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Abstract:
Using a database of sixty-two different technologies, we study the issue of fore-

casting technological progress. We do so using the following methodology: pretending
to be at a given time in the past, we forecast technology prices for years up to present
day. Since our forecasts are in the past, we refer to it as hindcasting and analyze the
predictions relative to what happened historically. We use hindcasting to evaluate a va-
riety of different hypotheses for technological improvement. Our results indicate that
forecasts using production are better than those using time. This conclusion is robust
when analyzing randomly chosen subsets of our technology database. We then turn
to investigating the interdependence of revenue and technological progress. We derive
analytically an upper bound to the rate of technology improvement given the condi-
tion of increasing revenue and show empirically that all technologies fall within our
derived bound. Our results suggest the observed advantage of using production models
for forecasting is due in part to the direct relationship between production and revenue.

Keywords: experience curve, learning curve, performance curve, technology evolu-
tion, innovation
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1 Introduction and background

Technology forecasting is a pervasive tool in the fields of engineering, economics, manage-

ment science, and public policy. Arguably, the most consequential applications rest at the

intersection of these disciplines. Different strategies for forecasting technological progress

have been proposed [Moo65, Wri36, KM06, KM08, God82, SSC00, Nor09]. Simple mod-

els that track a performance metric as a function of one or two explanatory variables are

widespread. In this work, we use the term performance curve to describe such simple

models, which we define very generally to be a model of some performance metric (here,

unit price) as a function of some proxy for experience (such as time or production). Per-

haps the most famous performance curve model is Moore’s law [Moo65], which states that

the technology improves exponentially with time. Moore proposed exponential improve-

ment originally for the density of transistors on a chip but later found that the relationship

held for many different metrics for progress, including unit price. Another widely used

performance curve model today is a power law relationship between the unit price of a

technology p and its cumulative production q. Specifically, p ∝ q−w, where the expo-

nent w is the rate of improvement. This model is referred to as “learning-by-doing” or

Wright’s law after his seminal 1936 study on aircraft costs [Wri36]. A similar power law

relationship betwen unit price and annual production was proposed by Goddard [God82].

Alternative hypotheses utilizing time [KM06, KM08] and combinations of time, annual

production, and cumulative production [SSC00, Nor09] also exist in the literature.

Performance curves aggregate all sources of price change, including but not limited to

changes in input prices, economies of scale, labor learning, product and process innova-

tion, and standardization. Furthermore, technological progress is collapsed into a single

performance metric, ignoring all other potential metrics of improvement. In spite of these

simplifications, performance curves have been shown empirically to be plausible models

for describing technologies from industries as diverse as chemicals, agriculture, energy,

and information technology.

Despite the broad use of performance curves, no systematic study comparing competing

hypotheses across an ensemble of technologies has been published to our knowledge. In

this work, we do exactly that. We use hindcasting methodology to assess model perfor-

mance. The significance of our results is assessed by analyzing randomly chosen subsets

of technologies to determine whether the same conclusions hold. We broaden the analy-

sis to study revenue dynamics and its interdependence with technological progress. We

present an analytical framework for investigating revenue and compare predictions to em-

pirical observations. Insight into revenue as a driver for technology evolution is discussed

in the context of the results comparing competing hypotheses for performance curves.

2 Models

We analyze a suite of different hypotheses for technological progress, shown in Eq.’s 1-6.

The first three – Moore’s law [Moo65], Goddard’s law [God82], and Wright’s law [Wri36]
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– are hypotheses proposed in the literature. They are all regression models with fitted in-

tercepts, denoted here by b. The remaining models – Moore’s law random walk, Goddard’s

law random walk, and Moore-Goddard’s law random walk – are time series models that

have not been proposed in the literature, to our knowledge. We refer to them as random

walk models because unit technology price typically contains drift and noise; however, we

do not write the noise term explicitly in Eq.’s 4-6. For brevity, the models will be referred

to by the abbrieviation following their names from here onward (e.g. ML, GL, etc.). The

variables pt, xt, and qt are the unit price, annual production, and cumulative production in

year t, respectively. The parameters m, g, w, m̄, ḡ, f̄1, f̄2, and b are fitted using ordinary

least squares using n consecutive years of data as the sample set. A bar above a parameter

indicates it is for a time series, as opposed to regression, model.

