
cba

Herausgeber et al. (Hrsg.): SKILL 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 11

Hyper-Parameter Search for Convolutional Neural Networks
– An Evolutionary Approach

Victoria Bibaeva1

Abstract:

Convolutional neural networks is one of the most popular neural network classes within the deep
learning research area. Due to their specific architecture they are widely used to solve such challenging
tasks as image and speech recognition, video analysis etc. The architecture itself is defined by
a number of (hyper-)parameters that have major impact on the recognition rate. Although much
significant progress has been made to improve the performance of convolutional networks, the typical
hyper-parameter search is done manually, taking therefore a long time and likely to disregard some
very good values. This paper solves the problem by proposing two different evolutionary algorithms
for automated hyper-parameter search in convolutional architectures. It will be shown that in case of
image recognition these algorithms are capable of finding architectures with nearly state of the art
performance automatically, sparing the scientists from much tedious effort.

Keywords: deep learning; convolutional neural networks; CNN; hyper-parameter search; evolutionary
algorithms; genetic algorithm; memetic algorithm

1 Introduction

Recent decade brought an enormous scientific progress in the field of deep learning, which
deals with deep, many-layered neural networks and their learning techniques. One of the
most prevalent classes of such networks is Convolutional Neural Networks (CNNs). A CNN
is a specific type of multi-layer perceptron (MLP) with more complex architecture. It was
first proposed in 1989 as a model inspired by visual cortex of mammals, and was used to
classify the images of hand-written digits [Le98]. In 2012 came a great breakthrough, as a
CNN suggested by [KSH12] won the world’s biggest object recognition challenge ILSVRC.
It successfully classified natural objects in a dataset containing of 1.4 million images and
1000 categories. Since then, CNNs quickly became state of the art and were applied to such
tasks as image and speech recognition, object classification and video analysis. Nowadays
they are ubiquitous due to their outstanding performance and well-developed techniques
of its improvement, in some cases already reaching the error rate of humans [KSH12].
However, the growing complexity of CNN architectures causes many problems, an important
1 Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg), Department Informatik, Berliner Tor

5, 20099 Hamburg, Germany firstname.lastname@haw-hamburg.de

https://creativecommons.org/licenses/by-sa/4.0/
firstname.lastname@haw-hamburg.de


12 Victoria Bibaeva

one being ”overfitting”. It happens when the network memorizes the dataset, but is not able
to recognize slightly different objects outside of the dataset.

The performance of CNNs on an object classification task can be defined as recognition
rate, i.e. percentage of correctly classified images. It can be influenced through the choice
of dataset, but also through changing the training parameters (like learning rate of gradient
descent) or carefully tuning the network architecture (represented by all the corresponding
hyper-parameters). Whereas the first two influence factors are generally well-studied
[Hi12], the architecture tuning is typically carried out manually in a haphazard manner,
considering merely a small number of proven values and techniques. Only few scientific
studies are dedicated to the empirical impact of hyper-parameters (cf. [Ja09, MSM16]),
while their mutual influence remains largely unknown. Thus, there is still a lack of knowledge
concerning reasons behind a good performance of CNNs and its further improvements.

A sensible approach to design a CNN to solve any given task is to try out not only one,
but many different hyper-parameter combinations. This is likely to result in a model with
higher recognition rate. Yet the manual search for good hyper-parameter values can be very
time and resource consuming, not to mention the chance of overseeing some promising
values. An automated hyper-parameter search, on the other hand, has a potential to save a
lot of tedious effort using some intelligent search strategy. Our work originated from an
idea to implement such an algorithm using the up-to-date knowledge about CNNs. Two
algorithms presented in this paper are based on evolutionary computation and have already
shown their worth in finding good architectures of MLP. It will be demonstrated that they
can be successfully adjusted to the case of CNNs, providing better CNN architectures
than a baseline method and achieving nearly state of the art performance without any user
intervention. By means of some representative datasets from the image recognition domain
we will determine, which algorithm gives better results under certain conditions. Such
criteria as architecture quality, complexity and runtime will be evaluated as well.

Our paper is organized as follows. First, we will introduce different hyper-parameters of a
CNN and their possible values. Then, in section 3, the current methods of hyper-parameter
search will be reported in case of CNNs as well as MLP. Section 4 gives detailed account
on the two proposed evolutional algorithms. At last, the major results of our experiments
are presented in section 5, leaving the last section for conclusion and future work.

