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Abstract: Requirements engineering is nowadays the broadly accepted method to
manage customer’s requirements. The result is a specification from which a
solution is implemented and which is used to validate the realization in terms of
their fulfillment. However, today’s tools assist in organizing and tracking the
requirements but reliable criteria about their completeness, consistency, and
realizability are missing. Furthermore, the resulting artifact is a document, which
must be read and understood by humans, which itself is error-prone. It is obvious
that errors and ambiguities result in an unwanted solution which is often and in the
worst case only discovered in the final stage: Testing. This paper outlines an
approach for constructive requirements modeling, which describes completely
customer’s demands in a formal manner so that already during the requirements’
elicitation inconsistencies are eliminated, completeness is assessed, realizability is
ensured, and all valid test cases can be derived by using a model-based testing
approach. Therefore, we propose adaptions to the traditional V-model to not only
save valuable development and testing time but also to achieve better results. The
applicability is shown on the example of the software for an auxiliary heating
system at a large German OEM.

1 Introduction and Motivation

Today’s comfort and safety systems are not limited to the premium segment anymore.
Instead, they are available to a cost-elastic and very competitive market. Driven by
competitors, which equip their vehicles for the mass-market with more and more
software-intense vehicle functions on the one hand but focused to limit the increasing
development costs on the other hand, OEMs demand appropriate methods to master the
overall costs while focusing on the quality of a vehicle function. According to [KBPOI,
Sel07], the later a manufacturer focuses on quality and correctness of a system the higher
are the costs — often orders of magnitudes depending on the current development stage.
Regarding the widely and often in iteration-cycles used V-model, an OEM applies
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quality methods during or after the implementation stage first to determine the
fulfillment of the specified requirements.

Thus, today’s requirements engineering tools provide sophisticated assistance for
managing a customer’s requirements on the one hand [GNA+12]; furthermore, a specific
requirement can be associated with one or many test cases to testify and track its
fulfillment. Thus, the quality manager is always and at any time informed about the
current nominal quality of the implementation.

However on the other hand, the consistency, completeness, realizability, and thus the
actual quality of requirements is not assessed at all. Considering today’s increasingly
complex software systems, which demand a more elaborated software engineering
[PBKSO07] and therefore methods for quality assurance of these software-intense vehicle
functions [RBK06, BBHR0O7, BBKR09, Ber10, BR12], the risk also increases to oversee
possible situations with which a vehicle function could be faced and which could threat
participants within the system context like pedestrians or bicyclists. However, this fact is
not acceptable for safety systems in a customer product like vehicles!

To cope with these risks, OEMs and automotive suppliers are required to develop
according to the ISO-26262 [ISO11], which defines obligatory processes and methods
regarding the defined Automotive Safety Integrity Level (A-SIL); the ISO-26262
explicitly demands for software safety requirements that they must be “comprehensible,
precise, unambiguous, verifiable, and realizable” and states furthermore that “traceability
and adequateness regarding the SIL level and architecture” [p.99, ISO11] must be
ensured. However, only semi-formal methods are “highly recommended” and thus,
rather mandatory w.r.t. a specific A-SIL level.

In contrast, the avionics sector [DOI11] recommends explicitly formal methods
depending on the effect of a possible failure to extend classical testing approaches. And
only in the railway sector [ENO1], formal methods are highly recommended for using as
a relevant technique even during the requirements specification.

Advantages of formal models are for example their mathematical proof of consistency,
completeness, or realizability. Thus, the application of formal models to a requirements
specification could significantly improve their quality due to these characteristics before
its actual implementation is started. Furthermore, available methods from the
requirements engineering management can be reused, for example traceability for single
requirements or exchangeability with suppliers. However, there are still some concerns
about formal methods, like additional costs, increased time for their application, and the
lack of adequate tooling.

