ConSequence - Model-Based Testing With State Machines and
Concatenated Sequence Diagrams

Stephan Weiflleder
Fraunhofer-Institute FIRST
Kekuléstrafie 7, 12489 Berlin, Germany

stephan.weissleder@first.fraunhofer.de

1 Motivation

Model-based testing (MBT) offers several advantages
over traditional testing such as requirements formal-
ization, which can lead to early detection of incon-
sistencies, automation of test design, which usually
implies a significant decrease of test design costs, and
reduced test maintenance costs.

In this paper, we deal with two open issues of MBT:
First, coverage criteria are often used to measure test
quality and to steer automatic test generation. This
means that covering all specified structural elements is
the main focus of the generated test suite. As a conse-
quence, typical user behavior is seldom reflected in the
test suite, and the intention of single test cases is often
hard to understand for users. To solve this issue, we
propose to define typical user behavior as sequences
that are mapped on the behavioral model. The second
issue is the poor traceability from behavioral system
models to functional requirements. An intuitive ap-
proach to allow for traceability is to annotate model
elements with references to requirements [1, page 131].
This approach, however, suffers from two draw-backs:
The model becomes overloaded and the integration of
requirements links in the system model has to be done
manually. Instead, we propose to use separate mod-
els for requirements and system behavior and to link
them automatically during test generation.

We present an approach to concatenate transition
sequences of requirements that drives test generation
by new requirements-based coverage criteria.

2 The ConSequence Approach

We focus on concatenating sequences that potentially
represent functional requirements. Thus, we use the
terms typical interaction sequence and requirements
interchangeably for the rest of the paper.

We define relations of functional requirements and
transition sequences of state machines: Each behavior
specified by a functional requirement can be mapped
to several state machine transition sequences depend-
ing, e.g., on the start state. If the transition sequences
of different requirements overlap each other, then the
corresponding requirements are also overlapping.

Dehla Sokenou
GEBIT Solutions
Koenigsallee 75b, 14193 Berlin, Germany
dehla.sokenou@gebit.de

Mapping. The task of the mapping is to identify the
contexts of the requirements in the behavioral model,
i.e., to map each requirement to transition sequences
in a state machine. State machine transitions are trig-
gered by incoming events. Thus, only the incoming
message events for the object described by the state
machine are extracted from the sequence diagram and
mapped to state machine transition sequences that are
triggered by the same sequence of events.

Overlap Identification. We define overlapping
transition sequences using the following terms for all
transition sequences ts! and t¢s2: Start state of any
tsl is the source state of the first transition in tsl.
End state of any tsl is the target state of the last
transition in tsl. tsl is a prefiz/postfiz of ts2 iff ts2
starts/ends with the sequence of transitions defined
in tsl and optionally contains subsequent/preceding
transitions. tsl is part of ts2 iff the transitions in tsl
occur in ts2 at any place in the same order.

We define that two transition sequences overlap iff
a) the start state of one transition sequence is equal
to the end state of the other, b) there is a non-empty
prefix of one transition sequence that is equal to a
non-empty post-fix of the other, or ¢) one transition
sequence is part of the other. The matching transi-
tions that imply the overlap are called the owverlap.
The corresponding requirements are also considered
overlapping if the mapped transition sequences do.

Concatenation and Test Generation. Based
on the overlap relations between pairs of transition
sequences, we create an owverlap graph covering all
mapped transition sequences. Two overlapping tran-
sition sequences are concatenated by creating a new
sequence that first contains all transitions of the pre-
ceding transition sequence and then all transitions of
the subsequent transition sequence without using the
overlap of both transition sequences twice. Concate-
nating non-overlapping transition sequences is done
via finding a path on the overlap graph from one tran-
sition sequence to the other and concatenating all con-
tained overlapping transition sequences.

Test generation based on concatenating transition
sequences consists of several steps: 1) Concatenat-



ing all required transition sequences in the desired
order. 2) Concatenating the resulting transition se-
quence with the outgoing transition of the initial node
and a transition sequence that starts at the target
state of the initial state’s outgoing transition. The
resulting transition sequence is a connected path of
the state machine that starts at the initial state and
describes a possible system behavior that covers the
desired transition sequences and requirements, respec-
tively. 3) Validating the resulting path, i.e., checking
that all constraints regarding guard conditions and
effects on the contained transitions are valid.