2 Convolutional Neural Networks

In order to classify objects a CNN receives an input image and extracts certain visual
features from it. The extraction is done step by step, so that the features extracted during the
succeeding layers (rectangles, circles) are composed of features from the preceding layers
(lines, angles, arcs). Thus, a feature hierarchy is gradually constructed [Le98]. Therefore a
CNN contains of several so-called feature extraction stages, each of which is composed
of three basic types of neuron layers [Ja09]: filter bank layer, non-linearity layer, feature



Hyper-Parameter Search for Convolutional Neural Networks – An Evolutionary Approach 13

pooling layer. After the feature extraction stages follows a classifier, which is essentially a
MLP with some full connection layers that calculates the probability of the object class.
A famous instance of a CNN architecture is shown in Fig. 1. It consists of two feature
extraction stages (C1 + S2, C3 + S4) and a three-layered classifier (C5 + F6 + Output).

Fig. 1: CNN architecture [Le98].

So how can we generate variations of any given CNN architecture? In other words, what are
the tunable hyper-parameters? These are, on the one hand, the number of feature extraction
stages and their specific components (layer types and their sequence), but also the number
of hidden layers in the classifier. The rest of this section will be dedicated to the description
of different layer types and the corresponding hyper-parameters.

Filter Bank Layer This layer type is where the convolution operation takes place, to which
CNNs owe their name [Ja09]. Convolution produces a mapping between a source image
and target image by applying a convolutional kernel (also named ”filter”) onto overlapping
regions of the source image. Thus, a filter highlights one certain feature in the entire image.
Unlike MLP, the neurons within one filter bank layer are divided into several planes. All
neurons in one plane share weights and perform the same convolution operation in order to
extract one certain image feature. Classifying more complex objects requires more features
and therefore more filters in one layer – hence the term ”filter bank”. Filter bank layer has
3 major hyper-parameters, namely: filter size, step size (to define the overlapping image
regions) and filter count. Fortunately, not many values of these hyper-parameters have
prevailed in common practice. Nevertheless, there are only rules of thumb to set the number
of filters, depending on the expected number of features and object complexity [MSM16].

Non-linearity Layer Traditionally, the output of filter bank layer is then fed to non-linearity
layer, which is often considered to be a part of the former [Ja09]. As in a common neuron, a
non-linear activation function is applied here to each pixel value, in order to propagate or
suppress the incoming visual signal. A very popular function is g(x) = max(0, x), and the
neurons using it are named ReLU (”rectified linear units”, [KSH12, Hi12]). Nonetheless,
a variety of other functions based on ReLU were presented in recent years. The study
[MSM16] compared these functions within one particular CNN architecture being trained



14 Victoria Bibaeva

on ILSVRC dataset. The lowest error rates were achieved by ELU (”exponential linear
unit”), maxout and their combination (see [MSM16] for references). Accordingly, we have
chosen these 4 functions for our trials, adding one hyper-parameter to a current layer type.

Feature Pooling Layer The last layer type of a feature extraction stage reduces the source
image resolution even further, making the outcome independent of the exact feature position.
It is done by applying the same filter onto the overlapping regions of the image. In contrast to
filter bank layer, this filter is not learned during training, but calculates maximal or average
pixel value of every region [Hi12]. Therefore, the layer is called max or average pooling
layer, accordingly. The resulting target images have lower dimensions, and so a part of
visual information is lost (proportionally to filter size). The choice of an appropriate pooling
type (max or average) is controversial and cannot be answered in general for all the CNN
architectures or datasets. Furthermore, there is evidence, that the sum of max and average
pooling can be even more effective [MSM16]. As a result we consider 3 hyper-parameters
of a pooling layer: filter size, step size and pooling type with 3 possible values.

Full Connection Layer As stated earlier, the classifier of a CNN aims to learn the
relationship between the extracted features and the resulting object classes. It contains
of several stacked full connection layers without weight sharing. This implies the biggest
number of trainable weights in the whole network and the necessity to limit the count of such
layers, typically using only 2 or 3 (cf. [KSH12, Ja09, MSM16]). Each full connection layer
may be followed by a non-linearity layer, leading us to define 2 hyper-parameters: number
of output neurons and type of activation function. We also used Dropout with probability
0.5 (see [Hi12]) after each full connection layer as a technique to avoid overfitting.

