons should (at least) have acquired until a certain
grade. The competences are described so concretely that they can be illustrated and im-
plemented in exercises and in principle be measured by the help of testing methods
[GMERO03a]. Good educational standards relate to a certain learning field and work out
the discipline’s basic principles, do not cover the whole width of the learning field but
concentrate on a core field instead, focus on competences, which have cumulatively and
altogether been built up until a certain point in the course of a learning history, express
minimum requirements, which are expected by all learners, are formulated clearly, con-
cisely and understandably and are challenging for learners and teachers but attainable
with realistic effort [ibid.]. In contrast to other definitions competences are understood in
this context as available or learnable cognitive abilities and skills to solve certain prob-
lems as well as the involved motivational and social readiness and ability to apply the
problem solutions in variable situations successfully and responsibly.

To benefit of educational standards within the quality development of schools, educa-
tional objectives need to be considered and competence models and exercises as well as
testing methods need to be developed. Educational standards orientate themselves by
educational objectives, which the learning in schools shall follow, and implement them
into concrete demands. They put these objectives in concrete terms in the form of com-
petence demands and lay down, which competences a learner should have available, if
important school objectives can be considered to be reached. These demands are syste-
matically ordered in competence models, which present aspects, levels and courses of
development of competences. The determination of competence levels to establish mini-
mum educational standards is a main research goal. Educational standards as results of
learning processes finally become illustrated in exercises and testing methods, with
which the competence levels learners have reached can reliably be captured with empiri-
cal research methods. Since this is a time consuming process, the first published stan-
dards referred to a middle level of demands [CMECO03a, b].

In the following the dimensions educational objectives, competence model and exercises
and testing methods are analysed for the field of object-oriented modelling.

4 Development of educational standards for the OOM field

4.1 Educational objectives

At the sight of the rapid development of Informatics as a science, the objectives of In-
formatics education are a continual subject of the didactic discussion since the origin of
the school subject. Important results for the aim of this paper were the “Fundamental
ideas of Informatics” by Schwill [Sc97], with which selection criteria for concepts for
school education were made available, the “Information centred approach” by Hubwie-
ser [Hu97], in which the importance of modelling for Informatics education was justified

13

in detail and the overall conception of secondary Informatics education [Br00] by the
German Informatics society (GI), in which long-lived guidelines for Informatics educa-

<

tion were described. These guidelines are “interaction with Informatics systems”, “work-
ing principles of Informatics systems”, “informatic modelling” and “interaction between
Informatics systems, human beings and society”. Finally, in the revised version (Feb.
2004) of the uniform examination requirements of secondary Informatics education

[CMECO04] modelling is also one main area.

In [Br04a] it was shown that learning subjects from the OOM field fulfil the selection
criteria of Schwill. OOM is one essential style of modelling in Informatics, of which the
educational value was widely stressed.

4.2 Identification, structuring and testing of exercise classes

The starting point for the identification, structuring and testing of so called exercise
classes was the identification of a lack of lesson suitable exercises for applying, practis-
ing and deepening of contents of object-oriented modelling. In contrast to this in profes-
sional textbooks a big variety of such material exists. So, the existing material was ana-
lysed, and a method for developing corresponding material for secondary Informatics
education was justified, applied and evaluated [BrO4a, b]. This method not necessarily
needs to be applied to professional material. In principle it can easily be adapted to fields
of secondary Informatics education, for which already material exists. For the develop-
ment of a competence model especially the analysis of Informatics cores, subjects and
types of exercises combined with the development of exercise classes is of relevance. In
the following, essential steps of this method are summarized (also see figure 1).

1. Selection of textbooks

The starting point was given by the selection of standard text books on OOM
with the prerequisite to contain exercises. The textbooks of Rumbaugh et al.
[Ru91] and Balzert [Ba99] were selected.

2. Selection of exercises

Since the contained exercises addressed different target groups, namely Infor-
matics students or computer scientists, criteria to select or to transform unsuited
into suitable exercises for secondary education were developed. In the first run
of the method the criteria concepts of secondary Informatics education, empha-
sis of modelling, language independency and complexity were justified and ap-
plied. It turned out that the complexity of exercises should not already influence
their selection for a collection, because this restriction is unnecessary. Not be-
fore the design of exercises for concrete learning groups and their learning his-
tories, assumptions about suitable levels of demands can be taken. Therefore,
the criterion of complexity was no longer applied in the second run. Altogether
more than 320 exercises were analysed.

14

_ Spedalist texthooks _

!

[Selection of textbooks

Selecton cntena:
+ standardwork
+ variety of exercizes

Tast _

Test of exercise classes

+ Secondary informatics educs-
tion at 11th £ 12th grade

* Informatics teacher education £
in-service fraining

Catalogue of exercise
classes

il
-

-~

- /MA

L~

* =t wersion
+ 2nd version with represen-
tation of structure

%

i

F

| Selected textbooks
* Rumbaugh et al.

v/

/

/ Design of different levels

T
Design of exercises |-~ "\ [efinen

\

& Selection of contexts

(1993)
s Balzert (1993)

Selection / fransformation
of EXErCisES

_
/' [+ “ariation of

+ suitakility for OOk

shape
complexity
availability

of diven data

frequency of application

+ =asy changesbility
and extendikility

+ experience relation

+ motivation

1ent

Classification ! structur-
ing of exercise classes

+ informatics core (onby
2nd)

+ =ubject

+ gxercise type

— classification structure

4

Formation of exercise
classes

“ariation of the exercise
type

Selection chtena:

+ concepts of secondary
infarmatics education

+ emphasis of modeling

+ language independency

+ complexity (only 1=1)

+ static model (only 13t

Selected exercises

EXEICISE

analyzis

Formation of
context classes

+ baszic exencise classes
* complex exercize clazses
[additions, varistions)

+

Abstraction of exercises

+—| Comexts

¥ .\\\.

fdentification of exercise classes

+ =eparation of concrete identi-

fiets, explaining texts, con-
texts

+ jdentification and abstraction

of given data and taskiz)

+ partial normalization (=yno-

nyms, singular § plural)

Figure 1: Development of exercise classes

15

Abstraction of exercises and development of exercise classes

After the selection the exercises were abstracted into so called exercise classes
by separating them of explaining texts, real world contexts and identifiers.
Every exercise class combines some given information (texts; figures, e.g. dia-
grams) with a task (basic exercise class). If for a task following additional tasks
or alternative tasks exist, the exercise class is a complex one. It was necessary
to identify different concept definitions (e.g. object diagram) within the ana-
lysed textbooks and to consider these definitions in the formation of exercise
classes.

Structuring exercise classes

The next goal was to structure the exercise classes in a collection to simplify the
access for teachers and learners. Therefore, the identified exercise classes were
classified in view of their characterising dimensions Informatics core, subject
and exercise type. In the field of the Informatics core exercises on the static
model, the dynamic model and the combination of both were identified. The
subjects of exercises were differentiated into exercises on concepts of object-
orientation, exercises on model elements and exercises on model. Moreover, the
exercise types knowledge question, comprehension question, description task,
assignment task, specification task, arrangement task, discussion task, analysis
task, comparison task, validation task, identification task, modification task,
transformation task and construction task were identified. These exercise types
were combined with the levels of the Bloom taxonomy of cognitive learning ob-
jectives and it was explained that exercises can be designed for all cognitive
levels of demands. A collection of exercise classes was developed in two ver-
sions. At first, a preliminary study took place on the basis of exercises only on
the static model to investigate the soundness of the concept. These exercise
classes formed the basis of the tests in secondary Informatics education as well
as in Informatics teacher education. The evaluation showed the soundness of the
concept and the demand for exercise classes also on the dynamic model as well
as on the combination of static and dynamic model and therewith initiated a sec-
ond run.

Design of exercises with exercise classes

The findings of the tests in Informatics teacher education led to the develop-
ment of a method for the design of exercises with exercise classes. Therefore,
the selected exercises were structurally analysed with regard to the criteria
shape, complexity, availability and frequency of application of given data and it
was justified, to what extend, by their variation in combination with a suitable
choice of exercise types, levels of demands in exercises can be modelled. Since
besides exercise classes motivating contexts are necessary for the development
of exercises, within the process of abstraction of exercises the separated con-
texts were analysed and the criteria suitability for OOM, easy changeability and
extendibility, every day life reference and motivation for their suitability for les-

16

son usage were derived.
6. Testing of exercise classes

The first version of the exercise classes was the basis for three empirical case
studies in secondary Informatics education in grades 11 and 12 of two grammar
schools in the Dortmund area in Germany. On the basis of these exercise
classes, worksheets with OOM exercises were developed in cooperation with
the teachers of the Informatics classes and a written questioning of the learners
to grasp the educational success in the non-cognitive field was planned. All
classes were sit in in spring 2002 at the processing of the exercises at two resp.
three dates each. The anonymised solutions of the learners were collected and
analysed afterwards. The learners were given prepared solutions instead. In the
end of the case studies, the learners were asked to fill in prepared question-
naires. Altogether the soundness of the conception was shown. As important
findings with regard to the further development of the conception a refinement
of the inner structure of the exercise classes to simplify the selection for teach-
ers, an extension to the field of dynamic modelling and its combination with the
static model and a provision of additional and alternative tasks to better pre-
structure the way of solution of complex exercises were identified. Within In-
formatics teacher education it turned out that the student teachers had difficul-
ties in creating exercises for different levels of demands because of a lack of
experience. Therefore, the development of a method for creating exercises for
different levels of demands was initiated. In in-service teacher trainings the
broad acceptance of the teachers turned out, but also the demand for concept-
oriented in-service teacher trainings in this field, since for many teachers OOM
is also a new teaching subject.

4.3 Evaluation of Informatics cores, subjects and exercise types in view of a com-
petence level model

By the analysis of Informatics cores, subjects and types of exercises on object-oriented
modelling (see point 4) basics for setting up levels of demands in a competence level
model are given.

With regard to the Informatics cores it can be realized that in the modelling process the
static model usually is constructed before the dynamic one. Afterwards the static and the
dynamic model are developed further in an interlocked way. Published lesson experi-
ences and results of lesson visits showed that this is also a suitable way for structuring
the learning process. Nevertheless examples can be found, in which the dynamic model
(e.g. use case model) served as the starting point. For the development of a competence
level model no cause is given to prefer one of the two ways. It is obvious though that the
combination with the respective other model represents a higher level of demands, be-
cause therewith tests of the consistency of the overall model are combined.

The subjects of exercises on OOM were classified into concepts of object-orientation,
model elements and models. Concepts of object-orientation can be divided into basic

17

concepts (e.g. object, class) and advanced concepts (e.g. design patterns). The broad
tendency of the exercises on basic concepts is on a lower level of demands than the exer-
cises on advanced concepts. A similar relation goes for exercises on model elements
resp. on models. The specification of an attribute (model element) is simpler than the
specification of all attributes, methods and relations within a class model (model). Ac-
cordingly it can be justified that exercises on basic concepts resp. on model elements can
be assigned to a lower level of demands than exercises on advanced concepts resp. on
models.