In this contribution, the method of sequence-based specification (SBS) [PP03, Car09] is
described as a formal method to support the process of requirements analysis and
formalization to achieve the aforementioned advantages. Therefore, we propose to create
an additional artifact besides the traditional requirements document during the first stage
in the development, which is verified and serves all later stages of the development
process. Furthermore, we suggest to rethink the traditional V-model based development
process to explicitly rely on this additionally created artifact to shorten development and
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testing time on the one hand; on the other hand, the aforementioned characteristics of
formal models yield to more reliable results.

The paper is structured as follows: First, the applicability of formal methods during the
development of automotive software-intense systems is discussed. Next, theoretical
principles of the SBS are presented. Afterwards, a revised V-model based development
process that explicitly embraces the resulting artifacts from the SBS is proposed, which
addresses the mentioned caveats. The process itself was successfully applied during the
development of an auxiliary heating system, which is briefly outlined in the end.

2 Related Work

Applying formal methods during the requirements specification of software systems is
known for more than two decades. Already in [GCR94], the application of formal
methods is described for four different systems: First, the use of formal methods to
specify a shutdown system for a nuclear plant; next, their usage for verification and
validation of a safety-critical signaling system for the subway system of Paris to reduce
the time gap between two trains from 150s to 120s; then, formal methods in terms of
graphical notations to specify subsystems of a traffic alert and collision avoidance
system for planes; and finally, formal methods were required within a project from the
US Department of Defense for security-critical networks.

Thus, already at that time, the importance of formal methods was recognized to achieve
the common goal: To increase the customer’s confidence in the resulting
implementations for these different, complex, and safety-critical systems. Nothing less
than the same goal from the customer’s perspective applies for modern safety-critical
systems that are built into a mass-product like vehicles! However yet today, the
aforementioned concerns about formal methods were basically confirmed by [Konll]
who carried out interviews to gather information about software testing and practical
application of formal methods in automotive projects.

Although the ISO-26262 is in effect since November 2011, discussions about adequate
formal methods, which comply with this standard, are still insufficient. One reason could
be their limited recommendation within the standard as already mentioned. Moreover,
recent publications like [CJL+08] focus only on annotation support for requirements as
well as externally carried out verifications on top of AUTOSAR to support the
requirements’ traceability.

The authors of [PHP11] propose an approach to check automatically the vacuity of
requirements. Compared to the SBS, it is a subsequent processing approach to ensure the
validity of the resulting requirements specification, while SBS is constructing this
specification at first.

Previous work to this paper which also bases on SBS was outlined in [SHG10] and
[SHGB11]. While the former outlines the successful application of SBS during
Hardware-in-the-Loop (HiL) testing on the example of an energy management system,
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the latter deals with the successful application of SBS already during Model-in-the-Loop
(MiL) testing of an automotive safety system in pre-series development project already
at the early development stages.

The results of that previous work encouraged us to focus on the development process
itself and to rethink the usage of formally modeled requirements already at the very
earliest stage instead of their usage during MiL- or even HiL-testing only. Thus, as an
extension to our previous work, this contribution focuses on revising the traditional and
widely accepted V-model based development process to tackle the increasing complexity
of software-intense systems by relying on constructive requirements modeling using
SBS.

3 Constructive Requirements Modeling

The fundamental idea behind the SBS and its method to create an executable
specification is described in the following. It is a constructive method, which means that
properties like completeness of the resulting work products do not need to be verified by
additional activities. They are correct w.r.t. the initially given preconditions and
assumptions because of the rules that were followed to build the resulting artifacts.
Hence, the method must be strict and rigid if properties such as completeness,
correctness, realizability, and consistency are to be assured in the construction process.
SBS itself is a rigid procedure to create a formal software requirement specification
(SRS) [Car09, PP0O3]. Thus, the resulting artifact is consistent, complete, and traceably
correct due the rules used for its creation. However, due to the fact that human error may
occur during the application of SBS, an additional review afterwards helps to reduce this
potential risk.
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Figure 1: The manual steps in the Sequence-Based Specification process: Activities and artifacts.

