Unparalleled Parallelism?
CPU & GPU Architecture Trends and Their Implications for HPC Software

Laura Morgenstern
laura.morgenstern@informatik.tu-
chemnitz.de
Chemnitz University of
Technology
Chemnitz, Germany

ABSTRACT

The free lunch is over — again? In 2004, Herb Sutter observed
the stagnation of clock frequencies and predicted hyper-
threading and multicore capabilities as drivers for perfor-
mance growth on CPUs. This prediction and the resulting
advice to focus more on concurrency to achieve sustainable
application performance, has become the daily reality of
HPC software engineers. In this paper, we compare trends in
the development of CPU and GPU architectures and examine
their implications for the parallelization and portability of
HPC software. The data analysis still reveals levelling clock
frequencies but this time also for GPUs. Additionally, an
increasing amount of hardware parallelism can be observed
for both architectures.

CCS CONCEPTS

« Computer systems organization — Parallel architec-
tures.

KEYWORDS
CPU, GPU, multicore architectures, GPGPU

1 INTRODUCTION

The goal of this work is to quantify trends in the architec-
tural design of CPUs and GPUs and their implications for
the parallelization and portability of HPC software. For this
purpose, we consider the development of clock frequency,
compute unit count and compute unit size for CPUs and
GPUs over time. Based thereon, we describe how HPC soft-
ware should reflect these developments. On a much smaller
scale, we take first steps to apply the idea of [5] to GPUs.

Except as otherwise noted, this paper is licenced under the Creative Com-
mons Attribution-Share Alike 4.0 International Licence. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

FGBS °21, March 11-12, 2021, Wiesbaden, Germany

© 2021 Copyright held by the authors.
https://doi.org/https://doi.org/10.18420/fgbs2021f-02

Ivo Kabadshow
i.kabadshow@fz-juelich.de
Julich Supercomputing Centre
Julich, Germany

Matthias Werner
matthias.werner@informatik.tu-
chemnitz.de
Chemnitz University of
Technology
Chemnitz, Germany

2 PARALLEL ALGORITHM MODELS

To describe implications for HPC software, this work differ-
entiates the parallel algorithm models data-parallelism and
task-parallelism.

We refer to data-parallelism as the parallel execution of
identical operations on multiple data elements. In the scope
of this work, this refers to SIMD (Single Instruction, Multiple
Data) vectorization on CPUs and SIMT (Single Instruction,
Multiple Threads) parallelization on GPUs. Data-parallelism
is commonly used to parallelize algorithms that can be de-
composed into independent operations via uniform data
partitioning.

Task parallelism, on the other hand, is typically applied
to algorithms that exhibit more complex, irregular paral-
lelism that cannot be fully exploited by applying regular
data-parallelism. We refer to a task as a unit of work [1, p.
96]. Based thereon, task parallelism is the concurrent exe-
cution of tasks considering the dependencies between these
tasks.

3 UNIFORM ARCHITECTURE MODEL

To compare architectural properties of CPUs and GPUs, a
uniform view on both processor types is required. For this
purpose we follow the platform model of OpenCL since it
allows to describe an abstract architectural model that covers
CPU-cores and SIMD-lanes as well as streaming multipro-
cessors and streaming processor cores.

In terms of the OpenCL platform model [2, p. 18] a hetero-
geneous compute node consists of a host processor that is
connected to one or several compute devices. Each device is
subdivided into compute units (CUs), which are further sub-
divided into processing elements (PEs). The mapping of CUs
and PEs to actual hardware components is not determined by
the OpenCL standard but specified by the software developer
dependent on the parallelization scheme. For this work, we
define a mapping that does not only cover the considered
hardware properties of CPUs and GPUs but also supports
considerations for data- and task-parallelism.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.18420/fgbs2021f-02

FGBS 21, March 11-12, 2021, Wiesbaden, Germany

Laura Morgenstern, lvo Kabadshow, and Matthias Werner

Table 1: Considered GPU and CPU Chips

ID Year Nvidia GPU Chips AMD GPU Chips Intel CPU Chips
1 2006
2 2010 X7560 (Nehalem)
3 2011 E7-8870 (Westmere)
4 2012 Tahiti (GCN 1) E5-2687W (Sandy Bridge)
5 2013 Hawaii (GCN 2)
6 2014 E7-8890 v2 (Ivy Bridge)
7 2015 Fiji (GCN 3) E7-8890 v3 (Haswell)
8 2016 Ellesmere (GCN 4) E5-2699A v4 (Broadwell)
9 2017 8180M (Skylake)

10 2018 Vega 20 (GCN 5.1)

11 2020 Arcturus (CDNA 1.0) 8380HL (Cooperlake)

Applying the terminology of the OpenCL platform model,
we refer to CPU-cores as CUs. Further, we consider Nvidia’s
streaming multiprocessors or AMD’s compute units as the
GPU-equivalent of CPU-cores. Hence, we refer to those
equally as CUs.

