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Benefits of Gaussian Convolution in Gait Recognition

Maria De Marsico1, Alessio Mecca1

Abstract: The first and still popular approach to gait recognition applies computer vision techniques
to appearance-based features of walking patterns. More recently, wearable sensors have become
attractive. The accelerometer is the most used one, being embedded in widespread mobile devices.
Related techniques do not suffer for problems like occlusion and point of view, but for intra-subject
variations caused by walking speed, ground type, shoes, etc. However, we can often recognize a
person from the walking pattern, and this stimulates to search for robust features, able to sufficiently
characterize this trait. This paper presents some preliminary experiments using the convolution with
Gaussian kernels to extract relevant gait elements. The experiments use the large ZJU-gaitacc public
dataset, and achieve improved results compared with previous works exploiting the same dataset.
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1 Introduction

New technologies can simplify everyday life, but they also introduce unprecedented secu-
rity issues. Robust authentication techniques are required both in traditional settings, for
instance, to prevent unauthorized access to restricted physical areas (e.g., a bank caveau),
and to secure remote services (e.g., home banking), or mobile devices (e.g., smartphones).
The present use of smartphones for simply making calls is definitely marginal with respect
to the amount of other possible applications, often entailing the storage/use of private data.
Authentication conventionally relies on something to know/remember (knowledge-based,
e.g., passwords and PIN), or to be possessed (object/token-based, e.g., physical keys), or,
more recently, on personal physical/behavioral features (biometrics-based, e.g., face and
fingerprints) [Cl94]. Studies on the passwords managing habits [FH07, HH11], highlight
memorability problems, especially for robust passwords. This causes the reuse of pass-
words for different services, creating security breaches. Therefore, biometrics is an attrac-
tive alternative. The biometric traits that can be exploited for authentication/identification
purposes, include the popular fingerprints, face and iris. These traits have some ”strong”
properties, such as uniqueness, universality, and permanence, joined with a high recogni-
tion capability. This allows using them as a valid substitute for passwords or keys, espe-
cially in controlled conditions. Other traits, e.g., hand geometry, signing dynamics, hair
color, height, may lack one of the properties mentioned above, and produce less accurate
recognition performances or rather distinguish groups of individuals. For these reasons,
they are considered as ”soft”. Gait falls in this category, due to variations caused by both
extrinsic (ground slope, shoes) and intrinsic (speed, temporary physical problems) factors.
However, several studies investigate its discriminative power with interesting results.
The human gait follows strict bio-physiological rules [Va99]. In general, walking requires
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both the periodic movement of each foot from one position of support to the next, and
sufficient ground reaction forces [RIT81]. The periodic leg movement is the essence of the
naturally stereotyped cyclic nature of human gait, but energy saving kinematic strategies
change across individuals. These strategies produce features that make individual walking
patterns recognizable [BBL96]. Gait recognition can be carried out by computer vision
techniques (from videos), by the analysis of signals captured with equipped floors or, more
recently, with data coming from the accelerometers and other sensors embedded into wear-
able devices. This latter type of gait analysis has been taken into account in this paper. The
main contribution of this work is a study on the effects of the convolution of gait signals,
either segmented or not, with Gaussian kernels defined by various values of σ .

2 Related Work

Recognition methods based on gait signals from wearable devices fall into two main
categories. The methods in the first category preliminarily divide the signal into steps
[DMM16] or cycles (right and left step or vice versa) [DBH10, Ro07, GSB10, Fe16, Ju12,
PZW09, GR16, Gi17]. These works generally exploit simple signal matching algorithms
like Manhattan or Euclidean distances or, in order to reduce misalignment problems, use
them as distances metrics for DTW-like algorithms. The methods in the second category
divide the signal into fragments (or chunks) [KWM10, Ni11, NWB12, Lu14]. The differ-
ence between steps/cycles and fragments is that the former are related to gait dynamics,
and are identified by specific signal characteristics related to gait phases, while the latter
are simple signal slices with the same number of samples, with no correspondence with
physiology. These works generally use machine learning techniques to train a classifier
per subject. Most of them apply recognition in verification mode, with an implicit identity
claim (the ownership of the device). A few proposals do not rely on a preliminary step
segmentation procedure, in particular [Zh15], which is presented with more details be-
low, and one out of the five recognition strategies in [DMM16]. The use of unsegmented
signals for the matching phase, even if it seems to provide good results, might provide
degraded performance if the walking signals to match have a very different length. This
can be avoided in either explicitly or implicitly controlled acquisition. An example of data
acquisition triggered by Bluetooth devices (beacons) is presented in [DMM17].
The experiments in this paper exploit the ZJU-gaitacc dataset presented as a public bench-
mark in [Zh15]. The recognition approach proposed in the same work is therefore used
for comparison, so that it is described in more details. It exploits and refines the concept
of Signature Points (SPs) already presented in [PZW09]. Each walk is first converted into
its 1D magnitude vector (mv) form, given by the usual formula (∀i, mv[i] =