The first step is the definition of the system boundary to derive all interfaces for input
and output signals. Based on the requirements, all stimuli from these interfaces are
determined. This comprises stimuli S that represent operations and responses R that are
received as reactions from the system under development (SUD). A special stimulus is
the empty event A, which is also the starting point of the enumeration. In the automotive
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domain, stimuli can originate in other electronic control units (ECU), in sensors on the
same ECU, or in the system’s environment.

In Figure 1, all required steps of the SBS process are shown:

e The functional requirements are identified and extracted. They are tagged for
their traceability through the SBS and the following entire development.

o The SUD is considered as a Black Box. The SUD’s system boundary is defined
by its interfaces for information exchange.

e Stimuli (i.e. inputs to the SUD) and responses (i.e. information received from
the SUD) are collected and classified. The classification is done on basis of the
requirements w.r.t. the expected equivalent responses. The result is a set of
classified inputs and outputs of the SUD.

e All possible stimulus sequences are completely and systematically enumerated
and elongated. The method starts with the empty sequence A of length zero,
continuing with length one, two, and so on. Thus, it is assured that all possible
combinations and permutations from the input domain are considered and
related with the expected SUD’s behavior. This enumeration process follows
strict rules:

o The stimulus extension is checked whether it is legal. Under certain
conditions (e.g. when it is physically impossible to occur), an
extension is considered as illegal. Then this sequence does not need to
be considered anymore in the following iteration.

o At each stimulus extension, the expected responses from the SUD are
identified from the requirements and assigned to this stimulus
sequence for later traceability.

o After each stimulus extension, it is checked whether the expected
behavior of the SUD w.r.t. all possible further extensions is equivalent
to an already existing sequence. If such a sequence can be found, the
current sequence can be mapped to the other one and the enumeration
is continued for both in a common manner. This is called reduction.

e The process stops if all sequences are enumerated and elongated systematically,
the corresponding responses are assigned for all sequences, and no further
extension is possible.

It is to mention that each step — from the definition of the system boundary to the end of
the enumeration — requires a reference to a requirement. Thus, the traceable correctness
of the final SRS is assured. Furthermore, ambiguous or missing requirements are
identified and all of them are validated w.r.t. their functional realizability.
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All sequences that could not be reduced to another sequence are called canonical
sequences. These sequences define the resulting state space for the SUD, and hence for
the software implementation to realize the final system.

On the top layer, the states are considered as components of the SUD, as the states are on
a high abstraction layer. Hence, the result is a first functional partitioning, from which
the architecture and the deployment of components is derived. In the next step, the SBS
is applied to each component, providing a design und implementation for it. The process
of refinement is carried out recursively until a layer is reached on which the
implementation is supplemented by manual coding or by model-based code generation
e.g. from MATLAB/Simulink.

The first two steps are presented in Figure 2. SBS is used to derive an initial architecture
of the SUD. On each component SBS is applied once again to generate a first design for
each component. With the application of the SBS in each development step, properties
such as completeness and traceable correctness can be assured down to an
implementation artifact. Therefore, it is reasonable to adjust the development process to
rely on the artifact SBS, which is described in the following section.
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Figure 2: Recursive process for the usage of the SBS for the architecture and design.

From the artifact’s point of view, the SBS process creates an executable state machine
for the implementation as well as its complementary environmental model. The
environmental model serves as a test model, from which any possible usage sequence
can be derived, which serves as a valid and meaningful test case for using within MiL-
or HiL-testing. In [Siell], the development process for the test model with a systematic
integration of time and timing requirements is described in greater detail. The executable
state machine for the implementation can be simulated for validation and to assess the
system’s realizability. The executable state machine is equivalent to a Mealy automaton
with further annotations.