It was shown for the identified exercise types on object-oriented modelling that they
cover all levels of cognitive learning objectives according to the Bloom taxonomy
[Br04a, b]. The broad tendency of the exercise classes, which belong to the lower levels
according to Bloom, can be found with lower levels of demands. The same applies to the
higher levels. Knowledge and comprehension questions can be assigned to all levels of
demands as well as description tasks. Assignment tasks are especially suitable for the
lower levels, because they take away the difficult process of identification from the
learners. Specification tasks are again suitable for all levels. While on the lower levels
the learners specify e.g. simple attributes, they specify on the higher levels complete
models. Discussion, analysis, comparison and validation tasks are possible from a mid-
dle level of demands on and can be extended on higher levels accordingly. Identification,
modification, transformation and construction tasks are possible on the lower and middle
levels only, if they are formulated concretely enough and are accompanied by very illus-
trative material. On the higher levels, increasingly more open exercises are possible.

5 Outline of a competence level model for OOM

An important finding of the PISA study was that competence levels of a subject can be
structured according to the content as well as according to important subject specific
activities. In the field of Informatics it was proposed by Friedrich to structure the compe-
tences in the content dimension according to the guidelines of the overall plan for secon-
dary Informatics education of the German Informatics society (see above) and in the
process dimension according to the PISA competence levels [Fr03]. Puhlmann struc-
tured the learning of Informatics content in the form of the competence classes “applica-
tion”, “development” and “decision” [Pu03]. It is an open question, if the proposed lev-
els are suitable to structure all or only some fields of Informatics education. The follow-
ing outline of a competence level model for the field of object-oriented modelling is also
based upon the PISA model for maths [GMERO3a], which is on account of analogies
especially suitable as a basis for the informatic field of modelling, also because the PISA
model is based upon the criteria for good educational standards (see section 3). For ex-
ample it is quite clear that the first two criteria are fulfilled, because the OOM field be-
longs to the basic principles of Informatics and is among others one core field of the
discipline. Publications from the didactics of Informatics were included to graduate
concrete learning subjects on the basis of experiences.

18

Level 0: Cognitive and planning preparation of object-oriented modelling

Learners, who belong to this level, are able to make out and to classify concrete objects.
They are able to take apart objects into pieces in a structured way and to cognitively
grasp and analyse either hierarchical or tree-like structures. They have available basic
planning abilities, which enable them to construct, to cognitively grasp and to manage
hierarchical modularisations of plans.

All mentioned aspects are essential prerequisites for analysing and designing structures
of object-oriented models. Schwill showed 2001 [ScO1] that this level usually becomes
reached at the age of primary education. Level 0 was intentionally labelled so to indicate
that in contrast to all following levels this preparation does not require any kind of pri-
mary Informatics education.

Level 1: Elementary object-oriented modelling

On this level, simple object-oriented modelling (e.g. of text documents in a word proc-
essing software) is carried out by the use of simplified object and class diagrams (static
model). Learners, who belong to this competence level, are able to identify objects, to
assign attributes and methods to them and to abstract objects of the same kind into
classes. A very clear modelling subject is required as well as support of the learning
process by suitable figures, tables or learning media (e.g. exploration modules [Br04al]).

The modellings carried out serve for building up the technical Informatics language on
object-orientation on the one hand and as mental models of the modelling subjects on the
other. Vo3 showed 2003 [Vo03] that learners in lower secondary education manage the
learning process of the application of word processing software better, if they analyse
and develop object-oriented models (reduced class diagrams) of text documents dealt
with, instead of only relying on the online help documents included in the software.

Level 2: Object-oriented modelling and conceptual linking

Learners on this competence level are able to combine different concepts of object-
oriented modelling to solve problems, if texts or figures guide the solution process. They
are able to describe and to analyse simple given object-oriented models as well as to
modify and to extend given partial models within limited scope. The learners on this
level are also able to assign terms given in term lists to the categories object, class, at-
tribute, method or relation. The independent identification of concepts in texts or figures
is possible, if these materials support corresponding assignations.

In [Br04a] it was shown that learners in upper, without an educational background in
Informatics from lower secondary education are able to manage such exercises. How-
ever, according to the level of demands, it seems appropriate to assign such exercise
types to lower secondary education. It is a problem that in Germany still no binding
Informatics foundation for all learners in lower secondary education exists.

19

Level 3: More extensive object-oriented modelling on the basis of demanding con-
cepts

Learners on this competence level are able to build up object-oriented problem solutions
(e.g. a static and dynamic model) over several interim steps. More open modelling exer-
cises are managed in which among various designing possibilities suitable ones need to
be chosen.

In [Br04a] it was shown that reaching this level requires competence in the steps of the
object-oriented problem solving process. Learners in upper secondary education, for who
the process was structured by given tables or figures (e.g. partial models), managed it
without significant problems. Learners, for who the process was only structured by the
declaration of steps, showed difficulties, if the steps were not practised enough before.

Level 4: Advanced object-oriented modelling and assessment of models

Learners, who can be assigned to this competence level, are able to cope with very open
formulated modelling exercises, in which object-oriented models must be developed
after a very thorough analysis of exercise texts. They have good command of the neces-
sary core of an object-oriented modelling language (such as UML), of essential steps of
an object-oriented process model as well as of advanced object-oriented concepts (e.g.
design patterns) and are able to systematically apply the steps without further structuring
help. Essential components of the problem solution process are informatic explanations
as well as reflections about the modelling process itself.

Schulte showed 2004 [Sc04] that learners in upper secondary education are able to sys-
tematically apply steps of an object-oriented modelling process to solve given problems
and that this way they develop more sophisticated mental models of software develop-
ment than it is achieved in traditional Informatics education.

6 Conclusion and further work

In this paper a method for systematic analysis of exercises was presented and it was
shown, to what extend the results of the analysis of exercises on object-oriented model-
ling can be used to prepare a competence level model, which is needed for the develop-
ment of educational standards. An outline for a competence level model based upon the
PISA maths model was presented. To validate it, systematic tests combined with empiri-
cal research are necessary. Moreover, the different approaches for learning and teaching
object-oriented modelling at the levels of lower and upper secondary education as well
as of early higher education need to be combined to a continuous spiral curriculum for
secondary Informatics education under consideration of the special school organisational
conditions for the subject Informatics, to refine the model proposed here therewith.

20

References

[Ba99]

[Ba02]

[Br00]

[Br04a]

[BrO4b]

Balzert, H.: Lehrbuch der Objektmodellierung. Spektrum, Heidelberg, 1999.

Baumert, J.; Artelt, C.; Klieme, E.; Neubrand, M.; Prenzel, M; Schiefele, U.;
Schneider, W.; Schiimer, G.; Stanat, P.; Tillmann, K.-J.; Weil}, M. (eds.): PISA 2000
- Die Lénder der Bundesrepublik Deutschland im Vergleich. Zusammenfassung
zentraler Befunde. Max-Planck-Institute for Educational Research, Berlin, 2002.

Breier, N.; Fothe, M.; Friedrich, S.; Hubwieser, P.; Koerber, B.; Rohner, G.; Schu-
bert, S.; Seiffert, M.: Empfehlungen fiir ein Gesamtkonzept zur informatischen Bil-
dung an allgemein bildenden Schulen. Supplement to LOG IN 20 (2000) 2, pp. I-
VIIL

Brinda, T.: Didaktisches System fiir objektorientiertes Modellieren im Informatikun-
terricht der Sek. II. Dissertation, Faculty of Electrical Engineering and Informatics,
University of Siegen, 2004.

Brinda, T.: Integration of New Exercise Classes into the Informatics Education in the
Field of Object-Oriented Modelling. In: Education and Information Technologies 9
(2004) 2, pp. 117-130.

[CMECO03a] Standing Committee of the German Federal Ministers of Education and Cultural

[CMEC03b]

[CMEC04]

[Fr03]

[GMERO03a]

[GMERO3b]

[Hu97]

[Hu03]

[PS97]

[Pu03]

Affairs (ed.): Entwicklung und Implementation von Bildungsstandards. Bonn, 2003.
Standing Committee of the German Federal Ministers of Education and Cultural
Affairs (ed.): Bildungsstandards im Fach Mathematik fiir den Mittleren Schulab-
schluss. Resolution from Dec. 4th, 2003, Bonn, 2003.

Standing Committee of the German Federal Ministers of Education and Cultural
Affairs (ed.): Einheitliche Priifungsanforderungen Informatik. Resolution from Dec.
1st, 1989 in the version of Feb. 5th, 2004, Bonn, 2004.

Friedrich, S.: Informatik und PISA — vom Wehe zum Wohl der Schulinformatik. In
[HuO03]; pp. 133-144.

German Ministry of Education and Research (ed.): Zur Entwicklung nationaler
Bildungsstandards. Eine Expertise. Public relations department, Bonn, 2003.

German Ministry of Education and Research (ed.): Vertiefender Vergleich der
Schulsysteme ausgewéhlter PISA-Staaten. Public relations department, Bonn, 2003.

Hubwieser, P.; Broy, M.; Brauer, W.: A new approach to teaching information tech-
nologies: shifting emphasis from technology to information. In [PS97], pp. 115-121.

Hubwieser, P. (ed.): Informatische Fachkonzepte im Unterricht. K&llen, Bonn, 2003.

Passey, D.; Samways, B. (eds.): Information Technology. Supporting change
through teacher education. Chapman & Hall, London, 1997.

Puhlmann, H.: Informatische Literalitdt nach dem PISA-Muster. In [Hu03]; pp. 145-
154.

21

[Ru91]

[Sc97]

[ScO1]

[Sc04]

[Vo03]

Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W.: Object-Oriented
Modeling and Design. Prentice-Hall, New York, 1991.

Schwill, A.: Computer Science Education based on Fundamental Ideas. In [PS97],
pp- 285-291.

Schwill, A.: Ab wann kann man mit Kindern Informatik machen? Eine Studie iiber
informatische Fahigkeiten von Kindern. In: (Keil-Slawik, R.; Magenheim, J., eds.):
Informatikunterricht und Medienbildung. Kéllen, Bonn, 2001; pp. 13-30.

Schulte, C.: Lehr-Lernprozesse im Informatik-Anfangsunterricht — Theoriegeleitete
Entwicklung und Evaluation eines Unterrichtskonzepts zur Objektorientierung in der
Sek. II. Faculty of Electrical Engineering, Informatics and Maths, University of Pad-
erborn, 2004.

Vof, S.: Objektorientierte Modellierung von Software zur Textgestaltung. In [HuO03],
pp. 211-223.

22

Service Didactics / Dienstleistungsdidaktik
Volker Claus

Institute of Formal Methods in Computer Science
Faculty 5, University of Stuttgart
Universitétsstra3e 38, D-70569 Stuttgart, Germany
claus@informatik.uni-stuttgart.deAbteilung

Abstract: This paper asks for a faster introduction to Computing Science for the
growing number of students who have to learn information processing as a com-
plementary science or for a foundation degree (UK). Nowadays the human lifespan
limits more and more the fundamentals which are necessary for the respective pro-
fession. Therefore the skills and the essential knowledge must be restricted to the
principal subject, and all other knowledge has to be taught without deep explana-
tion. Complementary sciences and even areas of the major subject will be trained
by "drill-and-practice" but in such a way that a future insight in the scientific prin-
ciples always remains possible and that more topics than nowadays have to be
dealt with. This methodology of teaching and learning is characterised by:

- conveying extensive knowledge and skill (using recipes for training),

- following certain paradigms of the major subject,

- training the operation and the use of systems, and explaining their prospects
and risks,

- teaching some underlying theoretical foundations and rules (in a reduced
manner).