Moore’s law (ML)

log pt = b−mt (1)

Goddard’s law (GL)

log pt = b− g log xt (2)

Wright’s law (WL)

log pt = b− w log qt (3)

Moore’s law random walk (MRW)

log pt+1 = log pt − m̄ (4)

Goddard’s law random walk (GRW)

log pt+1 = log pt − ḡ log
xt+1

xt

(5)

Moore-Goddard’s law random walk (MGRW)

log pt+1 = log pt − f̄1 log
xt+1

xt

− f̄2 (6)

3 Methodology

The first part of this work is systematically analyzing the performance of the models across

an ensemble of different technologies. We use sixty-two technologies from the Perfor-

mance Curve Database [PCD], an online database of performance curves, as our test bed.

Only data sets with at least ten consecutive years of annual price and production data
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were used. Four IT technologies are incorporated into the analysis: hard disk drives, tran-

sistors, laser diodes, and DRAM. Acrylic fiber, titanium sponge, geothermal electricity,

monochrome television, and beer are a few of the non-IT technologies. A complete list of

technologies with references to their original sources and a selection of fit model param-

eters are in Section 8.1. All data sets are from studies with a scope at least as broad as a

national industry (e.g. wind turbine prices in Denmark), while many are global average

prices.

To evaluate performance of the models, we use hindcasting methodology. For a given data

set, we select a specified number of data points in the series to use as the sample set. The

sample set size n ranges from five to fifteen. Results are presented for n=6 unless otherwise

noted. We use the sample set to fit the parameters of the model in question. Using the

resultant parameter fits, we make a forecast of the unit price for each year through the end

of the data series. Since our forecasts are actually in the past, we refer to it as hindcasting

and compare our predictions to what happened in reality. To quantify forecast accuracy,

we use the logarithmic hindcasting error

ǫ = log p− log p̂, (7)

where p̂ is the forecast and p is the historical unit price. The sample set is then shifted

one year toward the future, the parameters refit, and a new forecast is made for each year

through the last year of available data. The process continues until the sample set com-

prises the final n data points in the time series. We refer to the last data point in the sample

set as the origin. The horizon is the number of years in the future relative to the origin

of the forecast. For a given n, the error ǫ is therefore calculated for each combination of

technology, model, origin, and horizon, where each combination thereof is referred to as

an event.

To assess model performance across the ensemble of technologies, we first normalize the

errors of each technology by the standard deviation (k) of the residuals fit to a Gaussian

distribution with zero mean. The standard deviation is calculated using the entire data

series of each technology. We take the residuals from the fit to MRW and note that all

results discussed here hold irrespective of which model is used for normalization. Then,

we take an event average of the absolute values of the errors as a function of horizon.

Statistical significance is addressed in Section 4.

Implicit in this approach is the assumption that the underlying process of evolution is

equivalent for every technology. Said in another way, the models that perform best do

so irrespective of the specific technology or industry. Results analyzing subsets of data

divided by industry – as labeled in the appendix – support that this is a valid assumption;

however, we note that this hypothesis is the subject of ongoing re-evaluation as more data

becomes available for analysis.
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Figure 1: Absolute value of the normalized hindcast error averaged over the ensemble of technolo-
gies vs. horizon, for each model: Moore’s law (ML), Goddard’s law (GL), Wright’s law (WL),
Moore’s law random walk (MRW), Goddard’s law random walk (GRW), and Moore-Goddard’s law
random walk (MGRW).

4 Comparing competing hypotheses

Fig. 1 shows the normalized absolute value of the hindcast error averaged across all tech-

nologies for each model as a function of horizon. First, we note that the additional level of

complexity brought about by using a multivariate model (MGRW) does not lead to more

accurate forecasts. The same conclusion holds for other multivariate models we inves-

tigated, including those not presented in this work. All subsequent results will exclude

multivariate models unless otherwise noted.

Let us now focus on the univariate models, shown as solid curves in Fig. 1. For horizons

greater than approximately ten to fifteen years, the models bifurcate. Two models perform

noticeably poorly: ML and MRW. These are the two models that use time as an explanatory

variable. Forecasts based on some form of production (annual, cumulative, etc.) make

better forecasts than those based on time. For horizons shorter than ten years, the models

perform roughly equivalently, with the exception of GL, which performs notably poorer.

This result is consistent with recent work by Bela et al. [NFBT11].