√
x2

i + y2
i + z2

i ),
where xi, yi, and zi are respectively the samples on the three axes at time i. As already
mentioned, this work exploits the entire unsegmented walking signal. SPs are defined as
informative points in the mv, and are chosen as the extrema of the convolution of the mv
with a Difference of Gaussian (DoG) pyramid. Referring to the work in [Lo04], the au-
thors claim that these extrema ”are shown to be stable, scale-invariant, and at informative
localities”. SPs are marked with multi-scale local descriptors. The descriptors are stored
as vectors, and all vectors for all gallery users are collected in a dictionary matrix. Vectors



Benefits of Gaussian Convolution in GR 3

are then clustered considering that descriptors extracted from similar gait phases are gen-
erally similar (”phase propinquity”). The matrix of centroids is used to extract the closest
subdictionary for a certain probe, in order to code it as a linear combination of its columns.
Matching is treated as a conditional probability problem and uses a sparse-code classifier.
A reason for choosing this work for comparison is the use of Gaussian convolution (in that
case a DoG pyramid), similarly to our proposal. Moreover, the dataset exploited, namely
the ZJU-gaitacc, differently from other works, allows comparing results.

3 Proposed Strategy

The presented strategy is an evolution of the proposal in [DMM16]. It is not feasible to
carry out a preprocessing step to discard the first and the last points in the signals, which
are usually either noise or unstable information. This step is usually guided by the knowl-
edge of the conditions that trigger the acquisition. For example, this is manually triggered
by a user tap on the phone screen in the case of the dataset (BWR) in [DMM16], resulting
in some useless points between the tap/start action and the real start of the walking action
(and the same for the stop/end action). Information about such conditions is not avail-
able for the ZJU-gaitacc dataset. The step segmentation algorithm has been slightly modi-
fied w.r.t. [DMM16]. It relies on the stepThreshold and stepEquilibrium parameters.
They are computed over the y axis, which is the dominant one in the considered setting.
Segmentation results on y are then mapped onto the other two axes. The stepThreshold
is determined as the k-th highest relative maximum of the signal, where k is the estimated
number of steps. It identifies signal peaks high enough to be considered as start/end of a
step. The stepEquilibrium is used to avoid considering sufficiently high peaks yet not
sufficiently separated from eligible ones. In [DMM16] it is computed as the value lower
than the signal average, having the highest frequency. In the present work, the value for
stepEquilibrium is rather computed as µ−σ where µ is the mean and σ is the standard
deviation of the walking signal in analysis. This formulation provides better results.
For reader convenience, the complete step segmentation algorithm is reported here.

1) compute stepEquilibrium
2) compute stepThreshold
3) find the first relative maximum - set it as
starting point of the first step
4) find the next value lower than stepEquilibrium;

5) if end of the signal is reached: END
6) find the next relative maximum greater than
stepThreshold - set it as current step ending
point and next step starting point
7) if not end of signal, repeat from 4