These methods are called "basic reciptique" (Grundrezeptik). It is a central part of
the "service didactics" which have to be developed for optimizing the efficient,
quick and serious usage of a science in another context. Service didactics must
elaborate a minimal but stable scaffolding of the field, design excellent supervised
courses, develop models for teaching, evaluations and assessments etc. An impor-
tant technique will be the "virtual laboratory" for intensive learning in limited time.
Each laboratory will be built up and updated by scientists from different faculties.
In future the courses of more and more studies will be oriented towards this basic
reciptique. Computing / Computer Science seems to be a good candidate for inves-
tigations and the European Bologna Process with its reordering of the educational
system can immediately be used for many experiments.

23

1 Basic Reciptique for Service Didactics

1.1 Initial position. According to education policy people are equipped with the neces-
sary skills and working methods by the time they leave school. All they need then are
general qualifications and vocationally oriented knowledge. Instead, German universities
concentrate on teaching the rudiments of a science — often erroneously described as the
“theory” of a science — and therefore use a large part of the students’ education for con-
tents which are not relevant for the future profession. Therefore new qualifications and
contents closely concerned with practice are called for. First-year students would be
delighted and there would be positive side effects such as a reduction of the length of
courses of studies and the establishment of a system for lifelong learning.

The reality for more than half of the first-year students of informatics is like this at Ger-
man universities: lack of orientation, “consumer attitude”, and the widely held opinion
that a mere presence and collecting of hand-outs are enough effort for the degree or
bachelor. To take measures against this and also to even out the different previous
knowledge, the basic courses mainly consist of conveying structural insights and basic
principles. Since there are not enough lecturers, these courses are generally crowded.
This situation might not be an obstacle for motivated students of informatics as long as
there are enough additional practical courses. But what about the less motivated students
or those who need informatics only as a complementary science? There is not much use
in confronting these students with abstract and formal concepts which they might not
understand on account of insufficient previous knowledge in maths and which therefore
don’t seem to have any relevance for an application of informatics. What they need are
courses with extensive tutoring, a definite objective and high expenditure of energy to
comprehend methods, sequences and techniques of working and to understand the “real-
istic” application of informatics. Obviously, such courses were a chance for every sci-
ence to communicate its meaning to the students. Nevertheless, even any minor field of
study endeavours to impart a deep insight in its methods and way of thinking und that is
why contents are taught which are futile for a complementary science.

Why is this the case? Why does the university ignore the reality of its first-year students?
And there are even models like “mathematics for business studies” in which representa-
tions and easy proceedings are dealt with and no one tries to familiarize the number of
students to the science of mathematics. In contrast to this the lectures in informatics that
are held for students of other fields of study follow a basis-orientated approach, that a) is
not conveyed convincingly, b) cannot be tested correctly and c) wastes time that could
be used for the sensible application of methods. It is this complacent attitude (“We also
have to teach you something that we definitely loathe and that only shows you how out-
of-date contemporary applications are.”) that has been depicted so strikingly in the char-
acter Teacher Lampel by Wilhelm Busch and that we have to get rid of undeniably.

24

1.2 Conclusion: We need double didactics:

a) Didactics for the new generation of informatics (We won’t deal with this aspect in
this paper),

b) Didactics for other fields of study that require informatics as a complementary sci-
ence

First, didactics b) might be interpreted as a stunted form of didactics a) and its evolution
might therefore be put in the hands of the respective group of people. That would be
utterly wrong and would not produce anything new. A new approach is called for. One,
which is developed without missionary eagerness on a high and efficient standard: “ser-
vice didactics”. Examples for application — which characterize the students’ picture of
informatics — and the methodology are to be taken from the main subject and in labora-
tory applications both scientific areas are brought together. At the same time the funda-
mental ideas and inner structure that underlie informatics have to be issued correctly in a
background programme, with the emphasis on the background aspect. This mixture of
recipe-like imparting, consolidation with application scenarios, bringing out the useful-
ness and constructive employment as well as conveying a clear scientific basis in the
background is called “basic reciptique” in this paper and is yet to be developed and
backed up in detail. (The accompanying scientific superstructure can be called basic
reciptology.)

1.3 Comment on the techical terms: “Reciptique” and “reciptology” are no common
words. Reciptique means imparting of knowledge and behaviour patterns with the help
of a schematic and recipe-like proceeding. Reciptology refers to the methodology of the
development and implementation of such recipe-like conveying. While the term “recip-
tique” has been unusual so far, the word “reciptology” has been used every once in a
while for the schematic reproduction of misunderstood statements, thus in the sense of
babble that has been learned by heart. (Reciptique is not to be mistaken for receptorique;
the latter describes the ability to receive information by means of receptors, at the same
time it can also stand for a system of receptors as in the skin or a monitoring system.)

25

1.4 Characteristics of intelligence tools: We can use gained knowledge to elaborate our
self-esteem and our concept of the world we live in — entirely without any economic or
personal benefit. Especially because “things as such” have an inner coherence and fol-
low principles that can be subject to research, the knowledge that serves no purpose,
forms the centre of academic education. This is the criteria every respective main subject
has to satisfy. For the benefit of humankind we convert knowledge into products, pro-
duction processes, workflows and services and by that we add purpose to an item that
serves no purpose. In doing so the dimension of subjects is added — in addition to com-
prehension and methods of employment — to the knowledge by means of the increasing
multidisciplinarity. With the explosion of knowledge in the respective subject areas, with
the ever new scopes of application and with the miscellaneous basic insights an all-
embracing university education can’t be realised in a limited time-span of five years
anymore. Thus the courses have to be restricted to a few main subject areas. Everything
from other fields of study should be accessible to the students in the form of a tool box
which is supposed to be of a logical structure instead of being unsystematic. This means
that an ever-increasing part of the knowledge and skills have to be practised in intensive
exercises. They are created somewhat according to the concept of “quick and dirty”,
whereupon the function of the basic reciptique consists of creating the “dirty” in spite of
the “quick” as respectably as possible, if only not to interfere with lifelong learning
(LLL). After all, computer scientists have to be able to communicate in teams with users
in their job, as well as users have to comprehend basic concepts of computing solutions.

The tool box has little relation to the conventional handicraft. It consists solely of virtual
and mental aspects. It serves as an intelligence intensifier, and we will call a tool for
informatics from now on “intelligence tool”. The intelligence tool box has to be so well
equipped that a lot of future problems can be solved with its help. The different universi-
ties will define the future time frame differently, and develop measures to update old
intelligence tool boxes and to supplement it, for example by re-engineering. As a general
tendency future graduates are able to convey considerably larger areas than today. The
deepened knowledge will share its place in the brain of experts with an ever growing
amount of diffuse knowledge about a constantly increasing intelligence tool box. As a
result, the knowledge without a purpose, which is now understood as a surety for the
augmentation of creativity, will recede in the area of complementary sciences (The ex-
ception proves the rule here as well.) or, on a high standard, will be accessible only to a
small number of people. The consequence for the education in informatics will be to
enable students to use intelligence tool boxes as an everyday instrument, but also to
impart the logical structure that lies behind the tool boxes and the sensible employment
of the tool boxes.

26

1.5 Comment on a feasible implementation: For the teaching the contents, the methods,
the intelligence tool boxes, the forms of the lectures, the virtual laboratories and the
forms of testing have to be constituted. The contents have to be developed with the ex-
perts for the main subject and accommodated for the laboratories. They are taught in
lectures that need a lot of tutoring in the beginning, but require more and more inde-
pendency of the participants in the course of the semester. A typical course on data struc-
tures, which now takes up four hours in a week and is taught in four hours of lecture and
two hours of exercise, could then be changed into four hours: one hour for a lecture that
forms the guideline, one hour of a closely connected practical course in which new con-
tent is reviewed and tested in small teams, one hour of a laboratory course and one hour
for exercise in which the solutions of individually prepared problems are discussed. The
course is then complemented with single lessons on handling the used intelligence tool
box.

If a course were structured in such a way, it could be adjusted to a practical and a labora-
tory course in natural sciences: It takes place in a computer lab; one or two students
work on each computer; the directions to the practical course describe the exercises; in
the laboratory the students illustrate and elaborate the scenarios; they write reports on the
exercises and their solutions; the exercises emphasize the employment of the intelligence
tool box which requires the computer workstation; the practical course takes place as a
tutorial at the university (and not at home); the tutors can check on the students’ knowl-
edge by means of the discussions in the computer lab at any time. The exercises refer to
the problems that the students have dealt with in the practical course and focus on for-
malisms and comprehensive principles. There could even be a shared discussion forum.
The preparation of the course and its yearly update are time-consuming, they should be
conducted by tutors and advanced students. The expenses and expenditure in time will
increase considerably compared with today’s situation, because parts of the lecture are
substituted by tutorials and practical courses.

2. An Example (for Details see Attachment)

2.1 So what is new in this concept? In how far does this concept differ from practical
training, that is widely spread with its trial-and-error method and its drill-and-practice
techniques?

There are two differences: On the one hand we want to communicate the reasonable
employment of informatics in the main subject, which is managed with the help of suit-
able scenarios in a virtual laboratory. That means that it is not enough to introduce and
comment on a substantial library, but to formulate the demands on informatics for main
subject purposes and to work on typical examples with the intelligence tool box. On the
other hand, the curriculum should include the vital principles of informatics. Therefore a
technically correct and yet reduced structural framework has to be developed, which can
help to explain as many concepts and tools as possible. This is where the principles of
school teaching get involved since instruction in schools have to consider the same as-
pects. Admittedly, this has to be readjusted for academic purposes.

27

2.2 AVL-Trees: Let’s look at an example. Currently (in June 2004), the basic lecture in
informatics at Stuttgart University deals with hight-balanced trees and its respective
representation, characteristics, algorithms and realisations in programming language.
Many students who don’t study informatics or software engineering take to it and find
that it is exciting and surprising. This is true only for one third of the lecture, though,
because in this part the layout and manipulations are exemplified. The remaining two
thirds deal with variants, analysis of rotations, the exact recalculation of balances, Fibo-
nacci-trees, semantically correct implementation in procedures and proofs of the maxi-
mum or average depth of such trees. To sum it up, this knowledge is only a “value as
such” itself: cognitive structure and insights — long-lasting models - are developed that
should enable students of the main subject to apply, evaluate and enhance methods for
storing and processing. But this doesn’t appeal to students of the complementary science
course. The exact content of the lecture and its possible modification is listed in the
attachment.

2.3 The value of such contents is not relevant in practice, though. Through pre-defined
classes hight-balanced structures are readily available for concrete applications (for ex-
ample in connection to data bases), and no one has to comprehend their underlying the-
ory and formalisms or their secret realisations. No user has to know these structures and
can still use them for his problems. From the point of view of the main subject these two
thirds of the content are mainly a waste of time; at the utmost, some principles and “pa-
rameters” (time response, storage space overhead, initialisation,...) are relevant to apply
the existing intelligence tools from the already browsed intelligence tool boxes (classes,
library programmes, methods available in the net, own additions etc.).

And still, each student has to learn this basic knowledge that is only relevant for theore-
ticians and those responsible for the implementation of library software and object-
oriented classes. This is based on the assumption that an evaluation and therefore a rea-
sonable employment isn’t possible without the background information. But is this also
true for other people than computer scientists? And even if it is true, what about the
expenditure of time? The concerned students take a more practical position: They expect
an overview with some characteristics and a general understanding for employment
scenarios. However, they don’t want to implement these systems but adopt standardisa-
tions which have already been tested. So why do we impose our wisdoms on them? Why
don’t we offer a practical and applicable — and yet well-founded — version to non-
computer scientists when we claim that informatics is optimally applicable? A solution
could be our service version of informatics.