The method of SBS can be applied to virtually any system that can finally be broken
down to discrete signals and states. It demands skills to choose the appropriate level of
abstraction, a suitable hierarchization, and to decide, what a state embraces. A decision
has to be taken also on the question where SBS is applied to refine states and where
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other methods, e.g. temporal logic, are used. This decision clearly depends also on the
type of sub-functionality under consideration, which can be a reactive controller or logic.

4 Proposal for a Revised Development Process for Software-Intense
Vehicle Functions

According to [Sel07] and which is also confirmed by countless projects, the later a
failure is discovered the higher are the costs for identifying and fixing its fault. Moreover
and also shown in the aforementioned publication, 40% of the top ten project risks (“4.
requirements mismatch”, “S. user interface’  mismatch”, “6. architecture”, “7.
requirements changes”) are related to requirements, architecture, and design, and thus
within the early stages during the development.

In Figure 3, the V-model is depicted which is annotated not only by the exponentially
increasing costs to fix discovered faults but also by the mentioned project risks. Thus, it
is obvious that the uniformly distributed effort over the project runtime that is suggested
by the design of the V-model differs from the reality’s facts; the risks are left-skewed but
their fixing efforts and thus the related costs are right-skewed.
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Figure 3: V-model, which is annotated by relative fixing costs and the 40% dominating project
risks according to [Sel07].

However, any development approach, which is following this V-model, consists of
consecutive steps, which depend on the previous one. This means in practice after
finishing the requirements specification, the design and modeling of the architecture and
the final implementation are started, which reveal sometimes inconsistencies or even
realizability deficiencies in the specification. The subsequent step after the realization is
the testing phase, which itself uses the specification again to unveil implementation
errors. This step-wise and consecutive approach obviously moves the quality gate to the

! user interface* includes not only system usage which is realized by an HMI but also technical interfaces
which are used by neighbouring systems.
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latest phase of the development where fixing inconsistencies and errors in a specification
and implementation are most expensive. Furthermore, only implementation errors w.r.t.
the specification are discovered but the quality of the specification itself like correctness,
consistency, and realizability is hardly assessed.

But how can this widely realized [Cha0O5] but still accepted problem be overcome?
Intuitionally, the quality gates must be moved to the earliest and reasonable phase during
the development: For any system development project this is the point where the
requirements specification is created and used to start the implementation. Obviously,
any inconsistencies in this document will result in an erroneous implementation, which
is only or even not in the worst case unveiled by test cases. Thus, the right-skewed
distributed effort and costs must be corrected to result in a left-skewed distributed effort
with a strong focus on the actual requirements specification in the best case.

Therefore, a combined method to act as quality gate, which serves both to validate the
requirements specification and to support the implementation, is necessary. This method
shall therefore provide consistent and complete test cases to reduce the test effort on the
one hand; on the other hand, the method could also provide implementation artifacts
directly. Thus, this method serves as so-called single-point-of-truth (SPoT) which must
formally guide the process of scrutinizing and validating the requirements and their
interrelations but which also must act as source model for generating implementation
artifacts or test cases according to a project’s specific needs.

At this point, the method of constructive requirements modeling as outlined in the
aforementioned section comes into play. The constructed formal model, which
fundamentally is an annotated Mealy automaton, contains by principle all valid usage
scenarios for a system. As outlined, this is achieved by a systematic enumeration of the
system’s input signals combined with the expected system reaction according to the
initial requirements specification. Thus, the requirements specification is validated
iteratively in terms of consistency, correctness, and realizability during the analysis stage
in a guided manner.

Due to the fact that each state in the resulting Mealy automaton also contains the
expected system’s output, the formal requirements model can serve either as source
model to generate first implementation artifacts on the one hand, or to provide input
signal sequences to derive only valid and meaningful test cases on the other hand. Their
usage is shown in Figure 4, which results in a revised and slightly left-skewed variant of
the V-model. These modifications are strongly encouraged by the results from [SHG10]
and [SHGB11].