2.1 Coverage Criteria

In this section, we describe coverage criteria for test
generation with the ConSequence approach:

All-Requirements is satisfied if for each require-
ment, at least one of the mapped transition sequences
is covered by a test case. All-Sequences is satis-
fied if for each requirement, all mapped transition se-
quences have been covered by test cases at least once.
All-Requirements-Pairs is satisfied if for each or-
dered pair of requirements, at least one of the mapped
transition sequences are covered in the order of the
requirements. All-Sequence-Pairs is satisfied if for
each ordered pair of requirements, all corresponding
transition sequences are covered in the order of the
requirements. All-Sequence-Twice is satisfied if
for each requirement, all mapped transition sequences
have been covered by test cases at least twice, which
also comprises transition loops.

3 Case Study

The case study is based on models describing the be-
havior of an automated teller machine. One state ma-
chine describes the behavior of the system and 25 se-
quence diagrams describe single interaction sequences.

Results. We evaluate the effects of 1) the test suites
generated with ConSequence, 2) structure-based cov-
erage criteria with corresponding test suites generated
by ParTeG [2], and 3) combining both test suites. Ta-
ble 1 shows the test suite size measured as the number
of test cases, the number of system calls, and the mu-
tation score of the mutation analysis using the pre-
sented five requirements-based coverage criteria, the
structure-based coverage criteria, and the combina-
tion of some of them.

As expected, All-Requirements performs worst of
all coverage criteria and All-Sequences performs bet-
ter than All-Requirements without much effort over-
head. All-Requirements-Pairs and All-Sequence-Pairs
perform even better than All-Sequences. Their execu-
tion costs, however, increase dramatically: more than
300 test cases with more than 5000 system calls for
All-Requirements-Pairs and All-Sequence-Pairs calls
compared to just 23 test cases with only 159 system
calls for All-Sequences! The number of test goals for
any of these two coverage criteria rises quadratically

Coverage Criterion Number of Number of Mutation
‘ Test Cases System Calls Score ‘

All-Requirements 19 165 69/87
All-Sequences 23 159 72/87
All-Req.-Pairs 317 5411 73/87
All-Sequence-Pairs 369 6277 73/87
All-Sequence-Twice 23 440 73/87
All-States 3 15 39/87
All-Transitions 11 69 72/87
MCC 12 76 72/87

MCC +
All-Sequences 35 235 74/87

MCC +
All-Sequence-Pairs 381 6353 75/87

MCC +
All-Sequence-Twice 35 516 75/87

Table 1: Results of mutation analysis.

compared to the number of given requirements.

We chose the coverage criteria All-States, All-
Transitions, and Multiple Condition Coverage (MCC)
for running test generation for the structure-oriented
coverage criteria. As expected, All-States performs
worst of all coverage criteria. The coverage criterion
MCC detected 72 mutants but used only 12 test cases.
Compared to All-Sequences, this is the same mutation
score for half of the test cases.

Comparing both results, our first conclusion is that
requirements-based coverage criteria can be able to
reach a high mutation score and structural-based cov-
erage criteria can achieve still good mutation scores
with less effort. The next result is that there are bene-
fits of applying both kinds of coverage criteria. For in-
stance, combining MCC and All-Sequence-Twice de-
tects 75 mutants with only 35 test cases. Given the
mutation scores of the single test suites, we consider
this improvement substantial.

4 Conclusion and Outlook

In this paper, we presented a new approach to trace-
ability and to test generation in model-based testing
based on concatenation of requirements.

There are several points to discuss. For instance,
the quality of the presented test generation approach
strongly depends on the quality of the given require-
ments. For instance, parts of the state machine may
be not covered by them and, consequently, pairs of
non-overlapping transition sequences cannot be con-
catenated using the overlap graph. In such cases,
transition sequence concatenation has to be done by
applying other techniques.

As future work, we plan to use the described con-
nection of sequence diagrams and state machines for
integration testing.

References

[1] M. Utting and B. Legeard. Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

[2] S. WeiBleder. ParTeG (Partition Test Generator).
http://parteg.sourceforge.net.