A CPU core exhibits SIMD units that execute an operation
on multiple data elements simultaneously. For comparability
of CPU and GPU architectures, we consider only single-
precision floating point (FP32) SIMD operations in terms of
MUL-, ADD- and FMA-units. Based thereon, each SIMD-lane
is referred to as a single PE. Regarding GPUs, we refer to
each of Nvidia’s CUDA cores or AMD’s stream processors
as a single PE. These PEs are operated by multiple warp-
lanes (Nvidia) or wavefront-lanes (AMD) in lockstep'. This is
similar to the behaviour of CPU SIMD units. Hence, mapping
processing elements to SIMD-lanes on CPUs and to CUDA
cores/stream processors on GPUs allows for a reasonable
comparison of both architectures.

4 METHODS

In order to quantify the development of hardware properties
over the years, we considered Intel’s high-end CPUs as well
as Nvidia’s and AMD’s HPC GPUs since the advent of the
first GPGPUs (General Purpose GPUs) in 2006 [4]. Table 1
provides an overview of the processors and microarchitec-
tures that were used to retrieve the data for the charts in
Figures 1, 2 and 3.

4.1 Selection of CPU Metrics

CPU data points cover only Intel server CPUs that are typi-
cally used in HPC-systems. Accordingly, hardware properties
such as clock frequency and core count are retrieved from
Intel’s product specifications of the Intel Xeon Processors
and Intel Xeon Scalable Processors [3].

1Except for Nvidia GPUs starting with Volta (compute capability > 7.0).

The number of compute units #CUs corresponds to the
core count. We do not consider Simultaneous Multi-Threading
(SMT) since two SMT-threads share a SIMD unit and do not
operate in parallel, but concurrently.

Given clock frequencies are base frequencies instead of
max turbo frequencies. This allows for a reasonable com-
parison of past and present hardware and eliminates the
influence of core utilization and SIMD usage on the clock
frequency.

The number of processing elements #PEs corresponds to
the number of SIMD-lanes, which is computed based on the
corresponding FP32 SIMD width and the number of FP SIMD
units.

4.2 Selection of GPU Metrics

A GPU chip is only included in the data set if it was used in
dedicated HPC GPUs, i. e. Nvidia Data Center (former Tesla)
series or AMD Radeon Instinct (former FirePro S) series. For
each architecture, the chip exhibiting the highest CU count
is considered. Data points refer to GPU chips, instead of
specific GPU models, to exclude dual-GPU designs.

The number of compute units #CUs for all GPU chips is
retrieved from the GPU Specs Database [6] and corresponds
to the parameter SM Count.

The number of processing elements #PEs is determined
from the ratio of Shading Units and SM Count as provided
by the GPU Specs Database [6].

Similar to the corresponding CPU metric, given GPU clock
frequencies are base frequencies instead of boost frequencies.
The clock frequency refers always to the highest base clock
frequency the GPU chip was operated at.

Unparalleled Parallelism?

3.5 T T T T T T T
3 | .
T
& 25 -
g 9l |
>
Q
g
= 15 [7
g
2 | I
@]
@ NVIDIA GPUs
& A AMD GPUs
—— Intel CPUs
0.5

| | | | |
2006 2008 2010 2012 2014 2016 2018 2020

Year

Figure 1: Development of CPU and GPU base clock fre-
quencies over time

5 CPU & GPU ARCHITECTURE TRENDS

5.1 Stagnating Clock Frequencies

The chart in Figure 1 depicts the development of base clock
frequencies on CPUs and GPUs over time. The base clock
frequencies of multicore CPUs stabilize at 2.3 to 3.1 GHz
due to their thermal design power. Since 2016 a qualitatively
similar stabilization at 1.0 to 1.2 GHz can be observed for
GPUs.

5.2 More Compute Units

The chart in Figure 2 depicts the development of the num-
ber of compute units #CUs per processor since 2006. The
chart shows that the amount of CUs increases for CPUs and
GPUs regardless of vendors. To still increase hardware per-
formance, the trend of stagnating clock frequencies on CPUs
and GPUs is compensated by this effect of increasing CU
counts.

5.3 Stagnating Compute Unit Size

The chart in Figure 3 shows the ratio of the number of pro-
cessing elements per compute unit #PEs/CU on CPUs and
GPUs over time. This ratio can be considered as the size
of a CU, i. e. the amount of hardware parallelism that a CU
provides. Over the years, the CU size is constant for AMD
GPUs, while it increases for Nvidia GPUs till 2013. However,
the Maxwell and Pascal architectures introduce a trend re-
versal that leads to a decrease in CU size and a levelling at
64 #PEs/CU; remarkably, at the same size as AMD CUs.

