
Scribble - A Framework for Integrating Intelligent Input
Methods into Graphical Diagram Editors

Andreas Scharf

andreas.scharf@cs.uni-kassel.de

Abstract: Creating modern software is a challenging but also a very creative task.
Especially in early development phases like requirements engineering or architectural
design software engineers use different mediums to manifest their thoughts and to
discuss possible ambiguities. These mediums range from analog tools like pen &
paper or whiteboards to digital ones like tablet pc’s or smartboards. Whereas editing
capabilities for analog mediums are restricted to add/remove operations, there already
is great support in the digital world to later move, rotate or even share thoughts and
diagrams with distributed teams. In addition the tool support for creating complex
diagrams used to express software architecture and design along with sophisticated
techniques like code generation is large. However, most of these tools restrict the user
input to valid data, decreasing the software engineers flexibility which is why they
often fall back to non formal tools. This doctoral thesis aims to combine the flexibility
of informal sketching with the power of formal software engineering tools. As part of
this thesis, a new generic framework will be created which dynamically augments new
and already existing diagram editors with sketch-based input features.

1 Motivation

Building modern software is a complex but also a very creative task and a lot of frame-
works for solving common problems in nearly every domain are available. On the one
hand these frameworks simplify the development of big and more stable software but on
the other hand one has to check thoroughly how to design and interconnect different soft-
ware components. A good example are web frameworks: even though they support de-
velopers creating amazing desktop like applications, they also introduce great complexity
like new communication concepts or connecting systems written in different programming
languages. Therefore, writing the actual code is not the first task of software engineers in
most cases. In fact, there are usually a couple of steps before the code writing phase like
requirements engineering and architectural design. Especially during these early stages of
development software engineers use different mediums to manifest their thoughts, discuss
architecture and design with their team members or to clarify ambiguous interpretations
of a conversation [MCK07]. Informal analog tools like pen & paper or whiteboards pro-
vide a great degree of freedom concerning allowed content but lack editing flexibility like
copy/paste, scale and rotate or even share sketched content with distributed teams. With
digital sketch-input enabled devices like tablet pc’s or smartboards it is possible to over-
come these problems [JINW04] and a remarkable amount of work has already been done

591



to further support this task [GSW01, MIEL99]. However, most approaches focus on cre-
ating and editing informal sketches while developers often use formal diagram editors for
modifying diagram types like UML class diagrams or sequence diagrams. On the one hand
these tools usually provide sophisticated editing-, validation- and code generation support
but on the other hand they mostly stick to a strict syntax which limits the developers cre-
ativity by restricting editing operations to valid data. For that reason, developers fall back
to more informal tools in many cases. Due to that, a lot of work has to been done twice
since people first manifest their thoughts using pen & paper for instance and digitize the
result afterwards to benefit from the mentioned tool support.

Therefore it is desirable to combine the strengths of software engineering tools with the
flexibility of informal sketching. Several approaches addressing this problem have emerged,
e.g. [QJJ03, PPY10] which provide support for recognizing hand drawn content. But most
of the work either focuses on providing sketching capabilities for a single diagram tool or
lack user control over several recognition aspects like used algorithms or how formal-
ization happens. Marama [GHNN06] and SKETCH [SB10] both try to provide generic
sketch support for graphical diagram editors in the Eclipse 1 environment. Marama is a
diagram editor generation framework which supports developers in creating graphical ed-
itors. Sketch-input capabilities are restricted to editors generated by Marama. SKETCH
on the other hand aims to add sketching features into new and already existing diagram
editors based on the Eclipse Graphical Editing Framework (GEF). However, development
of this framework is stuck and no information about extensibility and flexibility is given.

In the next section the resultant research questions are presented and the approach to an-
swer these questions will be outlined.

2 Research questions and Approach

Although there already has been a remarkable amount of work in sketch-input related
research areas, there are still a lot of open research questions in different categories. Some
of them are of a very technical nature whereas others are more general. In the following
the terms sketch-based and scribble-based are used synonymously and are related to hand
drawn input whereas Scribble refers to the framework which should be created within the
scope of this doctoral thesis.

• Can complex graphical diagram editors be seamlessly augmented to support sophis-
ticated sketch-based input? If yes, how and to what degree?

• How should a framework be designed to be useful for different graphical editor
frameworks in different environments? Are there any common components that can
be used cross-platform? Example environments to evaluate include (but are not
limited to) Eclipse and Visual Studio 2.