Hyper-Parameter Overview The correct order of layer types within one feature extraction
stage has a very important role in designing a CNN. It was already studied in [Ja09], where
the lowest error was achieved by CNNs with layer sequence ”Filter Bank→ Non-Linearity
→ Feature Pooling”. Unsurprisingly, this layer sequence actually occurs in nature. All
hyper-parameters introduced above and their possible values are summed up in Tab. 1.
However, the interaction between the hyper-parameters remains largely unknown. The
existing reports on this subject (eg. [Ja09, MSM16]) used a single dataset for evaluation
and noted that their results cannot be automatically transferred to other datasets.

3 Related Work

The goal of object classification is to design a model, in our case a CNN, which after training
generalizes the given dataset well. It means, the model can correctly classify images that
were not included in the training set. For this purpose, a test set is employed, which is also a



Hyper-Parameter Search for Convolutional Neural Networks – An Evolutionary Approach 15

Hyper-Parameters Ref.
Filter Activation Filter Step No.
Bank Function – Size Size of [Hi12]
Layer (ReLU, ELU, Maxout, (3, 5, 7, 9, 11) (1, 2, 3, 4, 5) outputs

ELU + Maxout)
Feature Pooling Filter Step
Pooling – (Max, Average, Size Size – [KSH12]
Layer Max + Average) (2, 3) (1, 2)
Full Activation No.

Connection Function – – – of
Layer (ReLU, ELU, Maxout, outputs

ELU + Maxout)

Tab. 1: Hyper-parameters used in this paper and their values.

part of the given dataset, but is not generally used for training. So the quality of our model
can be summed up as accuracy on the test set, and we are aiming to find a model with the
highest accuracy (percentage of correct classifications). On the other hand, the objective
function of gradient descent during training is the so-called loss function which measures
error on training set. Both loss and accuracy indicate how well the given model performs,
accuracy being more important criterion for the future productive use of the model [Le98].
Other quality criteria such as training time, computational complexity or memory usage are
of less importance, because they depend on the chosen network implementation tool.

Previous section illustrated the fact that there is an enormous number of different CNNs
applicable for any given dataset. It makes training and testing them all quite impossible,
considering that each training cycle might take several days or weeks. Even on the modern
hardware this task can be insurmountable, leading to the necessity of using an automated
hyper-parameter search algorithm. Its benefits would be sparing time and resources due to an
intelligent search strategy and minimizing the risk of overseeing promising hyper-parameter
values. On the other hand, it should be able to leverage the existing knowledge about CNNs
to avoid certain pitfalls and produce models with above-average quality. The real challenge
is to find an algorithm which quickly and reliably finds a competitive architecture.

Surprisingly, relatively little scientific research is done to solve this problem yet, see
[Be11, BB12, Sn15]. These studies were motivated by the fact that the advances in object
classification can be achieved through hyper-parameter tuning, rather than inventing new
models or training techniques. In the authors’ opinion, the hyper-parameter search is
nowadays ”more of an art than a science”, even though it should belong to the designing
process of each deep learning model [Be11]. Thus, they proposed Grid Search and Random
Search as an alternative to manual hyper-parameter exploration.

If the desired values of hyper-parameters are known in advance, then all their conceivable
combinations can be easily generated, essentially defining all the points in the initial search



16 Victoria Bibaeva

space. Grid Search [BB12] reduces the overall search space by selecting a few values
of each hyper-parameter. If combined with each other, these selected values create a grid
within the search space. Subsequently, grid points are considered as solution candidates,
and the corresponding architectures are tested to identify the model with the best accuracy.
Advantages of Grid Search are simple implementation and a possibility of parallel processing.

As opposed to Grid Search, Random Search selects some random combinations of hyper-
parameters. These are basically random points in the search space which may get closer
to the better solutions than grid points. The experiments in [BB12] confirm that Random
Search requires less candidates than its counterpart in order to reach certain accuracy
level. However, the probability to randomly encounter a very good solution is inverse
proportionate to spatial dimensions. Furthermore, Random Search is not capable of pursuing
any promising directions or selectively explore certain areas. Hence, both Random and Grid
Search contain an inherent tendency to step over the best solutions.