Even if the V-model is widely used in the automotive domain for the development of
vehicle functions, the outlined method can also be used with modern agile methods in
iterative contexts. This is especially interesting when providing test cases for MiL testing
as described in [SHGB11]. Thus, prototypical implementation models can iteratively be
improved.
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Figure 4: Revised V-model with a strong focus on a formal requirements specification model from
which implementation and testing artifacts are generated automatically to reduce implementation
and testing efforts.

In practice, each transition of the Mealy automaton can also be weighted with a
probability to reflect more likely usage profiles and to direct the test case generation
[SL10]. Furthermore, these generated test cases can be directly used during a manual
prototyping phase to enable and support a “test first” approach for MiL-testing, while
getting further insights from the prototype. In the end, these requirements models enable
a quality gate at the very earliest time point to save valuable resources later on in the V-
model development process. Furthermore, artifacts from suppliers can be validated
objectively and even automatically.

S Case Study: Auxiliary Heating System

In this section, the previously described revised development process was applied during
the software development of an auxiliary heating system. These systems are mainly used
in road vehicles to heat the passenger compartment and to defrost the windows. In
hybrid or electric vehicles, their usage is extended for components of power transmission
and power supplies.

In the following, the conventional system for the passenger compartment is considered.
Depending on the customer’s choice of a temperature, the auxiliary heating system
determines whether it is necessary to heat or to cool. Based on the environmental
conditions it starts at a calculated time with its activity. During the phase of heating or
cooling it is monitoring the environment as well as the compartment w.r.t. changes of the
temperature. If necessary, it adapts its activity to the changed conditions. The system
contains both discrete and continuous behavior.

Furthermore, in recent vehicles there are a lot of possibilities to control the auxiliary
heating system and air conditioning. It is possible to program timers via the key, the
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Multimedia Interface (MMI), or directly at the climate control. Moreover, specific
settings can be overridden by user actions that have higher priority.

5.1 Application of the SBS to the Auxiliary Heating System

As outlined in the revised V-model development process, we applied the SBS already at
the very early stage to derive a formal requirement specification from initial
requirements of the auxiliary heating system. A high functional level of abstraction was
chosen as the purpose of the model was also the derivation of test cases for integration
testing. Therefore, different sources had to be brought into the process to formalize the
requirements, e.g. contents from a requirement management system, sketches and
minutes from meetings, and also experts for the functionality who were in charge of the
final product. After the analysis and clarification of the requirements, the models as
described in Section 3 could be created.

B e e i U i rm—

s i .

Figure 5: Detailed model for the auxiliary heating functionality. This model was used during
integration testing on the ECU.

To give an idea of the size and complexity, the following figures of the model for the
auxiliary heating system are given: On the top layer the model consists of five states.
Three of them, i.e. all except the start and final state, are refined. As a result, the
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implementation consists of three components that interact with each other. On the next
layer the SBS process is applied to each component. The result consists of 39 states with
52 transitions. These figures provide quite a good idea of the range, in which the size of
the model diagrams resulted.

As described in Section 3, the internal behavior and the appropriate test model are
derived from the SRS model. In Figure 5, a detail of the test model is depicted, which
was derived on a higher abstraction layer for integration testing on the final ECU. The
abstraction on this layer is determined by the interfaces provided through the target ECU
and its bus interfaces. For the sake of clarity, the states are grouped. The rectangular
boxes in Figure 5 are grouped states, in which possible behavior with the same
functional purpose is specified. Furthermore, the grey and white states are further
refined. These states can be entered and the internal behavior of the state is specified in a
new sub-diagram.

The process was applied until a level of abstraction was reached which was sufficiently
detailed. The complete automaton, i.e. the top model including all states and transitions
from the refinements, consists of 796 states and 1,019 transitions. The average length of
one usage sequence is 66 transitions, which assumes an operational profile with
uniformly distributed probabilities.
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Figure 6: Example of continuous functions that are mapped to discrete states during the SBS
process.