3. The Meaning of a Service Didactics

3.1 Didactics is often conceived as imparting contents and methods to students. This
abbreviated assumption often serves as the reason for the separation of the department of
didactics from the scientific departments. But didactics have a much deeper impact: It
explains the structure of a subject and is the actual foundation for Humboldt’s ideal of
the unity of research and teachings.

28

The person who researches should also teach, and only those who are dedicated to re-
search should be able to teach. This is the reason for the privileges of universities as for
example the conferral of a doctorate or the teaching load that is explicitly reduced com-
pared to schools. But is this theory on the unity of research and teaching correct? Max-
Planck institutes, the Fraunhofer society and industrial research institutes barely offer
systematic teaching and employees of the DFG or graduate colleges are not supposed to
teach either.

The thesis on the unity of research and teaching can only be applied to professors of
universities where they are supposed to educate the highly qualified up-and-coming
academics. This calls for a detailed overview on the actual state of affairs, therefore
researchers are called for in this area. The taught knowledge cannot be a mere collection,
though, since then it can’t be conveyed in a reasonable amount of time. This requires a
systematic system of a subject, an elaboration of principles, an analysis of the fundamen-
tal methods, a description of techniques for problem solving and the synthesis etc. All
these objectives belong to the field of functions of the department of didactics. Conse-
quently, didactics have to be considered as a central part of each academic subject. (Why
this is not the case in reality would be the topic of another paper.)

3.2 Insertion: Science and the relevance of didactics. To become a science, an area has to
meet at least four prerequisites:

- It has to generate new contents and a new methodology,

- it has to invent a new and incomprehensible language,

- it has to contain didactics,

- it has to develop reflection (and preferably also self-mockery).

(A reference to reality and a utility are often present as well, but also a science which
serves no purpose could be imaginable.)

Informatics has already become a science in the 1970s, even if the didactics and the self-
criticism have only been dealt with by a handful of scientists. The aspect of incompre-
hensibility, that is part of each science, has been shaping well in informatics and in its
areas of application. To compensate for the trend to isolation didactics are called for that
have to meet several conditions:

- Clarification of basic terms (e.g. fundamental ideas) and compilation of typical and
plausible examples (paradigms),

- systematic development of the subject and organisation of the respective methods,
influences on other subjects,

- evaluation of the contents and subareas (in terms of difficulty, utility, employment,
impacts,...),

- explanation of difficult and incomprehensible parts,

- concepts for teaching and examination of contents, methods and techniques and the
formulation of teaching methods (for different ages and target groups),

- preparation of curricula and frameworks, goals of the education,

- anover-all concept “from kindergarten to retirement” would be ideal,

29

- to this service didactics could be added, in order to meet the claim for interdiscipli-
narity and solidarity (in the sense of mutual assistance of sciences), and also didac-
tics for further education (based on didactics for adult education) to react to the fast
exchange of knowledge.

3.3 Although our concept of didactics argues for a certain independence, the academic
departments of didactics normally concentrate on teacher training. Thus, they fulfil a
concrete role in society. Generally speaking, a didactics without a purpose is not cus-
tomary and for a service didactics there are no academic institutes available. However,
there are a lot of reasons for basic reciptique:

- Ever-growing insights met with constant or decreasing time for education need a
better preparation of the learning matter and a reduction to basic and useful ele-
ments.

- The interdisciplinary co-operation requires reduced frameworks of each subject as
an easy access for the mutual dialogue.

- The employment of informatics accounts for recipe-like behaviour and manuals for
the intelligence tools that are getting more complicated all the time.

- Typical examples and scenarios serve as an aid for orientation and evaluation.

- In a world full of tools good comprehensive principles and guidelines for as many
instruments as possible are called for.

- The developed courses are an ideal basis for further education and LLL. An all-
embracing system for further education is essential for all jobholders who are sup-
posed to work productively until the age of 67.

- The necessary feedback to informatics will be increased.

- Eventually, even general working methods can be conveyed with the help of this
concept; the main reason for poor performance in the first semesters is insufficient
working methods.

3.4 The argument of the discrepancy between the limited time for education and the
increasing amount of the content of teaching and in addition to this also the growing
interdisciplinarity demand the development of new courses which are based on the basic
reciptique. Since the duration of grammar school education will be shortened to twelve
years, the qualification of first-year students will degrade in spite of aptitude tests. This
fact intensifies the pressure on complementary sciences to educate fast and orientated
towards the respective employment. New forms of an easy access to a field of study
combined with a component of foundations to ensure LLL — namely the basic reciptique
— will therefore be of an ever-increasing importance. We don’t support a thoughtless
easy access, but an education that is build on scientific working methods and also im-
parts these methods. Furthermore it should present a reasonable employment by ele-
ments of a virtual laboratory and that enables the participants to communicate with stu-
dents of informatics or even to change into informatics as a main subject quite easily.

30

This is a didactic challenge: How can the intellectual content and also as many ideas as
possible be conveyed into the students’ heads with the help of subject matter that is rec-
ipe-like imparted? The main difficulty might be the co-operation between the different
sciences: Professors have only a limited conception of the subject matters of other sci-
ences and still have to collaborate to develop a self-contained system of courses with
new methods of presentation and exercise. But maybe this is the chance to foster inter-
disciplinarity, to reduce reservations and to present the subject matter to the users in a
more attractive way.

3.5 We are convinced that the current “Bologna”-process (combined with the twelve-
year education) will also boost this trend. If the future bachelor is not a intermediate
diploma with additional skills, but a university-entrance diploma with job-related knowl-
edge, complementary sciences have to be quite compact and the main content has to be
conveyed in a better way to keep the standard. That is why now is the perfect point of
time to conceive and advance a basic reciptique for informatics.

4. The Academic Implementation

4.1 The first problem: absence of money. From our point of view the trend will lead to a
demand for a basic reciptique. Since there is no money for new initiatives a// members
of the university will be asked to acquaint themselves with the new concept free of
charge and to deliver the service without professional knowledge. We advise explicitly
against such a development, because it is more expensive in the end or will be proved to
be counterproductive. To exemplify this please read the following paragraphs a and b.

a. Improved teaching. For many years a “strengthening of teaching” has been demanded
to enhance the result of education. This refers to two aspects: Firstly, universities are to
put more effort in teaching rather than research, and secondly, teaching has to be im-
proved. Improved teaching means better preparation and presentation of the respective
contents, which is said to account for easier, faster, deeper etc. learning. In practice bet-
ter teaching does not automatically account for better learning, better insight or shorter
education, though. A reason for this is for example the idleness of humankind: the better
prepared a subject matter is, the less the appeal gets to immerse in the subject matter and
the faster the learner is convinced that he / she has understood everything the first time
around. Therefore, “improved teaching” has often proved as a double burden: distinctly
more effort for the development of the teaching material (in informatics the factor five is
quite frequent) and also more effort in tutoring to convince the students of the depth of
the content and the inherent ideas. Unfortunately, the result has often been less time for
research and thus a negative long-term effect on the quality of education.

31

b. Informatics as a school subject. In the 1980s no study courses for prospective teachers
were established and consequently, no teachers for informatics have been trained. Hence,
the school subject informatics has been taught by teachers of other subjects. This is why
a lot of first-year students started their studies with wrong expectations of informatics,
which resulted in a high drop-out rate for this course of study. The schools have been in
charge of the organisation, but the teachers haven’t had the time to really learn the basics
of informatics. This aberration might have caused more harm to the national economy
than the courses of study for future teachers would have cost. By the way, a result of this
political failure is that now the universities are blamed for the drop-out rates.

On account of experiences like these universities would be well advised to claim a finan-
cial guarantee before they start work in this field of activity. Unfortunately, this also
refers to reasonable and essential measures as the development and analysis of a basic
reciptique. It is assumed that even the best arguments won’t get any reactions.

4.2 The second problem: the capacities. Presumably, there are a lot of computer scien-
tists at the universities who would support service didactics and according courses. What
we have learned from the past, though, is that useful things (as for example didactics for
informatics itself) need decades for their establishment.

Delays and hindrances like these are mostly based on arguments about capacity. With a
budget freeze innovations can only be installed at the expense of the already existing.
Chairs have to be relocated and capacity relevant courses from the core curriculum of
informatics have to be given up at the cost of new courses (which might be only for
optional subjects). No head of a faculty would agree to such plans (for structural rea-
sons), unless new posts can be made available from the outside or already cancelled
contracts can be saved.

At the same time the teaching load plays a major role. With eight or nine hours in the
week there’s only little time to tackle innovative re-orientation or even realise reasona-
bly. A solution would be to further it with theses or with a set of lectures by different
speakers, which would take up a lot of time, though.

4.3 The third problem: There are also doubts concerning the content. Someone might
argue that with courses like that wrong ways of thinking might be enhanced, future de-
velopments of informatics missed and the graduates of such courses might forget their
knowledge even faster. This is why for a lot of computer scientists these useful, but at
the same time undemanding courses are out of the question. Critics also mention that
other departments don’t approach the department of informatics either: No lecture of
economics or engineering meets the requirements of informatics. Technological univer-
sities are especially careful, if a newly provided professorship does not fit in perfectly
with a special branch of science.

Another point of interest in this discussion is the creation of the bachelor-degree. Those
who will be working in the bachelor education are less qualified than those of the master
degree. Therefore, a lot of the university staff fears that they might lose their academic
reputation when they teach basic reciptique. Maybe these graduates will be worse off —
financially and legally — than those who received a bachelor degree.

32

4.4 There are a lot of reasons in favour of service didactics, but also a lot against an
organised support of the basic reciptique by the universities. Therefore nothing will be
done. But this should not keep didactic departments from carrying out investigations, as
long as they approve of the respective teaching and learning methods.

The objective of such investigations is the conception and outline of a basic reciptique
for informatics. Which areas should be covered by the new courses and virtual laborato-
ries and how can they be installed in a high quality? According to which pattern should
they be arranged? How will they be interlinked with a main subject and how much are
the expenses to implement them? How can examinations be held efficiently and in a
time-saving way? Which role does the teacher take and which parts can be automatised?
In how far can the contents be used for further education and propaedeutic courses for
grammar schools?

5. Concluding Remark

Two central ideas have disappeared from the contemporary discussion about the im-
provement of education: serving no purpose and gaining maturity. Future students are
supposed to complete their degrees fast and with job-related qualifications in order to
quickly obtain an economic significance. This is comprehensible in regard to the age
pyramid, but from our point of view the longed-for effect might not be achieved in the
long run.

Again and again we meet students who have been indecisive for some time and suddenly
they get motivated and immerse themselves into their studies. We see people who are
only able to understand ideas with the help of abstract presentations that are not con-
nected with any application. There are also students who attend lectures out of pure
interest and not because of their examinations. We know that people need time to per-
vade a subject matter entirely and to develop self-confidence. A year that other people
might call lost can be gained quite quickly with multiple value. Each society needs a lot
of people like that.

Thus, basic reciptique can also serve the purpose to provide the freedom to gain maturity
which will mainly take place in the main subject. It is such a superior objective that we
aim at, although we know that universities (in contrast to professors) don’t respond to
these arguments. But we haven’t given up hope that in the long run there will be a deeper
insight.

33

Attachment 1: AVL-Trees (presentation)

raw structure of content, see 1.5.
a) Lecture

Duration of the lecture: Approximately 84 minutes. The numbers before each topic indi-
cate the necessary minutes. Five minutes of each lecture are needed for wiping the board,
beamer-handling and establishing silence and attention.