The problem of finding the best hyper-parameters is far from being solved [BB12]. In spite
of the availability of such methods as Bayesian Optimization [Sn15], Grid and Random
Search remain the tools of choice. Thus, there is still a need to exploit new algorithms
from other domains, including less complex networks like MLP, where hyper-parameter
optimization has been in research focus for a long time. The most widely used methods to find
the best MLP architectures are evolutionary algorithms [CG11, OI11]. Consequently, our
approach to solve the hyper-parameter search problem is based on evolutionary algorithms
and the assumption that they can be adjusted to the case of CNN architectures. Two such
algorithms will be presented in the following section: both are well-studied, straightforward
to implement and provide an efficient search strategy that avoids local optima.

4 Proposed Algorithms

4.1 Genetic Algorithm

Genetic Algorithm (GA) was introduced in the 1970s [Ch11] and is since then the most
well-known evolutionary algorithm. It is population-based and attempts to replicate the
processes of natural evolution. Accordingly, the population individuals with higher fitness,
i.e. ability to adapt to the environment, have more chances to pass their best characteristics
to the next generation, whereas the unfavorable characteristics rather disappear [CG11].

A lot of articles have been published concerning hyper-parameter search for MLP using GA
[OI11]. Generally, GA works as follows. Firstly, MLP architectures should be represented
with binary strings in order to serve as individuals in the population. Each hyper-parameter
value is expressed through one or more genes (0 or 1), so the MLP architecture can be
transformed into a chromosome. Every iteration of GA changes the current population of
chromosomes/individuals by applying genetic operators to them: selection, crossover and
mutation. To measure the quality of individuals a fitness function is used, which in case of



Hyper-Parameter Search for Convolutional Neural Networks – An Evolutionary Approach 17

MLP architectures can depend on training loss, test accuracy or network size [OI11]. The
fitness function is subjected to maximization during the GA iterations.

Adjusting GA to the case of CNN architectures, we have chosen the following version of it:

1. Create the initial population with M random individuals

2. Evaluate the fitness of each individual

3. Apply genetic operators to the current population:

a) Selection: The fraction pc of the fittest individuals survive to
the next generation, the rest is discarded

b) Crossover: random pair of individuals produces one offspring by

swapping some genes, until the population size is reached

c) Mutation: pm random genes of some individuals will be altered

4. Repeat steps 2 – 3 until the required iteration count N is reached

Genetic operators should be chosen to accomplish an efficient search strategy. Thus, selection
attempts to enhance the average quality of the population and lead the search in the direction
of promising solutions. The chosen variant of selection is based on elitism [CG11], which
means that the fittest individuals should survive at any rate, not just by a given probability
or ranking. It guarantees a non-decreasing fitness and genetic diversity of the population.

Crossover, on the other hand, brings variation into the population by combining good
properties of selected individuals and facilitates faster convergence. The variant of crossover
we used is called 1-point-crossover, as it cuts the parent chromosomes in a random position
and swaps the resulting parts between the parents to produce a child chromosome [CG11].
It ensures mostly feasible and good offspring architectures, which accelerates the search
and does not tear the specific CNN architecture layers completely out of their context.

The basic idea of mutation is to avoid local optima, intensify the population diversity
and acquire new genetic material. Mutation is also affected through elitism, as the fittest
individuals (selected parent chromosomes) should be excluded from changing genes [CG11].

The challenges of GA are the choice of suitable genetic operators, fitness function and
binary representation of CNN architecture. Also, GA obviously contains its own specific
parameters such as probability of selection and mutation, as well as population size and
number of iterations. Nevertheless, the advantages of GA make it a popular tool to explore the
architecture search space [Ya99]. Firstly, GA is capable to search globally, avoid local optima
and guarantee the sequential fitness improvement. Secondly, it can generate architectures
with the desired characteristics, by means of including them into the fitness function. In the
end, GA is less sensitive with respect to initialization than one-solution-based algorithms.



18 Victoria Bibaeva

4.2 Memetic Algorithm

For some instances of search problems, the GA’s efficiency was reported to be unsatisfactory
[KS05]. The reason is that GA lacks mechanisms to perform fine-grained search in a region
with very good solutions. As opposed to global search of GA, an algorithm called Local
Search is designed to explore the region of its initial solution in order to find the better
ones. Therefore, an obvious attempts were made to hybridize GA with some form of Local
Search [Ch11]. One of the most successful hybrid algorithms is Memetic Algorithm (MA).
Its name is based on the notion of ”meme”, which represents a unit of cultural evolution
that can exhibit local refinement [KS05]. Thus, MA uses all the key components of GA,
inserting Local Search step before applying genetic operators to the current population
[Ch11]. Thereby the resulting population strictly consists of local optima.