1http://www.eclipse.org
2http://www.microsoft.com/visualstudio/eng

592



• What kind of extension points does the framework have to provide? Which parts of
the framework should be extensible, configurable or even exchangeable?

• What are “intelligent” input methods? How can different input capabilities of dif-
ferent devices like single-touch capable smartboards or multi-touch capable tablets
be addressed? What about speech-input? Is it possible and reasonable to combine
different kinds of input methods?

• Various questions concerning technical and usability aspects of the Scribble frame-
work:

– Can incremental formalization be integrated? At what exact points in time is
recognition of sketched input performed?

– Can formalized and sketched input co-exist? This is a technical question on
the one hand but a usability question on the other hand. Do users want to be
able to switch between these two forms of visualization?

– Is it possible to provide (auto-) correction mechanisms of unrecognized or
wrong recognized elements? It is possible that the meaning of a sketch is
not clear at the point the user created it but elements created subsequently may
give hints to what the initial sketch was meant to be.

– Is it possible to provide convenient text input mechanisms? The core of this
question is: How can text input be distinguished from all other sketched input?
A related problem is the technical support for recognizing handwritten text.
Even though there are plenty algorithms that claim to support text recognition,
only a few perform well.

• How can different types of edges be recognized? Recognizing different types of
nodes is well supported by a lot of algorithms even without a large amount of train-
ing data. However, recognizing edges is a different kind of recognition problem
and cannot be solved with classical template matching based approaches. Figure 1
visualizes this problem.

• How much training is needed to provide acceptable recognition results? Who is
training the algorithms? Can training data be shared?

• Is scribble-based modeling accepted by modelers? What would be additional re-
quirements on such a framework and its usability?

To answer the research questions above, a requirement analysis has to be done first. This
starts with asking software engineers about their opinion of usability aspects in the “end
user” role on the one hand and what features they would like to have as integrators in the
“developer” role on the other hand. These information would give some kind of feature list
and also provide first hints of potential feature requirements of “client-frameworks” like
Eclipse or Visual Studio. Also the extensible or exchangeable Scribble framework parts
can be identified.

593



(a) Straight edge of type E between two nodes (b) Curved edge of type E between two nodes

Figure 1: The edge problem: two differently drawn edges of the same type E.

Analyzing different graphical editor creation frameworks along with diagram editors pro-
duced with these APIs would be the next step to get information about similarities and
differences. All similarities are potential candidates for common components which could
be used cross-platform. Furthermore, this analysis can be compared against the above
mentioned requirement analysis to answer the question if it possible to support sophisti-
cated sketch-based input within the evaluated client-frameworks and to what degree.

To support different input devices like single-touch tablet pc’s or multi-touch capable
smartboards along with a possible combination of speech-input, different use-cases cov-
ering common usage aspects have to be created. An example use-case would be “Move
a node” which can be run on single- and multi-touch capable devices leading to different
behavior of the Scribble framework. In this example, the user could use the common “two
finger swipe” gesture to move a node on a multi-touch device. For single-touch devices
some additional UI might be used to distinguish sketch-input from move commands.

Integrating sketch-, text- and speech-input recognition first involves some research of ex-
isting approaches and a study of their performance (qualitatively and quantitatively) and
their eligibility to be integrated or extended. Also the research question how different
types of edges could be recognized is part of this phase. Depending on the requirement
analysis above, these parts are also subject to be extensible or exchangeable.

A very important question concerns the amount of needed training data and if this data can
be shared. If it is reasonable to share training data amongst users, it would make sense to
evaluate existing training data providers if any or create a new service for that purpose.

During the above mentioned research and different analysis, a prototype of the Scribble
framework can be created to get a first picture to what extend all requirements can be
covered. This prototype can be used to evaluate the different requirements of the end user
and developer role. This evaluation also gives first results to the question if scribble-based
modeling is accepted by modelers and might also reveal additional requirements.

594



3 Status Quo and Future Work

A first requirement analysis to create a feature list for both end user and developer role
has already been done but this list is expected to change as mentioned in the last chapter.
Related work like Marama and SKETCH have been evaluated and suitable algorithms for
recognizing hand drawn content where identified.

The GEF framework in the Eclipse environment was the first candidate to analyze. A strat-
egy to dynamically inject sketch-based input features into GEF along with a first prototype
of the Scribble framework has been created. This work was submitted as a technical re-
search paper [SAon] to the International Conference on Software Engineering 2013 and
has been accepted for presentation in San Francisco from May 18th - 26th.