The approach further entails an outliers removal phase. It computes the average Dynamic
Time Warping (DTW) distance of each step from all the others, and then discards all steps
for which it is greater than the average of average distances plus their standard deviation.
As a further difference, the method in [DMM16] avoids re-computing segmentation pa-
rameters from the probe, by using a fitting procedure, to avoid re-segmenting the probe
signal knowing its number of steps. The incoming signal is rather segmented from time
to time using the stored parameters of the gallery walk to match. In the present work the
overall segmentation procedure is repeated for the incoming probe. The slightly modi-
fied computation of stepEquilibrium threshold and probe segmentation aim at a better
adaptation to the use of different acquisition devices. In fact, we notice that the stored
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stepThreshold and stepEquilibrium depend on the values measured on the y axis
during the enrollment. If the walking signal from the probe is acquired from the same
user but with a different device, these parameters can vary significantly. The new algo-
rithm provides a better segmentation accuracy on the BWR-MultiDevice dataset presented
in [DMDPM16]. Even if data in ZJU-gaitacc is acquired by devices of the same kind, it
is well known that also accelerometers of the same brand and model, can provide differ-
ent values in identical conditions. Actually, it is not reported in the dataset presentation
whether the same device was always used in the same position. Therefore this work ex-
ploits the modified version of the segmentation algorithm. The knowledge of k seems
limiting, but it can be estimated by applying a step counter algorithm. Moreover, the pre-
cise knowledge of k is not even so important, given that it is reasonable for the signals at
hand. This is due to the way k is used, and to the fact that after a certain number of steps,
if no exceptional event happens, the gait pattern tends to stabilize [Fe17]. For instance, in
the presented experiments k has been set to 10 for all walks (as for [DMM16]). However,
the single walks in ZJU-gaitacc probably contain more than 10 steps (they are about 20
meters long), but the same value of k has been successfully used.
As for the matching strategy, two of the algorithms proposed in [DMM16] are exploited,
namely WALK and ALL STEPS VS. ALL (AVSA), to get comparable results. They both rely
on the classical implementation of DTW; WALK compares entire signals, while AVSA
exploits single steps. In particular, given two walks to compare, the best correspondence
is searched for each step of the first walk, by comparing it with each step of the second
one, and taking the best result. The final score is the average of these best matchings. The
process should be repeated by inverting the role of the two walks and the average should
be taken to obtain a symmetric distance. However experiments demonstrated that the in-
cremented computational demand does not correspond to more accurate results.
The present contribution w.r.t. [DMM16] is twofold. The first one is the improved segmen-
tation algorithm. The second and most relevant one is the investigation of the effects of the
convolution of signals, either segmented or not, with Gaussian kernels, before comparison.
In the experiments, 4 different values for the σ of the Gaussian kernel are tested, namely
2, 4, 8, and 16, and also the possibility of a score-level fusion between 2 or more results.
This fusion is obtained from the distance values computed matching the different con-
volved gait data, by either picking up the best one or by summing them up. In summary:
1) the signals are possibly divided into steps; 2) different Gaussian kernels are used for
convolution with the original signal; 3) distances are computed according to either WALK
or AVSA; 4) the results are fused by taking either the best or the sum of them.