Local Search within MA is usually carried out on a subset of the population. Some neighbors
of every individual in this subset are then evaluated with fitness function. If one particular
neighbor has higher fitness value than the original individual, then it replaces the latter in
the population. Moreover, Local Search can be done in 2 different ways [Ch11]. Firstly, the
search for the individual’s replacement can be continued until the first fitter neighbor is
encountered. Secondly, the search can iterate over a fixed number of random neighbors, so
that the complexity of one MA iteration increases as a square function of population size.

Despite higher computational complexity MA has also a number of advantages, which can
be beneficial for many real-life search problem instances [KS05]. On the one hand, it has
only two more specific parameters than GA, namely the number of neighbors to evaluate
and the radius of neighborhood. On the other hand, as the population consists of higher
quality individuals, Local Search leads to quicker convergence of MA.

In order to fully exploit the benefits of hybridization we have chosen the second, greedy
variant of Local Search for our experiments. Also, we executed Local Search on the whole
population, not only on its subset. These choices are consistent with the earlier established
elitism, because the fittest individuals can only be replaced with even fitter ones.

5 Evaluation

We implemented the proposed algorithms in Python, using open source framework caffe 2
for training of CNNs. Next, a series of experiments was conducted with intention to find the
best configuration for each algorithm and to assess their solution quality. For this purpose
we utilized 2 datasets from object classification domain, keeping reasonable training time
in mind. These datasets were chosen to represent real-world classification problems and
exemplify a large number of documented results. The first dataset named CIFAR-10 is
composed of 60,000 colored images of natural objects scaled to 32 × 32 pixel. Its 10 classes

2 http://caffe.berkeleyvision.org

http://caffe.berkeleyvision.org


Hyper-Parameter Search for Convolutional Neural Networks – An Evolutionary Approach 19

are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck (see [ZF13]). The
other dataset MNIST includes 70,000 images of hand-written digits in gray scale [Le98].

As the only kind of image preprocessing we used in our work is normalization and subtracting
the mean image of the entire dataset, it would be of interest to know state of the art accuracy
of CNN models with the same preprocessing steps. For example, the authors of [ZF13]
achieved an accuracy 0.8487 on CIFAR-10 using a specific type of pooling layer. The
top score for MNIST has long been 0.9905, accomplished by the CNN architecture in
Fig. 1, before it was beaten by [Ja09] with the accuracy 0.9947 and unsupervised learned
filters. One can draw on these examples to estimate the reasonable layer count, which in our
case varies from 6 to 8. Note that the results described below were derived from MNIST
experiments, the trials with CIFAR-10 being similar are omitted due to space constraints.

The choice of the fitness function is crucial for the success of GA and MA. It should
reflect the quality of a CNN architecture, duly incorporating both loss and accuracy:
Q f it = −α · Qloss + β · Qacc , where 0 ≤ α < β and α + β = 1. We limited ourselves
to several combinations of α and β and extensively tested them, varying other specific
parameters of the algorithms. The best combination turned out to be α = 0.25 and β = 0.75,
proving the hypothesis about smaller significance of loss for network quality.

Next step was to determine the best configuration for GA and MA. The number of iterations
(N = 10) and the population size (M = 30) were set taking not only the available hardware
into account, but also the desired variety of CNN architectures. Other specific parameters
like selection and mutation ratio (pc and pm), shared between both algorithms, were
comprehensively analyzed as well. The values pc = 0.5 and pm = 0.75 proved to induce
the best search behavior, meaning that the fittest half of the population should be chosen to
reproduce, and 3/4 of their children should be subjected to mutation. As a result of more
population diversity, the fitness over all iterations grew in this case always stronger than in
configurations with less selected individuals or less mutation.

