
MoFuzz: A Fuzzer Suite for Testing Model-Driven Software

Engineering Tools – Summary

Hoang Lam Nguyen1, Nebras Nassar 2, Timo Kehrer1, Lars Grunske1

Abstract: Fuzzing or fuzz testing is an established technique that aims to discover unexpected
program behavior (e. g., bugs, vulnerabilities, or crashes) by feeding automatically generated data into
a program under test. However, the application of fuzzing to test Model-Driven Software Engineering
(MDSE) tools is still limited because of the difficulty of existing fuzzers to provide structured,
well-typed inputs, namely models that conform to typing and consistency constraints induced by
a given meta-model and underlying modeling framework. We present three different approaches
for fuzzing MDSE toolsȷ A graph grammar-based fuzzer and two variants of a coverage-guided
mutation-based fuzzer working with different sets of model mutation operators. Our evaluation on a
set of real-world MDSE tools shows that our approaches can outperform both standard fuzzers and
model generators w.r.t. their fuzzing capabilities. Moreover, we found that each of our approaches
comes with its own strengths and weaknesses in terms of code coverage and fault finding capabilities,
thus complementing each other and forming a fuzzer suite for testing MDSE tools.

Keywords: Model-Driven Software Engineering; Modeling Tools; Fuzzing; Automated Model

Generation; Eclipse Modeling Framework

1 Summary

Fuzzing (also known as fuzz testing) automatically generates a large number of inputs and

feeds them to the program under test to discover unexpected program behavior and evaluate

the program’s reliability. In our work, we investigate the fuzzing of Model-Driven Software

Engineering (MDSE) tools which are based on the Eclipse Modeling Framework (EMF).

Fuzzing MDSE tools is a challenging task, since (i) the test inputs must adhere to complex

input constraints (e. g., well-typedness and valid multiplicities w.r.t. the input meta model)

in order to pass the initial syntactic and semantic validation stages of the input processing

pipeline, and (ii) the generated input models must be interesting/diverse enough to exercise

a variety of code paths.

Building upon recent advances in automated model generation and structure-aware fuzzing,

we propose three different fuzzers as part of our fuzzer suite MoFuzz [Ng20]ȷ a graph-

grammar based fuzzer and two mutation-based approaches. The graph grammar-based fuzzer

is based on the recently introduced EMF Model Generator [Na20], which is able to

efficiently generate large, properly-typed EMF models with valid multiplicities. Conceptually,

1 Humboldt-Universitčt zu Berlin, Germany, {nguyehoa,kehrer,grunske}@informatik.hu-berlin.de
2 Philipps-Universitčt Marburg, Germany, nassarn@informatik.uni-marburg.de

cba doi:10.18420/SE2021_29

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 81

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{nguyehoa,kehrer,grunske}@informatik.hu-berlin.de
mailto:nassarn@informatik.uni-marburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_29


the fuzzer first translates the meta-model into a constructive language specification (i. e.,

the grammar), which is then leveraged to generate models in a two-phased approach. First,

the model increase phase creates model elements without violating upper multiplicity

bounds. Then, the model completion phase completes the intermediate model to a valid

EMF model. Overall, the graph-grammar based fuzzer attempts to broadly explore the

space of valid instance models in an efficient manner. The mutation-based fuzzers are based

on a widely used technique in automated fault detection, namely coverage-guided fuzzing

(CGF) [LZZ18], which we adapt to the domain of MDSE as follows. First, a random set of

seed models is generated using automated model generation techniques to initialize the input

queue. Afterwards, both approaches continuously select an input model from the queue,

apply model-based mutations on it, and retain the mutated input only if it increases coverage.

The goal is to incrementally evolve the inputs in the queue to exercise deep paths. While both

fuzzers essentially employ mutations that add, delete, or change model elements, one uses

generic mutation operators based on the EMF Edit API, whereas the other automatically

derives consistency-preserving mutation operators from the meta-model [Ke16].

Our implementation of MoFuzz builds upon JQF [PLS19], a feedback-directed fuzz testing

framework for Java. We have evaluated MoFuzz gainst the Zest algorithm implemented

by JQF, and the EMF random instantiator [At15] on a set of real-world MDSE tools.

The results of our evaluation indicate that MoFuzz can improve code coverage as well as

the number of exposed crashes when fuzzing MDSE tools. In terms of coverage, the graph

grammar-based fuzzer of MoFuzz performed the best, while the mutation-based fuzzer

using EMF Edit API mutations triggered the most crashes.

Bibliography

[At15] AtlanModȷ EMF Random Instantiator. https://github.com/atlanmod/mondo-atlzoo-
benchmark/tree/master/fr.inria.atlanmod.instantiator/, 2015. Accessedȷ November 
24, 2020.

[Ke16] Kehrer, Timo; Taentzer, Gabriele; Rindt, Michaela; Kelter, Udoȷ Automatically Deriving
the Specification of Model Editing Operations from Meta-Models. Inȷ 9th International
Conference on Theory and Practice of Model Transformations (ICMT). pp. 173–188, 2016.

[LZZ18] Li, Jun; Zhao, Bodong; Zhang, Chaoȷ Fuzzingȷ a survey. Cybersecurity, 1(1)ȷ6, 2018.

[Na20] Nassar, Nebras; Kosiol, Jens; Kehrer, Timo; Taentzer, Gabrieleȷ Generating Large EMF
Models Efficiently - A Rule-Based, Configurable Approach. Inȷ 23rd International Confer-
ence on Fundamental Approaches to Software Engineering (FASE). Springer, pp. 224–244,
2020.

[Ng20] Nguyen, Hoang Lam; Nassar, Nebras; Kehrer, Timo; Grunske, Larsȷ MoFuzzȷ A Fuzzer Suite
for Testing Model-Driven Software Engineering Tools. Inȷ 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 2020.

[PLS19] Padhye, Rohan; Lemieux, Caroline; Sen, Koushikȷ JQFȷ Coverage-Guided Property-Based
Testing in Java. Inȷ 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). pp. 398–401, 2019.

82 Hoang Lam Nguyen, Nebras Nassar, Timo Kehrer, Lars Grunske

https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator/
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator/