4 Results and Discussion

The results are presented in terms of Equal Error Rate (EER) for verification (VER),
Recognition Rate (RR) for closed set identification (CSI), and both EER and Detection
and Identification Rate at rank 1 for a given threshold t (DIR(1,t)), for open set identifica-
tion (OSI). In OSI some probes may not belong to enrolled users, so that a reject option is
added and an acceptance threshold t is required. Therefore, the performance measures are
a kind of combination of those used for VER and CSI. The DIR(1,t) is similar to the RR.
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It measures the percentage of genuine probes that conform two conditions: the right iden-
tity of the probe is in the first position of the distance ordered list, and its distance meets
the acceptance threshold. FRR(t) is computed as 1-DIR(1,t), and FAR(t) is the percentage
of impostor probes that meet the acceptance threshold, whichever the returned identity.
Therefore, it is possible to compute the EER. In the reported results, in order to present a
consistent view of system performance, DIR(1,t) refers to the same threshold of the ERR.
This work exploits the dataset ZJU-gaitacc [Zh15] that is one of the largest freely available.
It collects gait signals from 153 subjects, with 12 walks each captured during 2 sessions.
Further 22 subjects have only 6 walks from a single sessions. Walks are long enough to al-
low extracting sufficient stable features. Data is acquired by 5 accelerometers of the same
kind (WiiMote) in different body placements: left upper arm, right wrist, right hip, left
tight and right ankle. The achieved performance reach an up to 95.8% of RR (CSI), and
a down to 2.2% of EER (VER), when combining results from all the accelerometers. OSI
is not tested. We only exploit the right hip subset, since it is the most popular location
for experiments using accelerometers embedded in smartphones, and the one over which
the work presenting the dataset achieves the best average results (RR=73.4% for CSI and
EER=8.9% for VER). As a negative aspect, data from ZJU-gaitacc are interpolated and it
is not possible to get the original/raw signals. The dataset OU-ISIR [Ng14] is even larger,
with 744 subjects. However, differently from ZJU-gaitacc, the walks are much shorter,
manually segmented according to ground shape, and captured in a single session.
Besides the modalities in the experiments in [Zh15], the results presented here also pertain
to the already mentioned OSI, and to verification with more gallery templates per subject
(VER MULTI). In the latter case, when verifying a probe claimed identity, all correspond-
ing gallery templates are matched and the best result is returned. This decreases the effect
of intra-class variations. As a matter of fact, multi-template strategy is often exploited in
literature to this aim and to improve performance by decreasing the FRR.
Table 1 summarizes the results achieved with different Gaussian kernels or their combi-
nations. Combinations differ for both the number of kernels involved, and for the compu-
tation of the final result. The latter is obtained either by choosing the best score among
those returned by the kernels in the combination (Combined BEST - C BEST), or by sum-
ming up all these scores (Combined SUM - C SUM). WALK, that compares the entire
gait signal, confirms itself as better than ALL STEPS VS. ALL (AVSA), that rather ex-
ploits step segmentation. C SUM always achieves better identification results than single
kernels in CSI, independently from the chosen combination and from the recognition strat-
egy (with or without segmentation). Identification results in CSI obtained by C BEST are
generally worse than those obtained by single kernels. In VER mode, WALK achieves
an EER from 0.334 to 0.348, depending on the kernel/combination, with the best value
obtained in different settings, that include both a single kernel or a different combina-
tions. AVSA achieves an EER from 0.354 to 0.3674, with a single best value obtained by
Gaussian kernel with σ = 2. In this modality, C SUM generally achieves worse results,
while C BEST overcomes single kernels. As expected, a significant improvement of per-
formance is achieved by VER MULTI w.r.t. VER (in practice, an order of magnitude).
WALK achieves an EER between 0.036 and 0.046, while AVSA has an EER from 0.0395
to 0.061, which reveals a higher dependence on the chosen kernel/combination. As for
WALK, C BEST and C SUM achieve comparable results also with single kernels. On the
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Tab. 1: Results with different single Gaussian kernels or combinations. The bold values are the best
result(s) for each sub-category (recognition modality - kernel(s)), the green background identifies
the best result(s) for the modality. The last two rows report performance of the compared works.

WALK ALL STEPS VS. ALL
Gaussian
Kernel

Identification
Closed Set

Verification
Single

Verification
Multi

Identification Open Set
ERR | DIR(1, t)

Identification
Closed Set

Verification
Single

Verification
Multi

Identification Open Set
ERR | DIR(1, t)

Single Gaussian
2 0.9286 0.343 0.039 0.249 0.7512 0.8581 0.3540 0.0610 0.3240 0.6840
4 0.9641 0.337 0.046 0.226 0.7745 0.8559 0.3577 0.0550 0.2953 0.6818
8 0.9613 0.334 0.039 0.209 0.7908 0.8575 0.3674 0.0485 0.2877 0.7407
16 0.9341 0.355 0.039 0.248 0.7522 0.8302 0.3669 0.0397 0.2918 0.6665

Combined BEST - C BEST
2-4 0.9641 0.334 0.046 0.226 0.7740 0.8553 0.3567 0.0532 0.3103 0.7129
2-8 0.9613 0.339 0.039 0.209 0.7908 0.8575 0.3587 0.0469 0.2737 0.7249

2-16 0.9341 0.342 0.039 0.248 0.7522 0.8302 0.3581 0.0395 0.2950 0.6954
4-8 0.9613 0.341 0.039 0.209 0.7908 0.8570 0.3603 0.0476 0.2811 0.7325