We observe a difference in relative forecasting accuracy of the performance curve mod-

els formulated in terms of production versus time; however, is the difference statistically

significant? We note that multiple factors influence the increasingly erratic behavior ob-

153

153



0 5 10 15 20 25 30 35

0
5

1
0

1
5

Horizon (years)

A
v
e
.
a
b
s
.
n
o
rm
.
e
rr
o
r

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Horizon (years)
A
v
e
.
fr
a
c
t.
w
in
n
in
g

Figure 2: Left: Average of the absolute value of the normalized error for MRW (black) and GRW
(red) as a function of horizon. Right: Average of the events won by MRW (black) and GRW (red)
as a function of horizon. For both plots, the solid curve is an average over all sixty-two data sets; the
dashed (dotted) curve is the average +/- the standard deviation across one hundred randomly chosen
subsets of size forty (twenty).

served at increasing horizons. First, as one might intuitively expect, the forecasting error

increases as a function of horizon, as does the spread of the distribution of forecasting

errors for an ensemble of datasets. Second, as the horizon increases, a decreasing number

of technologies are contributing to the average (average data set length is 18 years). These

factors have the effect of rendering any observed differences between model performance

less significant with increasing horizon. Said in another way, an error bar placed around

each curve in Fig.1 would increase in magnitude with horizon. This motivates calculations

assessing the statistical significance of our results.

To approach addressing this question, we perform the following robustness analysis. Of

the sixty-two technology ensemble, we randomly select m data sets to form a subset.

From the subset, we calculate two quantities for MRW and GRW: 1) the average of the

absolute value of the normalized error as a function of horizon and 2) the fraction of events

for which MRW has the lowest error compared to GRW and vice versa as a function of

horizon (which add to unity at every horizon). We chose MRW and GRW specifically

as representative of models formulated in terms of time and production. After analyzing

one subset, we randomly select another subset and then repeat the analysis. The process is

repeated for 100 randomly selected subsets. We take the average and the standard deviation

of the two quantities as a function of horizon for each subset size m.

Results are plotted in Fig. 2 for m = 40 and 20. The left graph shows the average of the

absolute value of the normalized error for MRW (black) and GRW (red) as a function of

horizon. On the right, we plot the average of the events won by MRW (black) or GRW
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(red) as a function of horizon. For both plots, the solid curve is an average over all sixty-

two data sets; the dashed (dotted) curve is the average +/- the standard deviation across

the randomly chosen subsets of size forty (twenty). When the subset size decreases from

forty to twenty, there is greater variability in the resultant average curves, which is to be

expected. However, even with a subset size of twenty, the confidence intervals overlap

mildly at horizons greater than fifteen years.

We close this section by noting that assessing the statistical significance of our results is

a subject of ongoing investigation. Both more and longer data sets would permit a more

conclusive statement about the relative advantage of production over time in forecasting

technological innovation. We continue to work toward expanding the Performance Curve

Database with other technologies to continue to test this hypothesis. Additionally, we hope

the Performance Curve Database will facilitate and promote research by other parties in

the general area of technology evolution.

5 Relationship to revenue
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Figure 3: Halving time of unit price vs. doubling time of annual production. The color of the symbol
reflects the industry of the technology: chemical (black), energy (green), IT (blue), and other (red).
Please note that three data sets were excluded because of negative annual production growth (electric
range, free standing gas range, and onshore gas pipeline).

In the previous section, our results indicate that production is a better indicator of price

dynamics. To gain further insight into drivers of technological process, we propose one
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additional model, which we call the “Revenue random walk”.

Revenue random walk (RRW)

log pt+1 = log pt − r̄ log
xt+1pt+1

xtpt
(8)

The product of the annual production (xt) and unit price (pt) is the annual revenue, which

is the explanatory variable for this model. Eq. 8 is similar in form to Goddard’s law random

walk, with revenue in place of simply annual production. In fact, after rearrangement, one

can show that Eq. 8 is equivalent to Goddard’s law random walk, where ḡ = r̄/ (1− r̄)1.

Therefore, one of the best performing models is effectively tracking revenue dynamics,

given the direct relationship between revenue and production.

We can further probe the relationship between revenue and price dynamics by formulating

the problem in the following manner. First, let us express the revenue as

rt = xtpt. (9)

We now drop the subscript t for brevity. The change in revenue is then

dr

dt
=

dp

dt
x+ p

dx

dt
. (10)

Please note that this derivation is formulated in terms of continuous time dynamics. In

order for the industry’s revenue to grow or stay constant, we have the condition that

dr

dt
=

dp

dt
x+ p

dx

dt
≥ 0. (11)

One notable set of solutions to Eq. 11 is

p = kpe
−t/τp

x = kxe
t/τx . (12)

Exponential decay of the unit price is simply ML (Eq. 1, which we know to be a plausible

model, albeit not the most accurate). Furthermore, empirically we observe that production

does grow roughly exponentially across all technologies investigated here [NFBT11]. Our

solution set is therefore consistent with empirical observations.