5 Definition AVL-tree (hight-balanced tree, special case binary trees)

9 Examples as well as two examples of binary trees, that are no AVL-trees only
because of one leaf; colloquial explanation of the rotation (vertical postpone-
ment of nodes)

14 The four types of rotations with the resulting balances

8 Part of a new programme for new calculation of the balances, with a little bit of
verification

4 Strategies of search, insertion and deletion
10 Deletion in detail with the problems of going upwards
6 Comments on the programming language (also recursive procedure)
7 Insertion (Repetition?): definition and characteristics of Fibonacci numbers

11 Proof of maximum depth of an AVL-tree with n nodes; measured depths in
practice

7 Fibonacci-trees
3 Hight-balanced trees that are not weight-balanced
b) Corresponding exercises

The exercises deal with several concrete examples (student data file, stamps and classifi-
cations of characteristics, CD-ROM collection: advantages/disadvantages of the AVL-
structure); sorting with AVL-trees and comparative measurements with other search
trees; going through the operations at insertion and deletion individually and formulating
them in the programming language; impacts, if the inorder successor is always chosen
when deleting; generalisation of trees with balances between -2 and 2 (or from —k to +k).
The exercises are selected in such a way that the exercise teams can cope with them in
50 minutes (with the exception of one challenging or theory accentuated exercise). The
time for preparation and for processing the AVL-exercise is an estimated 135 minutes.

34

¢) corresponding materials in the net

Older concepts are described in chapter 3.2.4 “Introduction to Informatics” (transparen-
cies 111-140):
http://www.informatik.uni-stuttgart.de/fmi/fk/lehre/ss04/info2/default.htm

Exercises are on page eight on the same website.

Under the keyword “AVL-tree” there are a lot of elaborations on this subject matter, but
the best descriptions can be found in appropriate textbooks.

Attachment 2: AVL-trees (from the Point of View of Basic Recip-
tique, Suggestion for Trial)

a) Lecture with an Integrated Practical Training (135 minutes if it is realised with the
integrated course)

The lecture takes place in the room for the pratical training. There is a maximum of 16
participants present. The professor lectures for 15 minutes followed by 30 minutes of
work at the computers guided by tutors. Afterwards there are 20 minutes of a lecture
followed by another 70 minutes of work at the computers.

al Preparation in the book for practical training: Each participant has to read six pages
on AVL-trees and examples before the lecture starts. (Content: characteristics of an
AVL-tree, several examples, process of insertion with two rotations and the request to
discover two more rotations.) We assume that everyone knows that for the lecture.
Working with a class library (for example in Java) is also familiar for the participants.

a2 Lecture: 15 minutes. Establishing silence and attention will not be necessary here;
wiping the board and handling the technical equipment can be dealt with in the other
parts of the course. The numbers before each topic indicate the necessary minutes.

2 Definition AVL-tree (hight-balanced binary search tree)
4 Examples for insertions with the two missing rotations

4 Ilustration of the four types of rotations and their effects with the help of ex-
amples

2 A weight-balanced tree that is not hight-balanced

3 Example from the application (student data file or dictionary or available stock
or...)

35

a3: Teamwork of the participants in teams of two: handling of AVL-trees (30 minutes).

The class AVL-tree is examined. A small prepared data file has to be included in an
AVL-tree. The result is tested for depth. In this tree elements are deleted. Larger pre-
pared data files have to be included and stored once in a linear list and once in an AVL-
tree. Times for the search and the transaction of deletion are compared experimentally
(this requires prepared Java simulation tools which can visualise effects). The results
have to be described and interpreted. (Variants have to be construed where necessary).

a4 Lecture: 20 minutes
12 The basic operations for deletion and implementation
3 Precise formalism

5 Formulating some characteristics with this (maximum depth, runtime, memory
requirements)

a5: Teamwork of the participants in teams of two: (70 minutes): modification or drawing
up of a programme to determine the maximum depth. (If the participants haven’t fin-
ished: test it for next time). Maybe also tests to the field of “deletion” (here choosing
inorder-predecessors and —successors, tests are actually carried out).

Students are expected to spend two more hours per week at the computer outside the
tutored time.

b) Complementary exercises (45 minutes present in the course)

Normally, two to three exercises in each unit. Regarding AVL the students have to im-
plement a concrete problem from the area of their main subject. Another exercise deals
with basics (for example AVL-trees that are as thin as possible). A third exercise could
be about sorting trees with the help of AVL-trees. The time for individual preparation
and the exercises at home are about 90 minutes. During the course the students present
their solutions. This takes about 30 minutes. The remaining 15 minutes of the time pre-
sent at the course can be used for exercises or problems within the practical training.

¢) Comments

Lectures are inappropriate for basic reciptique. This concept demands a mixture of short
lecture-like parts and longer phases of practical training. The background is subject to
consideration in the course and is presented by a student for the whole group.

Other ways of proceeding are imaginable, for example a long analysis of one problem
extending over several weeks. This requires extensive preparations, but which can be
repeated in a slightly alternated form over the years (around five years). For this time the
course should be organised by one department. Variations have to be incorporated any-
way, as electronic solutions can easily be handed down from one generation of students
to another.

36

Of course there are already experiences with ,,compact courses®, but they don’t feature
the claimed high percentage of work in the laboratory.

The capacity of such a course is a four-hour course for exercises with a group of 15
students.

The total expenditure for the students is:

Lecture, practical training, course for exercises: three hours altogether.
Additional time at the computer: two hours.
Workload at home in a team and/or alone: three hours.

Total expenditure of time: eight hours each week. With 15 weeks in a semester this
amounts to 120 hours. This correlates with four ECTS-points. (For comparison: The
usual course consisting of four hours of lecture and two hours of a course for exercises is
equivalent to nine ECTS-points, but admittedly, it is more extensive. An average reduc-
tion of the ECTS-points to 50% to 75% should be accomplished or the subject matter
should be extended with further contents of the intelligence tool box. But we advise
caution with the realisation: Presumably, other main subjects will be enthusiastic about
it.)

For the realisation we should also take into consideration a different concept: More ad-
vanced students serve as tutors for the younger students.

37

Automatic Time Measurement for UML Modeling Activities

Ira Diethelm?, Leif GeigerQ, Christian Schneider?, Albert Ziindorf?

!GauBschule 2Fachgebiet Softwareengineering
Lowenwall 18a Universitit Kassel
38100 Braunschweig Wilhelmshdher Allee 73

34121 Kassel
(ira.diethelm | leif.geiger | christian.schneider | albert.zuendorf) @uni-kassel.de

www.se.e-technik.uni-kassel.de

Abstract:

In order to improve learning and teaching processes in computer science, we need to
analyze current processes qualitatively and quantitatively. Such an analysis may final-
ly allow to evaluate empirically the effects of new approaches and of changes to the
process in comparison to previous processes. First of all, the learning effects may be
measured using usual examination schemes. However, for deeper insights, the measu-
rement of process results should be correlated to measurements during process execu-
tion. This paper outlines the current state-of-the-art in automatic time measurement in
CASE tools and what may be achieved in the near future. This is done with respect to
empirical studies for learning and teaching processes.

1 Introduction

In his PhD Thesis, Carsten Schulte has proposed detailed protocols of a proband’s acti-
vities during UML modeling as a means for empirical studies in the area of didactics of
computer science, cf. [Schu03]. Carsten Schulte used

e video protocols of the class room at all,
e video protocols of the screen contents of each proband’s computer during exercises,
e audio tapes protocolling probands’ discussions, and

e internal command protocols of the employed CASE tool.
After the lessons, Carsten Schulte and his team had to evaluate all these protocols ma-

nually. For the CASE tool usage, they did a replay of each session and in a raster of a
minute, they categorized the probands’ activities according to the topic under work and

39

according to the kind of activity performed (e.g. coding, bug fixing, discussion, ...). As
one sees easily, such an evaluation of session protocols is extremely tedious. In order to
facilitate empirical studies based on such protocols, this paper explores the possibilities
and restrictions of automatic session protocol evaluation via CASE tools.

2 Automatic time measurement

In principle, it is pretty simple to add automatic protocol features to a certain CASE tool.
Most CASE tools actually protocol all user interaction already e.g. for undo/redo or for
recovery functionality. Thus, all that needs to be done is adding time stamps and logging
of all the operations.

Note, this kind of automatic time measurement has a systematic fault, since it just measu-
res editing activities. The times when the proband does not edit but he is thinking about a
certain problem or he is discussing a topic with some team mate or he is just out for a break
or he is in a meeting or he is interrupted by a phone call or he finds a brilliant solution to
a problem during sleep at night, all these non-editing activities are not covered. Covering
more of these non-editing activities needs other observation techniques that probably are
able to enhance the measurement. However, we have no idea, how to automate the evalua-
tion. Luckily, some recent empirical studies give hints, that in UML projects the amount
of editing activities seems to be closely related to the amount of non-editing activities. If
this holds, the automatic time measurement could be a reasonable indicator of the over-
all effort for UML based modeling. Accordingly, this paper assumes that automatic time
measurement is a valid means for empirical studies on modeling activities.

Note, a simple protocol of time stamped user commands provides only limited information
for empirical studies on modelling activities. To provide substantial value, the protocol
must allow to retrieve detailed information of the part of a UML model that is changed,
how it is changed, and in the optimal case why it is changed. Ideally, the changes are related
to specific kinds of tasks and it is later on possible to relate them to specific elements of
the edited UML specification. We will show how such information may be obtained and
how this information may be exploited at the example of the Fujaba CASE tool.

The Fujaba CASE tool has a plug-in called CoObRA that adds undo/redo, recovery, and
versioning functionality to it (see [Schn03]). CoObRA is an acronym for Common Object
Replication frAmework. Basically, Fujaba employs a dedicated object structure, the so-
called meta-model to represent the UML diagrams edited by a user. During editing e.g. a
class diagram the user adds new objects to the internal meta-model, removes objects from
the meta-model or changes the values of certain attributes of certain meta-model objects.
All these operations are protocolled at this level of detail together with detailed timing
information.

Note, in Fujaba layout information is stored as part of the logical meta-model and thus the
corresponding operations are also covered by the CoObRA protocol.

Since certain operations results in a large number of changes to the internal object structure
of the Fujaba CASE tool, our protocol groups all changes into so called user commands.

40

This raises the level of abstraction for the analysis while it still maintains exact information
about the modified data.

3 Exploiting the change protocols
3.1 Session replay

Provided with detailed undo/redo information it is for example possible to revert a whole
user session and to re-execute it step by step, in slow motion, fast-forward, or even in back-
ward mode. This could be exploited for manual analysis of user sessions as in [Schu03].

3.2 Relating changes to specification elements

For further analysis of change protocols, it is mandatory, to identify the edited specifica-
tion parts. This might be a certain fraction of a class diagram or e.g. an activity diagram
modeling the behavior of a certain method. Note, sometimes the protocol data might not
properly identify the edited parts of the specification, e.g. if internal statistical data is tar-
geted. However, due to our experiences, in almost all cases it is very simple to identify the
edited diagram element and to relate it to a certain part of the overall specification. This
could be done on a coarse grain level e.g. per method body of on a fine grain level e.g.
down to the different parts of a sequence or of an activity diagram.