The remaining specific parameters of MA (the number of neighbors S to evaluate and the
radius of neighborhood R) were examined separately. For instance, the radius R is calculated
as the longest distance from the initial individual using its coordinates in the search space.
A very good value of radius turned out to be R = 0.15, given the fact that it allowed us
to find enough valid CNN architectures in the corresponding neighborhood. Moreover,
relatively large jumps in the search space are possible, which can be very helpful to avoid
local optima. We also found out that higher radius leads to longer search, as the probability
of finding valid individuals decreases. In contrast, lower radius helps to preserve the local
nature of the search, but unfortunately reduces the variety of neighbors, preventing MA to
significantly increase the current fitness. The number of neighbors was fixed to S = 5 as a
balance between added computational complexity and range of the search.

By setting the specific parameters of GA and MA to the aforementioned values we ensured
that both algorithms perform to the best capability. Subsequently, we analyzed their properties



20 Victoria Bibaeva

in order to find out how the solution was found in each case. This was accomplished by
inspecting the generated architectures and the shift of their fitness values during runtime.

So how do the proposed algorithms change CNN architectures in the course of N iterations?
As the initial architectures are random, there is a great variety of hyper-parameter values
at the start of each algorithm. Then the variety is considerably reduced by GA, as the
search quickly concentrates on one region with the fittest individuals known so far. The
mechanism of crossover does not allow for significant changes in the genetic material, for
which mutation remains solely responsible. So the last iteration of GA produces architectures
that are very similar to each other, mostly differing in the number of outputs. MA, on the
other hand, makes use of Local Search, constantly inserting new fitter neighbors into the
population and thus keeping the range of genetic diversity more stable.

Another question arises: Does genetic diversity bring better results? In other words, what
fitness shift can be expected from both algorithms? To answer this, we tracked the currently
fittest individual in each population. Fig. 2 illustrates typical instances of fitness shift for
GA and MA. Due to elitism, fitness can only increase in both cases. However, because of
elitism GA does not change the fittest individuals, causing fitness plateaus as seen in Fig. 2,
left. MA differs from GA in this respect, as it substitutes all individuals through their fitter
neighbors, thus inducing the strictly monotonic fitness growth (Fig. 2, right).

Worthy of noting is the fact that both algorithms start with at least one very good CNN
architecture in the first generation, which is a great advantage of population-based search
algorithms. While the best accuracy of the first generation was rarely under 0.9, the
outcoming CNNs had average accuracy above 0.97. The best observed accuracy of GA was
0.9903, MA achieved 0.9902 with less layers, approaching state of the art accuracy 0.9905.

Finally, to compare the performance of GA and MA we strategically provided them with the
same preconditions, i.e. same initial population containing 7-layered CNN architectures. The
averaged results of this series of trials are demonstrated in Tab. 2. As a reference algorithm

Fig. 2: The development of each generation’s best fitness in GA (left) and MA (right).



Hyper-Parameter Search for Convolutional Neural Networks – An Evolutionary Approach 21

to compare against we also implemented Random Search (RS, see section 3), starting it
with the initially fittest individual of the given population and running for 100 iterations. In
order to measure the success of the algorithms we have chosen a fitness increase as metrics,
i.e. the difference between the best fitness of the first and the last generation. As expected,
RS shows the lowest average fitness increase of all – 7.5 %. Surprisingly, GA gets only
marginally better than RS (7.8 %) due to its limitations with respect to diminishing genetic
diversity. The winner of these trials is MA with its ability to increase the given fitness up
to 14.7 % – nearly twice as much as GA. This excellent performance can be explained
with the benefits of Local Search, which enables MA to explore the neighborhood of every
individual, thus avoiding too quick convergence and local optima. The average runtime of
both algorithms shown in Tab. 2 should be regarded as reasonable, considering the fact that
the manual search through all hyper-parameters of Tab. 1 might take longer than a week.

Algorithm Count Specific Mean Fitness Computational Avg. Runtime Best Known
Parameters Increase (%) Complexity (days) Accuracy

RS 1 7.5 linear <1 0.9857
GA 4 7.8 quadratic <2 0.9903
MA 6 14.7 cubic 5 0.9902 ∗

Tab. 2: Summary of our experimental results (∗ – achieved with less layers).

6 Conclusion and Future Work

In this paper, we analyzed the problem of finding good hyper-parameter values for CNN
architectures and solved it using two evolutionary algorithms. The first one is Genetic
Algorithm, the second is Memetic Algorithm, a hybrid of GA and Local Search. We
demonstrated that these algorithms can be successfully adjusted to the case of CNN and
even be superior to the standard search algorithms from the literature, like Random Search.