Eq. 12 leads to the condition

τp

τx
≥ 1. (13)

When the firm’s revenue is constant, and the price and production are exponential solu-

tions, the timescale of exponential decay of the price must be greater than the timescale of

exponential growth of the production for the revenue to increase.

1Similarly, a regression model in terms of annual revenue can easily be shown to be equivalent to Goddard’s

law.
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Let us define the halving time as the amount of time (in years) it takes for the unit price

to half. We define the doubling time as the amount of time it takes annual production to

double. We calculate the halving and doubling times for every technology and construct

the scatter plot in Fig. 3. In order for the revenue to remain constant or increase, the rate

of production scale-up must be equal to or greater than the rate of price reduction. In other

words, we expect the doubling time to be less than or equal to the halving time. Indeed, as

seen in Fig. 3, the vast majority of the technologies lie above the identity line. This means

that Eq. 13 is met; the overall industry revenue for nearly all technologies is increasing.

This derivation is somewhat unsatisfying because of the imposed functional form for the

production. Let us consider another solution set to Eq. 11, and, in doing so, derive an

upper limit for the exponent for GRW. We consider p = kpx
−g . Using the condition of

increasing or flat revenue, Eq. 11, we arrive at the condition g ≤ 1. Therefore, the scaling

exponent g must be less than or equal to unity, the bound for maintaining constant revenue.

Empirically, there are no technologies in our analysis where g is greater than unity (outside

the error of the fit). The only ones that approaches this value are the Hard Disk Drive,

Pentaerythritol, and Phthalic Anhydride data sets, for which g = 1.0 (see Section 8.1

for values of g for other technologies). This section provides empirical support for the

importance of revenue as a key driver for technological evolution.

6 Discussion

In this work, we comprehensively evaluated competing hypotheses for technology im-

provement. Using a database of sixty-two different technologies as a test bed, we applied

hindcasting methodology to assess the relative performance of the models across the en-

semble of data sets. Our results indicate that at long time horizons, production is a better

indicator of price dynamics compared to time. This conclusion was robust from analyzing

samples of randomly chosen subsets of twenty and forty technologies. However, we note

this result is the subject of ongoing investigation.

We then considered revenue as a driver for technological progress. We show that for

nearly all technologies, the halving time of the price is less than the doubling time of the

annual production, the condition required for increasing industry revenue. We formulate

our observations in terms of a simple analytical framework and derive an upper bound for

the rate of technological progress in terms of annual production given the condition of

increasing revenue. The derived bound is consistent with empirical results from our test

bed, where categorically every technology is within this limit. Our results support that

revenue is a key driver for technological evolution.

The use of production for forecasting technological progress via a learning or experience

curve is often justified in the literature by Arrow’s explanation [Arr62]: production is a

proxy for accumulated experience, and learning-by-doing provides the opportunities for

innovation and cost reductions (for further discussion, see [DT84, LE90, MS01, Nem06]).

However, our results investigating revenue dynamics suggest that the success of the pro-

duction models is likely due in part to the direct relationship between production and
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revenue. Revenue may better account for industry-wide decision-making that affects tech-

nology price dynamics. This is a new angle to the typically posited explanation for using

production. Furthermore, our results emphasize the importance of analyzing technology

evolution in the context of a broader economic framework.
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8 Appendix

8.1 Data sets

All data sets can be found on the Performance Curve Database [PCD]. In the tables below,

we list the sixty-two data sets used in the above analysis and their original sources. The

technologies are divided into separate tables by industry, labelled in the table caption. We

also include a selection of parameter fits, including Moore’s law (m), Goddard’s law (g),

Wright’s law (w), the halving time of unit price (τh), and the doubling time of annual

production (τd).

158

158



Table 1: Industry: energy.

Technology m g w τh τd

CCGT Electricity [CC02] 0.020 0.10 0.12 34 3.2

Crude Oil [Gro72] 0.010 0.38 0.17 68 29

Electric Power [Gro72] 0.036 0.42 0.34 19 8.1

Ethanol [GCNL04] 0.052 0.89 0.36 13 18

Geothermal Electricity [SE09] 0.050 0.81 0.50 14 18

Motor Gasoline [Gro72] 0.014 0.32 0.21 48 18

Offshore Gas Pipeline [Zha99] 0.11 0.21 0.49 6.1 5.5

Onshore Gas Pipeline [Zha99] 0.015 0.13 0.11 45 -

Photovoltaics [May05] 0.064 0.34 0.30 11 3.6

Photovoltaics 2 [Nem06] 0.10 0.56 0.49 6.7 3.9

Wind Electricity [SE09] 0.093 0.17 0.18 7.5 1.8

Wind Turbine [NAD+03] 0.041 0.14 0.13 17 3.0

Wind Turbine 2 [NAD+03] 0.039 0.085 0.072 18 1.5

Table 2: Industry: other.