3.3 Relating changes to project phases

If the user follows a certain process, it is even possible to relate our protocol data to
different kinds of activities like requirements definition, analysis, design, implementa-
tion, or maintenance. In our courses, we use Fujaba with the so-called Fujaba Process
([DGZ04a, GSZ03]). Fujaba supports this process by providing a document centered view
of a project handbook that guides the user through the development process. In this view,
the user starts in a dedicated chapter of the project handbook by editing use cases, cf. Figu-
re 1. For each use case, Fujaba automatically adds a pre-formatted section for a textual use
case description. This is then filled, manually. (The example is taken from a guided tour
created for one of our courses at University of Kassel. It deals with a very simple rule in a
board game called Mississippy Queen, where one travels a changing river with a steamer).

41

4. Analysis Phase

In the following subchapter we place the top level package diagram for use cases.
-
Moving

4.1. Description of Moving

<to be filled=

Moving

changeSpeed —Player
changeDirection —

4.1.1. Description of usecase changeSpeed

Scenario changeSpeedl
Start situation: A new player gets the turn.
Invocation: The game asks the player to change the cwrrent speed of lus steamer.
Step 1: The player increases the speed three times.
Step 2: The player decreages the speed one time

Step 3: The player stops changing the speed and the coal 1z decreased by one

Result situation: Speed has mcreased by two and coal has decreased by one.

Figure 1: Requirements definition in the Fujaba Process

A special user command turns such a textual use case description into the outline of an
UML interaction diagram allowing to elaborate the use case description. In our case these
are so-called story boards, a combination of UML activity and UML collaboration dia-
grams, cf. Figure 2.

42

!

Il i new player gets the turn.
> guis
‘Game gui -PlayerGul
steamers v steapher
s :Steamer

name =="Frad"
color=="green"
coal==

speed==
speedChange ==

¥

i The game asks the player to change the current speed of his steamer.

guis

gui| -4—1: askForSpeedChanges{)

li The player increases the speed three times.

Juis
u gui
steamers 51974
-#—1: increaseSpeed{)
s
= 4—2: increaseSpeed()
speedChange =3

-4—3: increaseSpeed()

Figure 2: Analysis with story boards

From such a story board, specific user commands derive a class diagram and a test speci-
fication. The class diagram already includes declarations for all methods employed in the
scenarios, cf. Figure 3.

43

5.1. Description of Main

These are the classes dertved so far:

i PlayerGUI
Game a4 a
P - . % askForDirectionChanges § : Void
nextPlayer (s:Steamer) Vol & askForMextHex (- Void
0.1 % askForSpeedChanges () : Void &
0.1
steqmer
stearpel
n |
Steamer

@ coal : Integer

@ color ; String

@ name : String

@ spead: Integer

@ speedChange : Integer =
& decreaseSpeed O Void

@ increaseSpeed O Vaid

® speedChangeDane {3 Voi)

Figure 3: Class diagram derived from the story board

Now, the user has to implement the method bodies appropriately, cf. Figure 4. Once the
functionality is provided, the user generates code from his specification, compiles it and
tests it against the test derived from his story boards.

44

5.1.2.7. Description of Method askForSpeedChanges

PlayerGUl;askForSpeedChanges §: Voidnull

4—1: increaseSpeed ()

-4—2: increaseSpeed ()

-#—3: increaseSpeed ()
#—4: decreaseSpeed ()
-4—5; speedChangeDone ()

Ol

Figure 4: Method body specification

Following this process allows to relate editing activities to project phases: editing a use
case or a textual use case description is considered as a requirements activity. Editing a
story board belongs to the object oriented analysis phase. And editing a method body
means implementation effort. Finally, any activity after successful compilation and after
running the first test may be considered as a testing, bug-fixing, and maintenance activity.

Note, the Fujaba process is an use case driven and an iterative process. This means, the
developer realizes one use case after the other. Thus, after implementing the methods em-
ployed in a certain use case, all testing and bug fixing activities are related to the same use
case until the developer starts editing another use case.

3.4 Relating changes to tasks

As already discussed, the Fujaba Process may be used in an iterative way and by project
teams. In this case, different team members may work at different use cases. Each team
member may work on just one use case at a time. As outlined above, in Fujaba it is still
possible to relate most editing activities to specific use cases. In the case of editing a
textual use case scenario, this is trivial. The same holds for a story board, since a story
board always elaborates a certain use case. In case of method bodies the situation is not
always clear. However, in the Fujaba Process each use case describes a certain system

45

functionality that is realized by a dedicated method. Editing this method is clearly related
to the corresponding use case. Similarly, the story board elaborating a given use case may
employ some additional methods. If these methods have not yet been used in other use-
cases they may be related to the current use case. Finally, we derive automatic tests from
each story board. Bug-fixing activities caused by failure of such a test may also be related
to the corresponding use case. Thus, in most cases we are able to relate editing activities
to dedicated steps in the realization of a dedicated use case, even in an iterative, multi user
process.

Note, due to our detailed protocol data it might be possible to analyze which parts of a
specification are modified in response to a failed test. If only a method body is edited, it
was an implementation problem. If the class diagram is changed, it was a design problem.
If even a story board or a use case scenario needs to be adapted, it is an analysis or require-
ments problem, respectively. This might be related to the overall effort for fixing the bug.
This may allow to study the question, whether in iterative processes the assumption still
holds that bugs in early phases cost a magnitude more than bugs in later phases.

3.5 Summing up editing times

Until now, we have just related editing activities to specific tasks in the modelling process.
In addition, we have some experiences in summing up the times for these editing acti-
vities. As already mentioned, Fujaba’s internal change protocol provides time stamps for
all editing activities. Usually, these time stamps show phases of intensive editing where
subsequent editing steps have very short time distances (some seconds) followed by cer-
tain gaps, where no editing activity is recorded (for several minutes). As discussed in the
introduction, the tool is not able to guess what is going on during these gaps. The user
may be thinking or working on the problem with pencil and paper or discussing it with his
team mates. Or the user may just take a break. As discussed, we just measure the editing
activities and hope that they resemble the over all modelling effort, closely.

Based on the time stamps of our activity protocol, there are multiple ways to sum up the ti-
me spent on the different tasks on a project. A simple scheme might e.g. assume a minimal
time required for a single editing activity e.g. 10 seconds and a maximum time between
two editing activities that is not considered as a break, e.g. one minute. Accordingly, if
we record only a single editing command, we add the 10 seconds to the time spent on the
corresponding task. Second, if we do not record editing for more than e.g. one minute, we
assume that the user takes a break. In that case we might add the time span from the first
activity after the previous break until the last activity before the new break plus 10 seconds
to the corresponding task. If the task changes during a sequence of activities e.g. between
step a and b, we might cut the interval in the middle between step a and b.

Using such an approach, it might be possible to measure the time spent on a specific
task with some realistic precision. This precision might be adjusted by empirical studies
collecting more precise time data with alternative (manual) means.

If such an automatic time measurement delivers reliable data, there are multiple applica-

46

tions of such an approach in the area of software engineering and project management.
For example, statistical data collected in this way from several projects might be used as
a basis for effort estimations and project planning for new projects. Similarly, time data
collected during project execution might be used for project tracking, cf. Figure 5. Each
time, a certain task is completed, the tool might relate the measured time spent on that task
with the time estimated for that task. Such a comparison may allow to indicate phases of
good progress as well as delays for certain tasks that may need management intervention.

Tasks

Use case 1

textual scenario
story board
realization

testing | |
Use case 2
textual scenario
story board
realization
testing |]
Time
[Pannedwork planned overall effort 22 hours projected overall effort: 20
Actual Work hours spent- 14 hours hours remaining. 6 hours
Finished Actual Work percentage spent: 64 % eamed value: 55 %

Figure 5: Possible exploitation of automatical time measurement

The example in Figure 5 outlines some possible project plan view based on such an au-
tomatic time measurement. The hollow bars indicate planned efforts for two use cases.
These effort estimations could be derived from earlier projects. The green bars show ac-
tually spent time related to tasks. Note the gaps in these bars that might be caused by
phases of thinking and discussions or e.g. by lunch and coffee breaks. The grey bars in-
dicate time spent on task that are not yet completed. In this example, the estimated over
all effort is 22 hours. The measurement of the actually spent time sums up to 14 hours so
far. Thus, in this example already 64% of the project budget are consumed. Summing up
the percentage of completed tasks results in only 55%. However, only 11 hours (half of
the budget) have been spent in order to complete 55% of the tasks, thus in this example
the project seems to be slightly ahead of schedule. Such situations could be reflected in an
adjusted projection of the required overall effort and of a projection of the time required
for completion.

Such an exploitation of the automatic time measurement is especially of interest for the
area of software engineering. However, we are confident, that similar analysis mechanisms
could also provide valuable input for more general empirical studies on modelling activi-
ties.

47

3.6 Editing patterns

In our work with the Fujaba environment in class rooms and by supervising student pro-
jects we frequently observe typical editing patterns. For example, during editing a story
board the students frequently detect the necessity of an additional object within their story
board while editing some later activity. Adding an object to the story board in this phase
requires to go back to the first activity, to add the object there and then to copy this change
forward to the next activities step by step until the student reaches his former point of
editing, again.

Such editing patterns are very interesting from an analysis point of view since they indi-
cate situations or points in time when the student has discovered a misconception in his
solution. This might e.g. give hints for insufficient group discussions on the scenario.

Fujaba provides some functionality for pattern detection within static source code. Current-
ly, this functionality is extended towards analysis of program execution traces. Similar
techniques might be usable for the analysis of editing patterns, too.

4 Summary

This paper outlines the automatic protocol features of the Fujaba CASE tool. This auto-
matic protocol features enable us to replay user sessions and to relate editing activities
to different project phases and to dedicated use cases. This is supported for iterative pro-
jects with multiple developers working on a common project in parallel. On this basis,
numerous other analysis mechanisms may be realized.

We propose to use these automatic protocol evaluation features of Fujaba to automate
protocol evaluation in empirical studies like the one of [Schu03] .

References

[DGMZ02] 1. Diethelm, L. Geiger, T. Maier, A. Ziindorf: Turning Collaboration Diagram Strips
into Storycharts; Workshop on Scenarios and state machines: models, algorithms, and
tools, ICSE 2002, Orlando, Florida, USA, 2002.

[DGZ02] L. Diethelm, L. Geiger, A. Ziindorf: UML im Unterricht: Systematische objektorien-
tierte Problemldsung mit Hilfe von Szenarien am Beispiel der Tiirme von Hanoi; in
Forschungsbeitrige zur "Didaktik der Informatik™ - Theorie, Praxis und Evaluation,
GI-Lecture Notes, pp. 33-42, 2002.

[DGZ04a] I. Diethelm, L. Geiger, A. Ziindorf: Systematic Story Driven Modeling, a case stu-
dy; Workshop on Scenarios and state machines: models, algorithms, and tools, ICSE
2004, Edinburgh, Scottland, 2004.

[DGSZ04b] 1. Diethelm, L. Geiger, C. Schneider, A. Ziindorf: Measurement of modeling abilities;
Concepts of Empirical Research and Standardisation of Measurment in the Area of
Didactics of Informatics (CERSMADI), Dagstuhl, Germany, 2004.

48

[Fu02]
[GSZ03]

[Hu00]

[Hu98]

[KNNZ00]

[life02]

[Schn03]

[Schu03]

[SNO2]

[Zii01]

Fujaba Homepage, Universitit Paderborn, http://www.fujaba.de/.

L. Geiger, C. Schneider, A. Ziindorf: Integrated, Document Centered Modeling in
Fujaba; 1st International Fujaba Days, Kassel, Germany, 2003.