Evaluation of previous work in the domain of sharing training has revealed that it is rea-
sonable to share such data in some kind of online database [FGP+09]. Although there is
already some training data available, this data contains material only for primitive types
like rectangles or ellipses in most cases. For that reason an “online training center” called
WebScribble [Sei12] has been created as part of a bachelor thesis. WebScribble is a web
application to create new diagram editor types along with supported node and edge types.
For each node and edge type the user can add sample sketches and associate these sketches
with the appropriate type. All results are persisted in a database whose content is planned
to be accessible in form of a web service. This training data can then be imported into the
Scribble framework and decreases the amount of required training material for other users.

The next steps include the evaluation of Visual Studio as another environment to create
graphical diagram editors for. This will answer the question if common Scribble frame-
work components are technically reasonable. A first look at available approaches for
recognizing edges was made. This is a difficult problem since the same edge can look
arbitrarily different and simple template matching algorithms cannot be used here. More
work has to be investigated into this field and perhaps a new edge recognition algorithm
has to be created. Also some currently available approaches for text recognition have been
analyzed. The performance of most approaches is relatively worse and not usable in pro-
ductive environments. Microsoft’s text recognition capabilities on tablet pc’s are excellent
but only available in windows machines. However, the support of text-input methods is
a crucial feature for some diagram types like UML class diagrams. Therefore more work
has to be investigated here as well. A possible integration of speech-input is planned but
no work has been done in this field yet.

The Scribble framework prototype is designed to work well with single-touch capable
devices. If a device supports multi-touch, this feature should be utilized to increase user
experience which also is future work.

At last, an evaluation of the final Scribble prototype has to be undertaken and suitable
methods of measurement have to be found to answer the above mentioned research ques-
tions. It is planned to let students and professional developers test Scribble to see if the
framework can be integrated easily into existing diagram editors and if requirements con-
cerning usability are met.

595



References

[FGP+09] Martin Field, Sam Gordon, Eric Peterson, Raquel Robinson, Thomas Stahovich, and
Christine Alvarado. The Effect of Task on Classification Accuracy: Using Gesture
Recognition Techniques in Free-Sketch Recognition, 2009.

[GHNN06] J. Grundy, J. Hosking, Nianping Zhu, and Na Liu. Generating Domain-Specific Visual
Language Editors from High-level Tool Specifications. In 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2006. ASE ’06., pages 25–36,
2006.

[GSW01] François Guimbretière, Maureen Stone, and Terry Winograd. Fluid interaction with
high-resolution wall-size displays. In Proceedings of the 14th annual ACM symposium
on User interface software and technology, UIST ’01, pages 21–30. ACM, 2001.

[JINW04] Wendy Ju, Arna Ionescu, Lawrence Neeley, and Terry Winograd. Where the wild
things work: capturing shared physical design workspaces. In Proceedings of the 2004
ACM conference on Computer supported cooperative work, CSCW ’04, pages 533–
541. ACM, 2004.

[MCK07] Gina Venolia Rob DeLine Mauro Cherubini and Andrew J. Ko. Let’s go to the white-
board: how and why software developers use drawings. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 557–566, 2007.

[MIEL99] Elizabeth D. Mynatt, Takeo Igarashi, W. Keith Edwards, and Anthony LaMarca. Flat-
land: new dimensions in office whiteboards. In Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is the limit, CHI ’99, pages 346–353.
ACM, 1999.

[PPY10] Beryl Plimmer, Helen C. Purchase, and Hong Yul Yang. SketchNode: intelligent
sketching support and formal diagramming. In Proceedings of the 22nd Conference
of the Computer-Human Interaction Special Interest Group of Australia on Computer-
Human Interaction, OZCHI ’10, pages 136–143. ACM, 2010.

[QJJ03] Qi Chen, John Grundy, and John Hosking. An E-whiteboard application to support
early design-stage sketching of UML diagrams. In In Proceedings of the 2003 IEEE
Conference on Human-Centric Computing, pages 219–226. IEEE CS Press, 2003.

[SAon] A. Scharf and T. Amma. Dynamic Injection of Sketching Features into GEF based
Diagram Editors. Accepted at International Conference on Software Engineering 2013,
submitted for publication.

[SB10] Ugo Braga Sangiorgi and Simone D.J Barbosa. SKETCH: Modeling Using Freehand
Drawing in Eclipse Graphical Editors, 2010.

[Sei12] M. Seiler. WebScribble - Entwurf und Realisierung einer Webanwendung zur Erstel-
lung von grafischen Editoren durch Freihandzeichnungen, 2012. thesis.

596