Technology m g w τh τd

Beer [Gro72] 0.035 0.23 0.20 20 4.7

Electric Range [Gro72] 0.023 -0.023 0.29 31 -

Free Standing Gas Range [Gro72] 0.020 -0.48 0.56 35 -

Monochrome TV [Gro72] 0.056 0.44 0.28 12 21

Refined Cane Sugar [Gro72] 0.0047 0.14 0.32 150 43
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Table 3: Industry: chemical.

Technology m g w τh τd

Acrylic Fiber [Lie84] 0.10 0.70 0.58 6.8 5.2

Acrylonitrile [Lie84] 0.076 0.49 0.43 9.1 5.1

Aluminum [Lie84] 0.010 0.14 0.13 67 11

Ammonia [Lie84] 0.090 0.81 0.83 7.7 6.8

Aniline [Lie84] 0.058 0.48 0.93 12 6.0

Benzene [Gro72] 0.062 0.56 0.74 11 6.6

Bisphenol A [Lie84] 0.061 0.43 0.41 11 5.0

Caprolactum [Lie84] 0.12 0.85 0.54 6.0 5.2

Carbon Disulfide [Lie84] 0.021 0.25 0.47 32 45

Cyclohexane [Lie84] 0.052 0.33 0.37 13 5.1

Ethanolamine [Lie84] 0.062 0.77 0.53 11 9.0

Ethyl Alcohol [Lie84] 0.014 -0.083 0.17 51 49

Ethylene [Gro72] 0.037 0.31 0.18 18 6.0

Ethylene 2 [Lie84] 0.065 0.55 0.49 11 5.9

Ethylene Glycol [Lie84] 0.066 0.72 0.70 10 8.0

Formaldehyde [Lie84] 0.060 0.71 0.63 12 8.7

Hydrofluoric Acid [Lie84] 0.0015 0.035 0.018 460 9.1

LD Polyethylene [Gro72] 0.10 0.50 0.38 6.8 3.7

Magnesium [Lie84] 0.0077 0.12 0.15 90 13

Maleic Anhydride [Lie84] 0.054 0.47 0.43 13 6.3

Methanol [Lie84] 0.058 0.63 0.68 12 7.4

Neoprene Rubber [Lie84] 0.022 0.80 0.28 32 30

Paraxylene [Gro72] 0.10 0.43 0.42 7.0 3.5

Pentaerythritol [Lie84] 0.042 1.0 0.45 17 19

Phenol [Lie84] 0.082 0.87 0.84 8.5 7.5

Phthalic Anhydride [Lie84] 0.071 1.0 0.88 9.7 10

Polyester Fiber [Lie84] 0.13 0.47 0.48 5.1 2.5

Polyethylene HD [Lie84] 0.10 0.40 0.46 7.1 3.1

Polyethylene LD [Lie84] 0.089 0.68 0.50 7.8 5.4

Polystyrene [Gro72] 0.058 0.34 0.24 12 5.3

Polyvinylchloride [Gro72] 0.075 0.57 0.43 9.2 5.5

Primary Aluminum [Gro72] 0.025 0.23 0.25 28 6.2

Primary Magnesium [Gro72] 0.026 0.18 0.17 26 5.5

Sodium [Lie84] 0.015 0.38 0.47 45 23

Sodium Chlorate [Lie84] 0.040 0.51 0.40 17 9.6

Styrene [Lie84] 0.069 0.66 0.59 10 6.7

Titanium Sponge [Gro72] 0.12 0.44 0.37 5.9 5.4

Urea [Lie84] 0.073 0.54 0.49 9.5 5.1

Vinyl Acetate [Lie84] 0.076 0.61 0.60 9.1 5.7

Vinyl Chloride [Lie84] 0.090 0.63 0.64 7.7 5.0
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Table 4: Industry: information technology.

Technology m g w τh τd

DRAM [Cul08] 0.43 0.74 0.72 1.6 1.2

Hard Disk Drive [Cou08] 0.65 1.0 1.0 1.1 1.1

Laser Diode [LS99] 0.31 0.45 0.39 2.2 1.2

Transistor [Moo06] 0.48 0.84 0.82 1.4 1.2
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