P. Hubwieser: Didaktik der Informatik - Grundlagen, Konzepte, Beispiele; Springer
Verlag, Berlin, 2000.

Watts S. Humphrey: Introduction to the Personal Software Process; Addison-Wesley,
Amsterdam, 1998.

H. Kohler, U. Nickel, J. Niere, A. Ziindorf: Integrating UML Diagrams for Production
Control Systems; in Proc. of ICSE 2000 - The 22nd International Conference on
Software Engineering, June 4-11th, Limerick, Ireland, acm press, pp. 241-251, 2000.

life®-Homepage, Universitiit Paderborn, http://life.uni-paderborn.de/.

C. Schneider: CASE Tool Unterstiitzung fiir die Delta-basierte Replikation und
Versionierung komplexer Objektstrukturen; Diploma Thesis, Corolo Wilhelmina zu
Braunschweig, Braunschweig, Germany, 2003.

C. Schulte: Lehr- Lernprozesse im Informatik-Anfangsunterricht; PhD Thesis, Uni-
versity of Paderborn, 2003.

C. Schulte, J. Niere: Thinking in Object Structures: Teaching Modelling in Secondary
Schools; in Sixth Workshop on Pedagogies and Tools for Learning Object Oriented
Concepts, ECOOP, Malaga, Spanien, 2002.

A. Ziindorf: Rigorous Object Oriented Software Development; Habilitation Thesis,
University of Paderborn, 2001.

49

Measurement of modeling abilities

Ira Diethelm'2, Leif GeigerQ, Christian Schneider?, Albert Ziindorf?

LGauBschule 2Fachgebiet Softwareengineering
Lowenwall 18a Universitit Kassel
38100 Braunschweig Wilhelmshoher Allee 73

34121 Kassel
(ira.diethelm | leif.geiger | christian.schneider| albert.zuendorf) @uni-kassel.de

www.se.e-technik.uni-kassel.de

Abstract:

This paper discusses the difficulties of measuring modeling abilities within examina-
tions. Modeling abilities are inherently difficult to measure since they imply cognitive
processes that may not become evident in the result of a written examination. In ad-
dition, for a given problem there exists a wide variety of valid models that may just
differ in the employed modeling language, technique, or paradigm. The models may
just differ with respect to the aspects of the problem that are covered. Or the models
may differ in the level of abstraction that has been chosen, e.g. UML level or code
level. Even for a given modeling language and for clearly identified aspects that are to
be covered and for a given level of abstraction there are still many possible solutions
for a given problem that are difficult to compare and where it is difficult to judge their
relative quality. This paper will mainly raise questions related to these problems. Ho-
wever, in addition we will describe a specific solution employed at the University of
Kassel for grading the modeling abilities of 3rd term students.

1 Introduction

Modeling abilities are of major interest in the discussion of educational standards. Ac-
cordingly, measuring techniques for modeling abilities need to be created, evaluated and
established. Generally, there are two different basic approaches: measuring the progress
during the modeling process or evaluating the result. In the following article we focus on

the results.

Many problems in this area are caused by the wide variety of valid solutions for one given
problem. Different modeling languages may be used, different levels of abstraction may
be chosen and there may actually exist multiple valid solutions for the same problem. In

51

this paper we do not present a solution in general but we show one possibility we found
for measuring special UML models.

In chapter 2 we point out the initial situation and assumptions we made. Then we discuss
the difficulties in measuring modeling abilities in general in Chapter 3. Therefore we rely
on the measurement of mental models as a basis for information processing and problem
solving. We also specify some requirements on measurement techniques that are conclu-
ded from discussion in this chapter.

Furthermore, in Chapter 4 we show some difficulties that we identified during our lessons
in software engineering at the University of Kassel. In this course, we evaluated the mo-
deling abilities of the students (not their knowledge in UML) on the basis of a homework
consisting almost only of UML diagrams. To measure the amount and quality of the func-
tionality modeled within a homework, we used so called norm activities that we describe in
Chapter 5. Norm activities allow us to measure the size and quality of an UML interaction
diagram (story boards and story diagrams).

In chapter 6, we resume and reflect which requirements are covered by our solution and
which are not. We conclude with future work to be done.

2 Initial Situation and Assumptions

Any discussion of the measurement of modeling abilities requires a sound definition of
the term modeling ability, first. In this paper, we consider modeling ability as the ability
to capture an existing or described context and to create a mental model illustrating the
given context as suitable as possible. Furthermore it requires to describe this mental model
with a well-known and suitable modeling technique to make it accessible and assessable
to others.

Our interpretation of mental models is based on [LWS96], where the authors prove that
human information processing, thinking and concluding often takes place in entire models,
which structures resemble the conditions of the given context.

In the area of software engineering, models are frequently implemented using a standard
programming language and the size of such a program model is measured with function
points or lines of code. From such a size measurement one derives the costs for the produc-
tion of the model. Obviously, code size is no suitable measure for the students modeling
abilities. In our opinion, today’s programming languages deal with too many technical de-
tails and have a too low level of abstraction. In our opinion, a higher level of abstraction
that is closer to the way of human thinking is needed in most aspects of education. Besi-
des, we would like to be able to measure modeling abilities also with tests, which do not
require an executable program and do not require too much effort to be suitable.

In addition, the length of an executable program is no measure for its quality. Compared
with the size of a sample solution, longer solutions should be considered as worse compa-
red to smart short solutions realizing the same functionality.

Teachers at school have very diverse evaluation criteria. In most cases an exercise is given

52

requiring a solution method and a result, e.g. the answer to a question. The work on the
exercise is documented by the student and evaluated by the teacher. Usually points are
assigned to the basic approach, the solution method and the result. The tasks are assigned
to certain difficulty ranges and several of such tasks form a test. For example, the tasks
of the German ,,Abitur* have to be specified in this way (see [KMKO04]). However, such
an evaluation scheme measures the ability to apply a pre-defined solution method to an
appropriate problem.

In our opinion, good modeling abilities will frequently result in a wide variety of solutions
for a given problem where each solution has its own value and quality. Thus, an evaluation
scheme for modeling abilities should not assume a certain standard solution but it should
provide freedom for alternative solution approaches.

3 Difficulties in General

As discussed, the common test schema requires a fixed solution strategy and thus is not ap-
plicable to computer science. It differs from mathematics and other natural sciences since
in computer science, for most modeling problems, there are many solutions to an exerci-
se where each solution may be as good as the other. Thus, the measurement of modeling
abilities requires flexible evaluation schemes that are able to deal with a wide variety of
different solutions.

Second, a problem may be modeled at different levels of abstraction. One may use a fairly
coarse grained UML model, e.g. only a class diagram, or a very fine grained level, e.g. a
fully implemented program in a standard programming language. Solutions at such dif-
ferent levels of abstractions are not easily compared or graded with a single evaluation
scheme.

Similarly, different schools or different teachers usually teach many different modeling
techniques. This creates the problem of comparing and grading solutions to a problem that
are described using different modeling languages. To overcome this problem, we need to
find a small set of common modeling languages that unifies currently used modeling tech-
niques and that allows to compare different solutions more easily. Ideally, for wide range
examinations like a ,,Zentralabitur* examination or a PISA test, all students should have
similar experiences and skills in the modeling techniques employed in the examinations.

But it doesn’t appear neither realistic nor meaningful to demand, that only one or two
modeling techniques should be taught nation wide, just in order to be able to establish a
simple evaluation scheme. Usually, educational standards should not be effected by evalua-
tion methods, but vice versa. However, common nation wide educational standards would
be of great value, anyhow. And if this is achieved, evaluation would benefit from it, too.

As an alternative to a specific modeling language, written or verbal natural language could
be used to describe a solution to a given modeling problem. This could be used to seize
and evaluate the mental model of students, cf. [HBB0OO]. However, [HBBO0O] points out
that natural language is only suitable for the measurement of mental models under certain
conditions, since some knowledge is difficult to verbalize. In our opinion modeling abili-

53

ties in the area of computer science raise a similar problem. In addition, the evaluation
of a textual description requires an individual interpretation by the examiner. This creates
problems for the comparability of grades given by different examiners.

[HBBOO] also discusses free graphical representations of information, which they pre-
fer in comparison to textual descriptions. Additionally [HBBOO] points out the problems
of unrestricted graphical representations: unrestricted graphics have to be interpreted by
an examiner also. Still, [HBBO0O] assumes graphical descriptions to be a comparatively
intuitive approach for learning if they have pre-defined meanings for the used symbols.

4 Our Modeling technique: Story Driven Modeling

We have developed a tool supported software process called Fujaba Process (FUP) which
we teach in our courses at school as well as at the University of Kassel [DGZ04]. The
underlying modeling technique is called Story Driven Modeling (SDM). In this paper, we
report our experiences with evaluating SDM models, created by our students as a home-
work for a UML lecture.

The students had to model the board-game ,,Roborally”“ using our CASE tool Fujaba
[Fu02] and the Fujaba Process. Since the Roborally game consist of many rules where
some are very complex, the students did not have to model the complete game, but only
parts of it. Since the students could freely decide which parts of the system they liked
to model and how they wanted to model the functionality, we had to find an approach to
compare and evaluate these models.

To illustrate our evaluation criterions, we will take a closer look at the FUP and the UML
diagrams used in this process:

The FUP starts with the identification of usecases within the problem domain. For every
usecase one or more textual scenarios (descriptions of example runs) are written. Then
the developer has to translate these textual scenarios into so called story boards. A story
board is a sequence of object diagrams, which shows the evaluation of the object structure
comic-strip alike. Figure 1 shows a story board for a scenario where a robot moves and
pushes another robot. The example used here is originally taken from a student group of
our Roborally project.

The embedded object diagram in the first activity in figure 1 models the start situation
of this scenario. Note, the corresponding textual description is automatically copied as
comment into this activity. Our students have modeled the initial object structure using
an object roborally of the class Game, which represents the functionality of the game.
Two Player objects basti and theresa are linked to the game via a plays link. The robots
are located next to each other on the fields fieldS and field7. The robot hulkx90 has a
card which tells him to move one field forward (modeled by the action attribute of object
card660).

54

move_forward1_pushi

!