The system’s continuous behavior is mapped to discrete states. Continuous functions are
used to specify the values between discrete states. In Figure 6, the function e.g.
F0°20°(T) provides all continuous values between temperatures including 0° and
excluding 20°. The abscissa represents the temperature in degree Celsius and the
ordinate describes the trigger momentum for an actuator in the heating system. As
illustrated in that figure, the continuous transition between discrete states is specified
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with functions, and the discrete states serve to span the state space of the automaton and
for e.g. the calculation of metrics.

5.2 Results

As expected and described in Section 4, ambiguities in the requirement specification
could be identified and solved during the formalization process. The deficiencies were
apparently related to the negligence of usage scenarios, which were represented by
systematically enumerating possible stimuli sequences that might occur in the field use.
Thus, error-prone interpretations during the implementation could be avoided in a
systematic manner and test engineers already had a high confidence in the realization.
Furthermore, they could easily derive test cases for their model-based testing process
directly from the SRS model.

As there are many phases of the development process between the construction of the
models and the testing of the integrated system, a variety of potential errors can be
detected. In between are tool changes, code processing, and additional basic software
modules in the final ECU for e.g. the [/O communication to the SUT.

In contrast to the traditional V-model-based development process, informal specification
documents did not provide clear, complete, and consistent answers to all expected usage
scenarios for the auxiliary heating system. Thus, the responsible engineers for the
functionality were involved to clarify these issues. Thus, the initial requirements could
be revised thoroughly and systematically to get a complete and consistent formal model.

As already mentioned, these resulting SRS models also served to improve the testing of
the implementation. Additional errors could be identified, that had not been discovered
before. They were mainly related to neglected possible usage scenarios, which had not
been tested and on the other hand, to deficiencies in the requirement specification, that
led to vagueness in the interpretation on the implementation and test side. The
acceptance of the users was high because finally the created model served as basis for
discussion and communication. Encouraged by the results of this project, the revised V-
model based development process shall be applied for new functionalities on a project
for thermo-management.

6 Conclusion and Outlook

Formal methods are not the one and only Holy Grail to tackle the increasing complexity
of upcoming software-intense systems; using a formally derived artifact at the very early
stage does not automatically mean that it specifies the “right” requirements. However,
and that is the important aspect, it is assured that all following stages rely on a
consistent, complete, and realizable model, which serves as the single-point-of-truth in
an artifact-driven development process, and thus, error-prone human interpretations can
be significantly reduced or even avoided.
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Nevertheless, formal methods contribute mainly to reduce the probability to discover
unexpected errors during later stages in traditional development processes. As shown in
[SHGB11], even manageable embedded systems with a sophisticated testing process at
first sight did benefit from the SBS approach — already at early stages by supporting the
MilL-testing. As a consequent step, this contribution outlines a revised V-model based
development process, which explicitly embraces a method to constructively model
requirements in a formally consistent, complete, and realizable manner at the earliest
possible stage. Its applicability and benefits were demonstrated on the example of the
requirements elicitation and development of an auxiliary heating system.

In the future, formal methods need to be rather mandatory and not only limitedly
recommended as stated in the ISO-26262 standard due to two reasons: At first, the
abandonment would provoke the risk of lately discovered errors which are very
expensive in terms of product recalls for example; second, the customer expects a
reliably and thoroughly engineered and operating software-driven system. However,
future work must be carried out to investigate the expressiveness of applicable formal
methods for requirements specification regarding the type of embedded systems in terms
of continuous signal processing or event-driven system. Moreover, the underlying
characteristics of a system’s input signals should be investigated to provide guidelines
for applicability and to derive best practices. Furthermore and as already mentioned as
concerns in Section 1, appropriate and user-friendly tooling is necessary to increase the
overall acceptance among developers and for test and requirements engineers.
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