4-16 0.9341 0.334 0.039 0.248 0.7522 0.8308 0.3602 0.0397 0.2975 0.7069
8-16 0.9346 0.35 0.04 0.248 0.7522 0.8297 0.3630 0.0407 0.3032 0.7134
2-4-8 0.9619 0.338 0.039 0.208 0.7908 0.8570 0.3592 0.0472 0.2740 0.7249
2-4-16 0.9341 0.342 0.04 0.248 0.7522 0.8308 0.3592 0.0397 0.2950 0.6954
2-8-16 0.9346 0.343 0.04 0.248 0.7522 0.8297 0.3596 0.0401 0.2956 0.6954
4-8-16 0.9346 0.344 0.04 0.248 0.7522 0.8297 0.3612 0.0401 0.2983 0.7063
ALL 0.9346 0.343 0.04 0.248 0.7522 0.8297 0.3600 0.0401 0.2956 0.6954

Combined SUM - C SUM
2-4 0.9662 0.334 0.046 0.232 0.7669 0.8652 0.3593 0.0581 0.3092 0.7074
2-8 0.9711 0.338 0.043 0.208 0.7919 0.8843 0.3589 0.0496 0.2729 0.7456

2-16 0.9728 0.343 0.042 0.199 0.8007 0.9001 0.3640 0.0426 0.2535 0.7544
4-8 0.9641 0.34 0.042 0.208 0.7919 0.8723 0.3629 0.0509 0.2606 0.7183

4-16 0.9657 0.345 0.038 0.197 0.8028 0.8919 0.3622 0.0427 0.2364 0.7325
8-16 0.9602 0.348 0.036 0.2 0.8001 0.8739 0.3669 0.0411 0.2680 0.7484
2-4-8 0.9679 0.338 0.044 0.21 0.7898 0.8783 0.3589 0.0491 0.2860 0.7369
2-4-16 0.9722 0.341 0.042 0.203 0.7963 0.8930 0.3635 0.0445 0.2680 0.7636
2-8-16 0.9711 0.344 0.039 0.199 0.8045 0.8925 0.3617 0.0436 0.2489 0.7571
4-8-16 0.9673 0.345 0.039 0.195 0.8001 0.8843 0.3637 0.0439 0.2448 0.7369
ALL 0.9728 0.342 0.041 0.2 0.7996 0.8936 0.3605 0.0474 0.2615 0.7642

[DMM16] 0.9282 0.3269 0.0926 0.3233 - 0.714 0.3476 0.3625 0.5397 -

[Zh15] Identification: RR=0.734 Verification: EER=0.089

contrary, AVSA achieves generally worse results with single kernels, while C BEST seems
to be a little bit better than C SUM. Finally, in OSI, which is the hardest modality, C SUM
obtains the best result both with WALK and AVSA. In summary, it is possible to observe
that C SUM is the best option for both CSI and OSI. C BEST seems to be to prefer for
both VER and VER MULTI. In general, combinations work better than single kernels.
Table 1 also reports the results of compared works. The values achieved in [DMM16] for
WALK are RR=0.9282 for CSI, EER=0.3269 for VER, EER=0.0926 for VER MULTI,
and EER=0.3233 for OSI. There is therefore an improvement, except for VER. As for
AVSA, RR=0.714 for CSI, EER=0.3476 for VER, EER=0.3625 for VER MULTI, and
EER=0.5397 for OSI. In this case, the improvement is even greater and generalized. The
results in [Zh15] for the right hip are RR=0.734 (CSI) and EER=0.089 (VER). While iden-
tification results are significantly increased, improved verification is obtained only when
considering a gallery with more templates per user.

5 Conclusion

The paper presented the results of a preliminary investigation of the use of Gaussian ker-
nels to process gait signals. The aim is to attempt a new strategy to extrapolate those
periodic characteristics that allow recognizing a person from the walking pattern. Exper-
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iments are carried out on a large public dataset, to allow a wide comparison of results.
Though achieving improved outcomes, the experiments testify that further investigations
of the features evidentiated by different Gaussian kernels can allow achieving a better
generalized accuracy. It is worth pointing out that, of course, testing is carried out over
static data for which ground truth is available. Several dynamic authentication scenarios
are possible. For example, using a suitable smartphone app to capture the walking signal of
an approaching enrolled user, it is possible to identify the walker and automatically grant
access to a restricted area. The smartphone ID alone, once stored in the system, would not
be sufficient to provide authentication, given the possibility that it is kept by a different
subject. However, the same ID could be used as an implicit identity claim, to exploit the
lighter verification modality.
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