W =The game is played by two players. Basti has a higher priority than Theresa and has programmed his robot with a
‘move 1 steps forward-program card. The game phase is 'execute_program'. The next figld is occupied by Theresa's rabot.>

rohorally:Game ~
“plays
phase =="execute_program’
‘slm\ card310:Card | J
4 helongsTo hots used ==false - T
~ ¥ gwns
card660 :Card
, Sowns 660
ards60.FORWARD1
false = hattlefield :Board
direction == hulkx80 EAST
virtual==false
b Th as
at <
v heatl 2 v
« -
field8Field = field 7 Fictd “left field6:Field
Yof of v
standard :Standard
Ji <Basti pressesthe executehutton.>
roborally < plays theresa
* plays
phase =="execute_progrant - 4—1: execute(card660)
< curi
reqisterd . card310
— — c used ==false =| . 3
registerphase =4 - 4+ balongsTa b
¥ robgts card660 4 guns
action == cardG60.FORWARD1
priority
used = = o
> ow direction == twonky. NORTH
s virtual==false B
hulkx90

direction ==
wirtual

hullx80. EAST
58

Il =His robot pushes Theresa's robot 1 field forward. >

roborally -
> plays plays
phase =="execute_progrant
v < cur
card310
registerd
4 slot used ==false
registerphase hots’ ¥ gwns
4 pelpngsTo
4 gwns
card660 v
v action == cards60.FORWARD1 twonl
- s
hullogo ———= |]Hmlwlyﬁ i)
—_— used =tiue
direction == hullx80. EAST
wirtual==false =

55

I <Basti's robot moves 1 field forward =

" plays

roborally

@

phase =="execute_program’

direction == hullec80. EAST
viual==false

wirtual == false B

registerd < slot cadin
registerphase ==4 ¥ rphots uged = falsa: g wns
wns
4 belo
A gwns
cardé60
action == card660 FORWARD1
: ity == 660 twonl
OWNS [sed ==true =
hulkx90 direction == twonley. NORTH

Could

ol
S — e ST

COmpingd.
with
P"E\:imﬁ
E&e}o |

I <Both robots ars located 1 fisld forward. The game phase is still ‘scecute_program’. =

rohorally
* plays i . *plays
basti phase =="execute_program’ theresa
¥ cur
registerd <slot N
redisterphase == 4 "I;uh i & helpngsTo ots card310 v bw
L & used ==false
card660
a
action == cards60.FORWARD '{“’"5
priority == 660 o
* owns | used ==true won
hulkx90 direction ==twonly. NORTH
vitual=="false =
direction == hullr90.EAST

virtual=="false =

Figure 1: Story board for scenario move_forwardl _pushl

56

The next activity always models the invocation of the scenario. In FUP this is always
a method call. Our students have modeled this by sending the roborally object a execu-
te(card660) message.

In the following activities, the developer has to model several steps, which describe the
changes done to the objects structure during this scenario. The third activity of figure 1
shows the pushing of the robot twonky to field field6. Note, that we model creation and

destruction of links / objects using <create>> and <destroy>>> markers. The card object
card660 is also marked as used by setting the marked attribute to true.

In the next activity the pushing robot Aulkx90 is also moved one field forward to field
field7. 1t is not obvious here, why our students have chosen to make this a sole step. This
action could as well have been executed in the activity above.

The last activity always models the result situation which has to be reached if the scenario
is successfully executed. Here, the robots hulkx90 and twonky have both moved one field
forward and the card card660 has been marked as used.

From the story boards, the main class diagram may be derived, automatically. The devel-
oper may refine the class diagram by adding inheritances, changing cardinalities etc.

We also suggest a systematic approach how to derive the behavior specification (here: the
method bodies) from the story boards (see [DGZ02, Zii01]). Method body specifications
are modeled using so called story diagrams. A story diagram is a UML activity diagram
with UML collaboration diagrams embedded into the activities. The activity diagram spe-
cifies the control flow whereas the collaboration diagrams model the changes done to the
object structure. Figure 2 shows such a story diagram.

The story diagram of figure 2 models the behavior of the method dolHaveToPush() of class
Robot. This method is a helper method needed by our students to implement the pushing
of robots as specified in the story board of figure 1. The method returns rrue if there is
a robot which must be pushed in front of the robot on which the method was called, and
false otherwise.

The first activity checks wether the virtual attribute of the object of class Robot on which
the method has been called (called this in Java and Fujaba) is set. If this check succeeds the
activity is left via the [success] transition. In this case, the method is left and returns false
since virtual robots do not interact which other robots in the Roborally game. Otherwise
the activity is left via the [failure] transition.

The collaboration diagram in the second activity tries to identify the specified object struc-
ture. The matching is started at the this object. From there the robots link is followed. If a
object of class Game is found, it is called roborally. From the roborally object a robot is
searched using the robots edge, which has an at link to the object nextField. This robot is
then called robotX. Note, the object nextField is already known to the system since it has
been passed as parameter. In Fujaba known objects are visualized by omitting the class
name after the object name. Such objects are called ,,bound”.

If this object structure analysis fails, the activity is left via the [failure] transition and again
false is returned. Otherwise the [success] transition is taken to the third activity. Here it is
checked if the attribute virtual of the bound object robotX (known from the object search in
the previous activity) has the value true. If yes the method returns false and true otherwise.

57

Robot::dolHaveToPush (nextField: Field): Boolean

robotX

[failure

this

virtual ==true” =

virtual ==true‘/_

[| failure

success]

guccess] v~

® % e @

false true

false
false

Figure 2: Story diagram for method do/HaveToPush()

From the class diagrams and the story diagrams the Fujaba CASE tool automatically ge-
nerates executable Java code, which may be compiled and then tested using our object
browser DOBS.

From the story boards the Fujaba CASE tool generates also automatically JUnit test speci-
fications ([Gei04]). This generated tests check wether or not the implementation (modeled
by story diagrams) covers the scenario specified by the corresponding story board. Using
this test generation enables us to verify easily which scenario has been completely model-
led and which not. But we still have no information about the complexity of a particular
scenario and of the quality of the model.

At the end of the Roborally project, we had to evaluate the results presented to us by our
students. This brought up the following questions:

— How should we evaluate story boards and story diagrams? Just giving points for eve-
ry object, link, attribute condition etc. would just measure the size of the diagrams
and would not take the real complexity of the modeled system and of the quality of
the model into account.

— How can we measure functionality of systems that do not have a user interface and
are therefore not testable by humans?

— How can we evaluate pure models that do not have an implementation?

— How can we measure the complexity of a scenario / method specification?

5 Our Solution: Norm Activties

We introduced the term of a ,,norm acitvity (NA) to evaluate the modeling abilities of our
students. An NA is a group of five objects within a story board or story diagram which are
involved in a non-trivial change to the object structure. Such changes may be changes to

58

attribute values, creation or destruction of links or objects and messages sent to objects.
Objects not needed for these changes as well as symmetries do not count for NAs.

For passing the Roborally project, each of our students had to model 10 NAs with story
boards and another 10 NAs with story diagrams within roughly 2 weeks of work. To be
able to count NAs of story boards and story diagrams easily and repeatably, we set up a
list containing criteria on how to count and how to identify symmetries:

Criteria list for story boards:

— If one step of a story board has about 5 objects that are needed for a sound realization
the step counts as 1 NA.

— For a multiple of 5 objects the steps counts more NAs according to the factor (10
needed objects — 2 NAs).
— If a story board has no significant new elements, it is not or only partially counted.

This criterium is needed to identify symmetries between story boards.

— Invocation and result situation are not counted.
This is because the invocation is mostly symmetrical to the start situation and the
result situation contains the same objects as the previous steps.

— If one could describe multiple steps in one step, the NAs are counted only once.

This again identifies symmetries.

— Trivial story boards count less or even no NAs (e.g. only one changed attribute).
In this case, the scenario was to simple and does not fulfill the requirements for
containing NAs.

— For start activities we count all objects that are necessary for the subsequent steps.
Objects that are not counted in any of the subsequent steps are not counted in the
start situation either.

This criterium facilitates to identify the part of the start situation that models only
the context of the scenario but that is not used later on.

— Parts of a story board which do not fulfill the requirements description do not count.
Here, the correctness of the model affects the counting of NAs.
Criteria list for story diagrams:
— Each object that is needed for a sound realization counts 0.2 NAs.
This does again lead to 1 NA for a group of five objects.

— Branches, Loops and For-Each-Actvities count 0.2 NAs.

Since control-flow plays an important role when modeling behavior, constructs crea-
ting control-flow are counted as well.

59

— Methods that do not work (no green JUnit bar) are not counted.
If a method has not passed the tests automatically generated from the story boards,
it does not cover this specific scenario and so this method is erroneous within the
small part of the modeled system.

— Unusable parts of methods count nothing.
Our students tend to model branches that are never reached. Of course such parts of
a model are not counted.

— Redundant structures of any type are not counted.
This criterium should avoid symmetrical parts to be counted more than once.

— If one can model multiple story pattern in a single one, only one story pattern is
counted.

This again identifies symmetry.

— Case differentiations with very small differences are counted only once.

Some of our students modeled huge switch-case constructs with only little diffe-
rences between the different cases (e.g. move by one, move by two, move by three
fields). Of course, such constructs are only counted once.

— The this object does not count.

This is because the this object is needed in most cases to start an object structure
analysis and does not stand for any modeling effort.

Applying the criteria above to the story board of figure 1 leads to a total of 4 NAs. We
start counting NAs with the first step which is the third activity in Figure 1. As mentioned
in chapter 4, the first and the second step (activities three and four) of the story board can
be combined. So, according to the fifth criterium of the list above, every object is only
counted once. Combining the two steps would result in figure 3.

60

v

v v
W > plays oo 2 plays theresa
basti '|= phase=="execute_program" =

ot
registerd + slat card310
used==false - #

hots T pwns

i =His robot pushes Theresa's robot 1 field forward =

registerphase==4 -
———— Y robgis

'
+ belpngsTo

v

cardGGi

action == cardGE0.FORWARD1
priarity== 660
uged =tre =

* OWNS

hulk=90

direction== hullx80 EAST
vitual=="false

direction == twonky NORTH
virtual==falze e

sCrAtes

Fat

aclEEtr s
T at

Figure 3: Combination of step 1 and 2 of figure 1

Every object with a red check mark is part of an NA. The object battlefield does not count
since it does not take part / is not important for the changes to the object structure. The
object card310 might be important for choosing who is next because according to the
Roborally rules, the card with the highest priority is played next. But because the students
have not modeled a priority of card310 (using the priority attribute) this object is useless
here and therefore does not count. The object standard is not part of an NA as well. Of
course, the information on the type of field on front of a robot, if it contains walls or holes
is important for moving. But here the students have modeled an instance of relationship
explicitly as a link. Inheritance would have been the better choice here and that is why
the standard object is not needed here and does not count for NAs. So this step contains
10 objects counting for NAs. Since we have four changes to links and one attribute value
assignment, these changes are non-trivial even for 2 NAs and therefore this step counts the
whole of 2 NAs. Invocation and result situation do not count for NAs, so since this step is
now the only one, only the start situation still has to be counted. According to criterium
seven of the above list, we count the elements of the start situation that are employed in
later steps. In this case this also sums up to 2 NAs. We end up with a total of 4 NAs for the
whole story board. This means that two story boards of this complexity and one simpler
one would be sufficient to pass the project concerning story boards.

For understanding the evaluation of story diagrams, we have a look at figure 2. By negating
the attribute assertions, the three different branches can be combined to one. This would
result in the story diagram in figure 4, which has obviously the same behavior as the one
of figure 2. So, we use this diagram for counting NAs.

61

Robot::dolHaveToPush (nextField: Field): Boolean

!

nextField A this

[f\f 1 =
ailure @

at false
A rpbots o

< robots [success |
robotX :Robof roborally :Game %

vinual!=trué/. v tJ gv NAStrue

Figure 4: Simplified version of figure 2

. N
virtual I=true =

Every object except the this object and every attribute assertion counts 0.2 NAs. The bran-
ching condition again counts 0.2 NAs. So this diagram would have a total of 1.2 NAs.

Using the so counted NAs enables us to measure the size of the model created by our
students while ignoring symmetries and useless parts of their models. To also measure the
quality of their models, we made the following considerations:

The size of a standard solution to some modeling task may be considered
as a measurement for the complexity of that task. This allows to measure
the complexity of the modeling tasks addressed by a homework and enables
a comparison of the quality of the homework with respect to the standard
solution.

Concluding, standard solutions provide

— ameasure for the complexity of the task on the one hand

— a measure for the weight of errors or unworked task on the other hand

The comparison of size (in NAs but also in pages or LOC) of the standard solution with
the solution of our students gives a hint of the quality of the pres