The proposed algorithms contain significantly less specific parameters than hyper-parameter
amount in CNNs (4 or 6 instead of 42 in 7-layered CNNs, cf. Tab. 1, 2), making it easier to
determine them manually if needed. We also illustrated the considerations behind the choice
of these specific parameters. After they are set to reasonable values, both algorithms are
able to efficiently explore the search space and find CNN architectures with nearly state of
the art accuracy on the given dataset without any user interference. In addition, we evaluated
the performance of both algorithms using fitness increase as metrics. The experiments show
that GA provides stable fitness increase and improves the properties of CNN architectures
with genetic operators. MA is more complex, but its performance level is twice as high as
that of GA due to Local Search. Both GA and MA are population-based, independent of
initialization and capable of searching for good architectures in several promising areas.

However, GA and MA can be further improved by means of parallel processing. It would
facilitate the experiments with extremely large datasets like ILSVRC, which would take a
week to train one CNN on. Besides, other techniques to increase the accuracy level can be



22 Victoria Bibaeva

taken into account, for example, other kinds of preprocessing [Hi12, ZF13] or tuning the
training parameters. In the end, the proposed algorithms can be considered as a good support
for scientists who desire to improve the accuracy of their CNN models by systematically
searching for appropriate hyper-parameter values.

References
[BB12] Bergstra, James; Bengio, Yoshua: Random Search for Hyper-parameter Optimization. J.

Mach. Learn. Res., 13(1):281–305, February 2012.

[Be11] Bergstra, James S.; Bardenet, Rémi; Bengio, Yoshua; Kégl, Balázs: Algorithms for Hyper-
Parameter Optimization. In (Shawe-Taylor, J. et al., eds): Advances in Neural Information
Processing Systems 24, pp. 2546–2554. 2011.

[CG11] Correa, B.A.; Gonzalez, A.M.: Evolutionary Algorithms for Selecting the Architecture of
a MLP Neural Network: A Credit Scoring Case. In: Data Mining Workshops (ICDMW),
2011 IEEE 11th International Conference on. pp. 725–732, Dec 2011.

[Ch11] Chang, Y.; Wang, Y.; Ricanek, K.; Chen, C.: Feature selection for improved automatic
gender classification. In: 2011 IEEE Workshop on Computational Intelligence in Biometrics
and Identity Management (CIBIM). pp. 29–35, April 2011.

[Hi12] Hinton, Geoffrey E. et al.: Improving neural networks by preventing co-adaptation of
feature detectors. CoRR, abs/1207.0580, 2012.

[Ja09] Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; LeCun, Y.: What is the best multi-stage
architecture for object recognition? In: Computer Vision, 2009 IEEE 12th International
Conference on. pp. 2146–2153, Sept 2009.

[KS05] Krasnogor, N.; Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy,
and design issues. IEEE Transactions on Evolutionary Computation, 9(5):474–488, 2005.

[KSH12] Krizhevsky, A.; Sutskever, I.; Hinton, G. E.: ImageNet Classification with Deep Convolu-
tional Neural Networks. In (Pereira, F. et al., eds): Adv. in Neural Information Processing
Systems 25, pp. 1097–1105. 2012.

[Le98] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[MSM16] Mishkin, Dmytro; Sergievskiy, Nikolay; Matas, Jiri: Systematic evaluation of CNN
advances on the ImageNet. CoRR, abs/1606.02228, 2016.

[OI11] Oong, Tatt Hee; Isa, N.A.M.: Adaptive Evolutionary Artificial Neural Networks for Pattern
Classification. Neural Networks, IEEE Transactions on, 22(11):1823–1836, Nov 2011.

[Sn15] Snoek, J. et al.: Scalable Bayesian Optimization Using Deep Neural Networks. In: Proc.
of the 32nd Intl. Conf. on Machine Learning - Vol. 37. ICML’15, pp. 2171–2180, 2015.

[Ya99] Yao, Xin: Evolving artificial neural networks. Proc. of the IEEE, 87(9):1423–1447, 1999.

[ZF13] Zeiler, Matthew D.; Fergus, Rob: Stochastic Pooling for Regularization of Deep Convolu-
tional Neural Networks. CoRR, abs/1301.3557, 2013.


	Introduction
	Convolutional Neural Networks
	Related Work
	Proposed Algorithms
	Genetic Algorithm
	Memetic Algorithm

	Evaluation
	Conclusion and Future Work