FGBS 21, March 11-12, 2021, Wiesbaden, Germany

128 NVIDIA GPUs |
~A- AMD GPUs s

—— Intel CPUs
64 |- A A |

I
B>
|

32

#CUs

16 - -

8, |

| | | |
10 2012 2014 2016 2018 2020

Year

| |
2006 2008 20

Figure 2: Development of CU count on CPUs and GPUs
over time

256 NVIDIA GPUs]
_A~ AMD GPUs
128 | @ Intel CPUs 1
L 64f AA—b O —b— Db
O
5 32| y
Q
&9
B 16| y
8 - .
4 - .
| | | | | | | |
2006 2008 2010 2012 2014 2016 2018 2020

Year

Figure 3: Development of CU size on CPUs and GPUs
over time

As can be seen from the chart, the size of CUs on CPUs is
progressively increasing. Hence, it is gradually approaching
the size of GPU CUs.

6 IMPLICATIONS FOR HPC SOFTWARE

For GPU programming, the increase in the CU count leads to
the possibility to execute more independent compute kernels
in parallel. This does not only support classical compute ker-
nel overlapping, but also benefits task-parallel programming
on GPUs. Accordingly, this effect leads to the extension of
originally data-parallel programming models by task-parallel
functionalities, e. g., in form of CUDA asynchronous task

FGBS 21, March 11-12, 2021, Wiesbaden, Germany

graphs, dynamic parallelism or the execution of OpenMP
tasks on GPUs.

The trend of stagnating CU sizes reflects the limited amount
of inherent data-parallelism in most HPC algorithms. Hence,
increasing the size of CUs further would not be effective to
achieve reasonable scaling. Considering the origin of GPGPU
programming in graphics processing, which is the paragon
of data-parallelism, GPGPUs were designed for heavily data-
parallel applications. Multicore CPUs, on the other hand,
do not only provide data-parallelism through SIMD vector-
ization but also support the more flexible concept of multi-
threading, which is the basis for task-parallelism. The ob-
served trends, however, indicate a gradual convergence of
both architectures and accordingly lead to a more uniform
description of parallelism on both architectures.

7 CONCLUSION

As shown in Section 5, CPU and GPU architectures are sub-
ject to similar hardware trends. These hardware trends reach
from stagnating CU sizes, stagnating clock frequencies to
increasing CU counts.

From the software perspective, the resulting challenge is to
use this increasing amount of hardware parallelism through
parallel programming technologies that allow for the fur-
ther parallelization of algorithms beyond data-parallelism.
This requires in particular the application of more complex
parallelization schemes such as task-parallelism.

To support this endeavour, several programming technolo-
gies that aim to simplify parallel programming are under
development. This includes in particular programming tech-
nologies for applications that are not purely data-parallel
and accordingly rely on task-parallelism; this includes CUDA
asynchronous task graphs as well as OpenMP tasks. Addition-
ally, parallel programming models are extended to support
portability between CPUs and GPUs; this includes frame-
works such as OpenCL and OpenMP as well as libraries such
as Nvidia’s thrust and libcu++.

REFERENCES

[1] David Culler, Jaswinder Pal Singh, and Anoop Gupta. 1998. Parallel
Computer Architecture: A Hardware/Software Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

[2] Khronos® OpenCL Working Group. December 18, 2020. The OpenCL™
Specification. https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/pdf/OpenCL_APLpdf

[3] Intel®. Accessed January 28, 2021. Product Specifications: Intel®
Xeon® Processors. https://ark.intel.com/content/www/us/en/ark html#
@PanelLabel595

[4] E.Lindholm, J. Nickolls, S. Oberman, and J. Montrym. 2008. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro 28,
2(2008), 39 - 55. http://doi.org/10.1109/MM.2008.31

[5] Herb Sutter. 2005. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s journal 30, 3 (2005), 202-210.

Laura Morgenstern, lvo Kabadshow, and Matthias Werner

[6] TechPowerUp. Accessed November 28, 2020. GPU Specs Database. https:
//www.techpowerup.com/gpu-specs/

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595
https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595
http://doi.org/10.1109/MM.2008.31
https://www.techpowerup.com/gpu-specs/
https://www.techpowerup.com/gpu-specs/

	Abstract
	1 Introduction
	2 Parallel Algorithm Models
	3 Uniform Architecture Model
	4 Methods
	4.1 Selection of CPU Metrics
	4.2 Selection of GPU Metrics

	5 CPU & GPU Architecture Trends
	5.1 Stagnating Clock Frequencies
	5.2 More Compute Units
	5.3 Stagnating Compute Unit Size

	6 Implications for HPC Software
	7 Conclusion
	References

